parse_vdso.c
6.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
/*
* parse_vdso.c: Linux reference vDSO parser
* Written by Andrew Lutomirski, 2011.
*
* This code is meant to be linked in to various programs that run on Linux.
* As such, it is available with as few restrictions as possible. This file
* is licensed under the Creative Commons Zero License, version 1.0,
* available at http://creativecommons.org/publicdomain/zero/1.0/legalcode
*
* The vDSO is a regular ELF DSO that the kernel maps into user space when
* it starts a program. It works equally well in statically and dynamically
* linked binaries.
*
* This code is tested on x86_64. In principle it should work on any 64-bit
* architecture that has a vDSO.
*/
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include <elf.h>
/*
* To use this vDSO parser, first call one of the vdso_init_* functions.
* If you've already parsed auxv, then pass the value of AT_SYSINFO_EHDR
* to vdso_init_from_sysinfo_ehdr. Otherwise pass auxv to vdso_init_from_auxv.
* Then call vdso_sym for each symbol you want. For example, to look up
* gettimeofday on x86_64, use:
*
* <some pointer> = vdso_sym("LINUX_2.6", "gettimeofday");
* or
* <some pointer> = vdso_sym("LINUX_2.6", "__vdso_gettimeofday");
*
* vdso_sym will return 0 if the symbol doesn't exist or if the init function
* failed or was not called. vdso_sym is a little slow, so its return value
* should be cached.
*
* vdso_sym is threadsafe; the init functions are not.
*
* These are the prototypes:
*/
extern void vdso_init_from_auxv(void *auxv);
extern void vdso_init_from_sysinfo_ehdr(uintptr_t base);
extern void *vdso_sym(const char *version, const char *name);
/* And here's the code. */
#ifndef __x86_64__
# error Not yet ported to non-x86_64 architectures
#endif
static struct vdso_info
{
bool valid;
/* Load information */
uintptr_t load_addr;
uintptr_t load_offset; /* load_addr - recorded vaddr */
/* Symbol table */
Elf64_Sym *symtab;
const char *symstrings;
Elf64_Word *bucket, *chain;
Elf64_Word nbucket, nchain;
/* Version table */
Elf64_Versym *versym;
Elf64_Verdef *verdef;
} vdso_info;
/* Straight from the ELF specification. */
static unsigned long elf_hash(const unsigned char *name)
{
unsigned long h = 0, g;
while (*name)
{
h = (h << 4) + *name++;
if (g = h & 0xf0000000)
h ^= g >> 24;
h &= ~g;
}
return h;
}
void vdso_init_from_sysinfo_ehdr(uintptr_t base)
{
size_t i;
bool found_vaddr = false;
vdso_info.valid = false;
vdso_info.load_addr = base;
Elf64_Ehdr *hdr = (Elf64_Ehdr*)base;
Elf64_Phdr *pt = (Elf64_Phdr*)(vdso_info.load_addr + hdr->e_phoff);
Elf64_Dyn *dyn = 0;
/*
* We need two things from the segment table: the load offset
* and the dynamic table.
*/
for (i = 0; i < hdr->e_phnum; i++)
{
if (pt[i].p_type == PT_LOAD && !found_vaddr) {
found_vaddr = true;
vdso_info.load_offset = base
+ (uintptr_t)pt[i].p_offset
- (uintptr_t)pt[i].p_vaddr;
} else if (pt[i].p_type == PT_DYNAMIC) {
dyn = (Elf64_Dyn*)(base + pt[i].p_offset);
}
}
if (!found_vaddr || !dyn)
return; /* Failed */
/*
* Fish out the useful bits of the dynamic table.
