vfpmodule.c 20.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
/*
 *  linux/arch/arm/vfp/vfpmodule.c
 *
 *  Copyright (C) 2004 ARM Limited.
 *  Written by Deep Blue Solutions Limited.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/types.h>
#include <linux/cpu.h>
#include <linux/cpu_pm.h>
#include <linux/hardirq.h>
#include <linux/kernel.h>
#include <linux/notifier.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/uaccess.h>
#include <linux/user.h>
#include <linux/export.h>

#include <asm/cp15.h>
#include <asm/cputype.h>
#include <asm/system_info.h>
#include <asm/thread_notify.h>
#include <asm/vfp.h>

#include "vfpinstr.h"
#include "vfp.h"

/*
 * Our undef handlers (in entry.S)
 */
void vfp_testing_entry(void);
void vfp_support_entry(void);
void vfp_null_entry(void);

void (*vfp_vector)(void) = vfp_null_entry;

/*
 * Dual-use variable.
 * Used in startup: set to non-zero if VFP checks fail
 * After startup, holds VFP architecture
 */
unsigned int VFP_arch;

/*
 * The pointer to the vfpstate structure of the thread which currently
 * owns the context held in the VFP hardware, or NULL if the hardware
 * context is invalid.
 *
 * For UP, this is sufficient to tell which thread owns the VFP context.
 * However, for SMP, we also need to check the CPU number stored in the
 * saved state too to catch migrations.
 */
union vfp_state *vfp_current_hw_state[NR_CPUS];

/*
 * Is 'thread's most up to date state stored in this CPUs hardware?
 * Must be called from non-preemptible context.
 */
static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread)
{
#ifdef CONFIG_SMP
	if (thread->vfpstate.hard.cpu != cpu)
		return false;
#endif
	return vfp_current_hw_state[cpu] == &thread->vfpstate;
}

/*
 * Force a reload of the VFP context from the thread structure.  We do
 * this by ensuring that access to the VFP hardware is disabled, and
 * clear vfp_current_hw_state.  Must be called from non-preemptible context.
 */
static void vfp_force_reload(unsigned int cpu, struct thread_info *thread)
{
	if (vfp_state_in_hw(cpu, thread)) {
		fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
		vfp_current_hw_state[cpu] = NULL;
	}
#ifdef CONFIG_SMP
	thread->vfpstate.hard.cpu = NR_CPUS;
#endif
}

/*
 * Per-thread VFP initialization.
 */
static void vfp_thread_flush(struct thread_info *thread)
{
	union vfp_state *vfp = &thread->vfpstate;
	unsigned int cpu;

	/*
	 * Disable VFP to ensure we initialize it first.  We must ensure
	 * that the modification of vfp_current_hw_state[] and hardware
	 * disable are done for the same CPU and without preemption.
	 *
	 * Do this first to ensure that preemption won't overwrite our
	 * state saving should access to the VFP be enabled at this point.
	 */
	cpu = get_cpu();
	if (vfp_current_hw_state[cpu] == vfp)
		vfp_current_hw_state[cpu] = NULL;
	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
	put_cpu();

	memset(vfp, 0, sizeof(union vfp_state));

	vfp->hard.fpexc = FPEXC_EN;
	vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
#ifdef CONFIG_SMP
	vfp->hard.cpu = NR_CPUS;
#endif
}

static void vfp_thread_exit(struct thread_info *thread)
{
	/* release case: Per-thread VFP cleanup. */
	union vfp_state *vfp = &thread->vfpstate;
	unsigned int cpu = get_cpu();

	if (vfp_current_hw_state[cpu] == vfp)
		vfp_current_hw_state[cpu] = NULL;
	put_cpu();
}

static void vfp_thread_copy(struct thread_info *thread)
{
	struct thread_info *parent = current_thread_info();

	vfp_sync_hwstate(parent);
	thread->vfpstate = parent->vfpstate;
#ifdef CONFIG_SMP
	thread->vfpstate.hard.cpu = NR_CPUS;
#endif
}

/*
 * When this function is called with the following 'cmd's, the following
 * is true while this function is being run:
 *  THREAD_NOFTIFY_SWTICH:
 *   - the previously running thread will not be scheduled onto another CPU.
 *   - the next thread to be run (v) will not be running on another CPU.
 *   - thread->cpu is the local CPU number
 *   - not preemptible as we're called in the middle of a thread switch
 *  THREAD_NOTIFY_FLUSH:
 *   - the thread (v) will be running on the local CPU, so
 *	v === current_thread_info()
 *   - thread->cpu is the local CPU number at the time it is accessed,
 *	but may change at any time.
 *   - we could be preempted if tree preempt rcu is enabled, so
 *	it is unsafe to use thread->cpu.
 *  THREAD_NOTIFY_EXIT
 *   - the thread (v) will be running on the local CPU, so
 *	v === current_thread_info()
 *   - thread->cpu is the local CPU number at the time it is accessed,
 *	but may change at any time.
 *   - we could be preempted if tree preempt rcu is enabled, so
 *	it is unsafe to use thread->cpu.
 */
static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
{
	struct thread_info *thread = v;
	u32 fpexc;
#ifdef CONFIG_SMP
	unsigned int cpu;
#endif

	switch (cmd) {
	case THREAD_NOTIFY_SWITCH:
		fpexc = fmrx(FPEXC);

#ifdef CONFIG_SMP
		cpu = thread->cpu;

		/*
		 * On SMP, if VFP is enabled, save the old state in
		 * case the thread migrates to a different CPU. The
		 * restoring is done lazily.
		 */
		if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu])
			vfp_save_state(vfp_current_hw_state[cpu], fpexc);
#endif

		/*
		 * Always disable VFP so we can lazily save/restore the
		 * old state.
		 */
		fmxr(FPEXC, fpexc & ~FPEXC_EN);
		break;

	case THREAD_NOTIFY_FLUSH:
		vfp_thread_flush(thread);
		break;

	case THREAD_NOTIFY_EXIT:
		vfp_thread_exit(thread);
		break;

	case THREAD_NOTIFY_COPY:
		vfp_thread_copy(thread);
		break;
	}

	return NOTIFY_DONE;
}

static struct notifier_block vfp_notifier_block = {
	.notifier_call	= vfp_notifier,
};

/*
 * Raise a SIGFPE for the current process.
 * sicode describes the signal being raised.
 */
static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
{
	siginfo_t info;

	memset(&info, 0, sizeof(info));

	info.si_signo = SIGFPE;
	info.si_code = sicode;
	info.si_addr = (void __user *)(instruction_pointer(regs) - 4);

	/*
	 * This is the same as NWFPE, because it's not clear what
	 * this is used for
	 */
	current->thread.error_code = 0;
	current->thread.trap_no = 6;

	send_sig_info(SIGFPE, &info, current);
}

static void vfp_panic(char *reason, u32 inst)
{
	int i;

	pr_err("VFP: Error: %s\n", reason);
	pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
		fmrx(FPEXC), fmrx(FPSCR), inst);
	for (i = 0; i < 32; i += 2)
		pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
		       i, vfp_get_float(i), i+1, vfp_get_float(i+1));
}

/*
 * Process bitmask of exception conditions.
 */
static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
{
	int si_code = 0;

	pr_debug("VFP: raising exceptions %08x\n", exceptions);

	if (exceptions == VFP_EXCEPTION_ERROR) {
		vfp_panic("unhandled bounce", inst);
		vfp_raise_sigfpe(0, regs);
		return;
	}

	/*
	 * If any of the status flags are set, update the FPSCR.
	 * Comparison instructions always return at least one of
	 * these flags set.
	 */
	if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
		fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);

	fpscr |= exceptions;

	fmxr(FPSCR, fpscr);

#define RAISE(stat,en,sig)				\
	if (exceptions & stat && fpscr & en)		\
		si_code = sig;

	/*
	 * These are arranged in priority order, least to highest.
	 */
	RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
	RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
	RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
	RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
	RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);

	if (si_code)
		vfp_raise_sigfpe(si_code, regs);
}

/*
 * Emulate a VFP instruction.
 */
static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
{
	u32 exceptions = VFP_EXCEPTION_ERROR;

	pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);

	if (INST_CPRTDO(inst)) {
		if (!INST_CPRT(inst)) {
			/*
			 * CPDO
			 */
			if (vfp_single(inst)) {
				exceptions = vfp_single_cpdo(inst, fpscr);
			} else {
				exceptions = vfp_double_cpdo(inst, fpscr);
			}
		} else {
			/*
			 * A CPRT instruction can not appear in FPINST2, nor
			 * can it cause an exception.  Therefore, we do not
			 * have to emulate it.
			 */
		}
	} else {
		/*
		 * A CPDT instruction can not appear in FPINST2, nor can
		 * it cause an exception.  Therefore, we do not have to
		 * emulate it.
		 */
	}
	return exceptions & ~VFP_NAN_FLAG;
}

/*
 * Package up a bounce condition.
 */
void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
{
	u32 fpscr, orig_fpscr, fpsid, exceptions;

	pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);