*/
Elf64_Word *hash = 0;
vdso_info.symstrings = 0;
vdso_info.symtab = 0;
vdso_info.versym = 0;
vdso_info.verdef = 0;
for (i = 0; dyn[i].d_tag != DT_NULL; i++) {
switch (dyn[i].d_tag) {
case DT_STRTAB:
vdso_info.symstrings = (const char *)
((uintptr_t)dyn[i].d_un.d_ptr
+ vdso_info.load_offset);
break;
case DT_SYMTAB:
vdso_info.symtab = (Elf64_Sym *)
((uintptr_t)dyn[i].d_un.d_ptr
+ vdso_info.load_offset);
break;
case DT_HASH:
hash = (Elf64_Word *)
((uintptr_t)dyn[i].d_un.d_ptr
+ vdso_info.load_offset);
break;
case DT_VERSYM:
vdso_info.versym = (Elf64_Versym *)
((uintptr_t)dyn[i].d_un.d_ptr
+ vdso_info.load_offset);
break;
case DT_VERDEF:
vdso_info.verdef = (Elf64_Verdef *)
((uintptr_t)dyn[i].d_un.d_ptr
+ vdso_info.load_offset);
break;
}
}
if (!vdso_info.symstrings || !vdso_info.symtab || !hash)
return; /* Failed */
if (!vdso_info.verdef)
vdso_info.versym = 0;
/* Parse the hash table header. */
vdso_info.nbucket = hash[0];
vdso_info.nchain = hash[1];
vdso_info.bucket = &hash[2];
vdso_info.chain = &hash[vdso_info.nbucket + 2];
/* That's all we need. */
vdso_info.valid = true;
}
static bool vdso_match_version(Elf64_Versym ver,
const char *name, Elf64_Word hash)
{
/*
* This is a helper function to check if the version indexed by
* ver matches name (which hashes to hash).
*
* The version definition table is a mess, and I don't know how
* to do this in better than linear time without allocating memory
* to build an index. I also don't know why the table has
* variable size entries in the first place.
*
* For added fun, I can't find a comprehensible specification of how
* to parse all the weird flags in the table.
*
* So I just parse the whole table every time.
*/
/* First step: find the version definition */
ver &= 0x7fff; /* Apparently bit 15 means "hidden" */
Elf64_Verdef *def = vdso_info.verdef;
while(true) {
if ((def->vd_flags & VER_FLG_BASE) == 0
&& (def->vd_ndx & 0x7fff) == ver)
break;
if (def->vd_next == 0)
return false; /* No definition. */
def = (Elf64_Verdef *)((char *)def + def->vd_next);
}
/* Now figure out whether it matches. */
Elf64_Verdaux *aux = (Elf64_Verdaux*)((char *)def + def->vd_aux);
return def->vd_hash == hash
&& !strcmp(name, vdso_info.symstrings + aux->vda_name);
}
void *vdso_sym(const char *version, const char *name)
{
unsigned long ver_hash;
if (!vdso_info.valid)
return 0;
ver_hash = elf_hash(version);
Elf64_Word chain = vdso_info.bucket[elf_hash(name) % vdso_info.nbucket];
for (; chain != STN_UNDEF; chain = vdso_info.chain[chain]) {
Elf64_Sym *sym = &vdso_info.symtab[chain];
/* Check for a defined global or weak function w/ right name. */
if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
continue;
if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
ELF64_ST_BIND(sym->st_info) != STB_WEAK)
continue;
if (sym->st_shndx == SHN_UNDEF)
continue;
if (strcmp(name, vdso_info.symstrings + sym->st_name))
continue;
/* Check symbol version. */
if (vdso_info.versym
&& !vdso_match_version(vdso_info.versym[chain],
version, ver_hash))
continue;
return (void *)(vdso_info.load_offset + sym->st_value);
}
return 0;
}
void vdso_init_from_auxv(void *auxv)
{
Elf64_auxv_t *elf_auxv = auxv;
for (int i = 0; elf_auxv[i].a_type != AT_NULL; i++)
{
if (elf_auxv[i].a_type == AT_SYSINFO_EHDR) {
vdso_init_from_sysinfo_ehdr(elf_auxv[i].a_un.a_val);
return;
}
}
vdso_info.valid = false;
}