	/*
	 * At this point, FPEXC can have the following configuration:
	 *
	 *  EX DEX IXE
	 *  0   1   x   - synchronous exception
	 *  1   x   0   - asynchronous exception
	 *  1   x   1   - sychronous on VFP subarch 1 and asynchronous on later
	 *  0   0   1   - synchronous on VFP9 (non-standard subarch 1
	 *                implementation), undefined otherwise
	 *
	 * Clear various bits and enable access to the VFP so we can
	 * handle the bounce.
	 */
	fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));

	fpsid = fmrx(FPSID);
	orig_fpscr = fpscr = fmrx(FPSCR);

	/*
	 * Check for the special VFP subarch 1 and FPSCR.IXE bit case
	 */
	if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
	    && (fpscr & FPSCR_IXE)) {
		/*
		 * Synchronous exception, emulate the trigger instruction
		 */
		goto emulate;
	}

	if (fpexc & FPEXC_EX) {
#ifndef CONFIG_CPU_FEROCEON
		/*
		 * Asynchronous exception. The instruction is read from FPINST
		 * and the interrupted instruction has to be restarted.
		 */
		trigger = fmrx(FPINST);
		regs->ARM_pc -= 4;
#endif
	} else if (!(fpexc & FPEXC_DEX)) {
		/*
		 * Illegal combination of bits. It can be caused by an
		 * unallocated VFP instruction but with FPSCR.IXE set and not
		 * on VFP subarch 1.
		 */
		 vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
		goto exit;
	}

	/*
	 * Modify fpscr to indicate the number of iterations remaining.
	 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
	 * whether FPEXC.VECITR or FPSCR.LEN is used.
	 */
	if (fpexc & (FPEXC_EX | FPEXC_VV)) {
		u32 len;

		len = fpexc + (1 << FPEXC_LENGTH_BIT);

		fpscr &= ~FPSCR_LENGTH_MASK;
		fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
	}

	/*
	 * Handle the first FP instruction.  We used to take note of the
	 * FPEXC bounce reason, but this appears to be unreliable.
	 * Emulate the bounced instruction instead.
	 */
	exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
	if (exceptions)
		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);

	/*
	 * If there isn't a second FP instruction, exit now. Note that
	 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
	 */
	if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V))
		goto exit;

	/*
	 * The barrier() here prevents fpinst2 being read
	 * before the condition above.
	 */
	barrier();
	trigger = fmrx(FPINST2);

 emulate:
	exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
	if (exceptions)
		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
 exit:
	preempt_enable();
}

static void vfp_enable(void *unused)
{
	u32 access;

	BUG_ON(preemptible());
	access = get_copro_access();

	/*
	 * Enable full access to VFP (cp10 and cp11)
	 */
	set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
}

#ifdef CONFIG_CPU_PM
static int vfp_pm_suspend(void)
{
	struct thread_info *ti = current_thread_info();
	u32 fpexc = fmrx(FPEXC);

	/* if vfp is on, then save state for resumption */
	if (fpexc & FPEXC_EN) {
		pr_debug("%s: saving vfp state\n", __func__);
		vfp_save_state(&ti->vfpstate, fpexc);

		/* disable, just in case */
		fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
	} else if (vfp_current_hw_state[ti->cpu]) {
#ifndef CONFIG_SMP
		fmxr(FPEXC, fpexc | FPEXC_EN);
		vfp_save_state(vfp_current_hw_state[ti->cpu], fpexc);
		fmxr(FPEXC, fpexc);
#endif
	}

	/* clear any information we had about last context state */
	vfp_current_hw_state[ti->cpu] = NULL;

	return 0;
}

static void vfp_pm_resume(void)
{
	/* ensure we have access to the vfp */
	vfp_enable(NULL);

	/* and disable it to ensure the next usage restores the state */
	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
}

static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd,
	void *v)
{
	switch (cmd) {
	case CPU_PM_ENTER:
		vfp_pm_suspend();
		break;
	case CPU_PM_ENTER_FAILED:
	case CPU_PM_EXIT:
		vfp_pm_resume();
		break;
	}
	return NOTIFY_OK;
}

static struct notifier_block vfp_cpu_pm_notifier_block = {
	.notifier_call = vfp_cpu_pm_notifier,
};

static void vfp_pm_init(void)
{
	cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block);
}

#else
static inline void vfp_pm_init(void) { }
#endif /* CONFIG_CPU_PM */

/*
 * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
 * with the hardware state.
 */
void vfp_sync_hwstate(struct thread_info *thread)
{
	unsigned int cpu = get_cpu();

	if (vfp_state_in_hw(cpu, thread)) {
		u32 fpexc = fmrx(FPEXC);

		/*
		 * Save the last VFP state on this CPU.
		 */
		fmxr(FPEXC, fpexc | FPEXC_EN);
		vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
		fmxr(FPEXC, fpexc);
	}

	put_cpu();
}

/* Ensure that the thread reloads the hardware VFP state on the next use. */
void vfp_flush_hwstate(struct thread_info *thread)
{
	unsigned int cpu = get_cpu();

	vfp_force_reload(cpu, thread);

	put_cpu();
}

/*
 * Save the current VFP state into the provided structures and prepare
 * for entry into a new function (signal handler).
 */
int vfp_preserve_user_clear_hwstate(struct user_vfp __user *ufp,
				    struct user_vfp_exc __user *ufp_exc)
{
	struct thread_info *thread = current_thread_info();
	struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
	int err = 0;

	/* Ensure that the saved hwstate is up-to-date. */
	vfp_sync_hwstate(thread);

	/*
	 * Copy the floating point registers. There can be unused
	 * registers see asm/hwcap.h for details.
	 */
	err |= __copy_to_user(&ufp->fpregs, &hwstate->fpregs,
			      sizeof(hwstate->fpregs));
	/*
	 * Copy the status and control register.
	 */
	__put_user_error(hwstate->fpscr, &ufp->fpscr, err);

	/*
	 * Copy the exception registers.
	 */
	__put_user_error(hwstate->fpexc, &ufp_exc->fpexc, err);
	__put_user_error(hwstate->fpinst, &ufp_exc->fpinst, err);
	__put_user_error(hwstate->fpinst2, &ufp_exc->fpinst2, err);

	if (err)
		return -EFAULT;

	/* Ensure that VFP is disabled. */
	vfp_flush_hwstate(thread);

	/*
	 * As per the PCS, clear the length and stride bits for function
	 * entry.
	 */
	hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK);
	return 0;
}

/* Sanitise and restore the current VFP state from the provided structures. */
int vfp_restore_user_hwstate(struct user_vfp __user *ufp,
			     struct user_vfp_exc __user *ufp_exc)
{
	struct thread_info *thread = current_thread_info();
	struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
	unsigned long fpexc;
	int err = 0;

	/* Disable VFP to avoid corrupting the new thread state. */
	vfp_flush_hwstate(thread);

	/*
	 * Copy the floating point registers. There can be unused
	 * registers see asm/hwcap.h for details.
	 */
	err |= __copy_from_user(&hwstate->fpregs, &ufp->fpregs,
				sizeof(hwstate->fpregs));
	/*
	 * Copy the status and control register.
	 */
	__get_user_error(hwstate->fpscr, &ufp->fpscr, err);

	/*
	 * Sanitise and restore the exception registers.
	 */
	__get_user_error(fpexc, &ufp_exc->fpexc, err);

	/* Ensure the VFP is enabled. */
	fpexc |= FPEXC_EN;

	/* Ensure FPINST2 is invalid and the exception flag is cleared. */
	fpexc &= ~(FPEXC_EX | FPEXC_FP2V);
	hwstate->fpexc = fpexc;

	__get_user_error(hwstate->fpinst, &ufp_exc->fpinst, err);
	__get_user_error(hwstate->fpinst2, &ufp_exc->fpinst2, err);

	return err ? -EFAULT : 0;
}

/*
 * VFP hardware can lose all context when a CPU goes offline.
 * As we will be running in SMP mode with CPU hotplug, we will save the
 * hardware state at every thread switch.  We clear our held state when
 * a CPU has been killed, indicating that the VFP hardware doesn't contain
 * a threads VFP state.  When a CPU starts up, we re-enable access to the
 * VFP hardware.
 *
 * Both CPU_DYING and CPU_STARTING are called on the CPU which
 * is being offlined/onlined.
 */
static int vfp_hotplug(struct notifier_block *b, unsigned long action,
	void *hcpu)
{
	if (action == CPU_DYING || action == CPU_DYING_FROZEN)
		vfp_current_hw_state[(long)hcpu] = NULL;
	else if (action == CPU_STARTING || action == CPU_STARTING_FROZEN)
		vfp_enable(NULL);
	return NOTIFY_OK;
}

void vfp_kmode_exception(void)
{
	/*
	 * If we reach this point, a floating point exception has been raised
	 * while running in kernel mode. If the NEON/VFP unit was enabled at the
	 * time, it means a VFP instruction has been issued that requires
	 * software assistance to complete, something which is not currently
	 * supported in kernel mode.
	 * If the NEON/VFP unit was disabled, and the location pointed to below
	 * is properly preceded by a call to kernel_neon_begin(), something has
	 * caused the task to be scheduled out and back in again. In this case,
	 * rebuilding and running with CONFIG_DEBUG_ATOMIC_SLEEP enabled should
	 * be helpful in localizing the problem.
	 */
	if (fmrx(FPEXC) & FPEXC_EN)
		pr_crit("BUG: unsupported FP instruction in kernel mode\n");
	else
		pr_crit("BUG: FP instruction issued in kernel mode with FP unit disabled\n");
}

#ifdef CONFIG_KERNEL_MODE_NEON

/*
 * Kernel-side NEON support functions
 */
void kernel_neon_begin(void)
{
	struct thread_info *thread = current_thread_info();
	unsigned int cpu;
	u32 fpexc;

	/*
	 * Kernel mode NEON is only allowed outside of interrupt context
	 * with preemption disabled. This will make sure that the kernel
	 * mode NEON register contents never need to be preserved.
	 */
	BUG_ON(in_interrupt());
	cpu = get_cpu();

	fpexc = fmrx(FPEXC) | FPEXC_EN;
	fmxr(FPEXC, fpexc);

	/*
	 * Save the userland NEON/VFP state. Under UP,
	 * the owner could be a task other than 'current'
	 */
	if (vfp_state_in_hw(cpu, thread))
		vfp_save_state(&thread->vfpstate, fpexc);
#ifndef CONFIG_SMP
	else if (vfp_current_hw_state[cpu] != NULL)
		vfp_save_state(vfp_current_hw_state[cpu], fpexc);
#endif
	vfp_current_hw_state[cpu] = NULL;
}
EXPORT_SYMBOL(kernel_neon_begin);

void kernel_neon_end(void)
{
	/* Disable the NEON/VFP unit. */
	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
	put_cpu();
}
EXPORT_SYMBOL(kernel_neon_end);

#endif /* CONFIG_KERNEL_MODE_NEON */

/*
 * VFP support code initialisation.
 */
static int __init vfp_init(void)
{
	unsigned int vfpsid;
	unsigned int cpu_arch = cpu_architecture();

	if (cpu_arch >= CPU_ARCH_ARMv6)
		on_each_cpu(vfp_enable, NULL, 1);

	/*
	 * First check that there is a VFP that we can use.
	 * The handler is already setup to just log calls, so
	 * we just need to read the VFPSID register.
	 */
	vfp_vector = vfp_testing_entry;
	barrier();
	vfpsid = fmrx(FPSID);
	barrier();
	vfp_vector = vfp_null_entry;

	pr_info("VFP support v0.3: ");
	if (VFP_arch)
		pr_cont("not present\n");
	else if (vfpsid & FPSID_NODOUBLE) {
		pr_cont("no double precision support\n");
	} else {
		hotcpu_notifier(vfp_hotplug, 0);

		VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;  /* Extract the architecture version */
		pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n",
			(vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
			(vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT,
			(vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
			(vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
			(vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);

		vfp_vector = vfp_support_entry;

		thread_register_notifier(&vfp_notifier_block);
		vfp_pm_init();

		/*
		 * We detected VFP, and the support code is
		 * in place; report VFP support to userspace.
		 */
		elf_hwcap |= HWCAP_VFP;
#ifdef CONFIG_VFPv3
		if (VFP_arch >= 2) {
			elf_hwcap |= HWCAP_VFPv3;

			/*
			 * Check for VFPv3 D16 and VFPv4 D16.  CPUs in
			 * this configuration only have 16 x 64bit
			 * registers.
			 */
			if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK)) == 1)
				elf_hwcap |= HWCAP_VFPv3D16; /* also v4-D16 */
			else
				elf_hwcap |= HWCAP_VFPD32;
		}
#endif
		/*
		 * Check for the presence of the Advanced SIMD
		 * load/store instructions, integer and single
		 * precision floating point operations. Only check
		 * for NEON if the hardware has the MVFR registers.
		 */
		if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
#ifdef CONFIG_NEON
			if ((fmrx(MVFR1) & 0x000fff00) == 0x00011100)
				elf_hwcap |= HWCAP_NEON;
#endif
#ifdef CONFIG_VFPv3
			if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000)
				elf_hwcap |= HWCAP_VFPv4;
#endif
		}
	}
	return 0;
}

core_initcall(vfp_init);