/** * udc.c - Core UDC Framework * * Copyright (C) 2010 Texas Instruments * Author: Felipe Balbi * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 of * the License as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include /** * struct usb_udc - describes one usb device controller * @driver - the gadget driver pointer. For use by the class code * @dev - the child device to the actual controller * @gadget - the gadget. For use by the class code * @list - for use by the udc class driver * @vbus - for udcs who care about vbus status, this value is real vbus status; * for udcs who do not care about vbus status, this value is always true * @is_otg - we're registered with OTG core and it takes care of UDC start/stop * * This represents the internal data structure which is used by the UDC-class * to hold information about udc driver and gadget together. */ struct usb_udc { struct usb_gadget_driver *driver; struct usb_gadget *gadget; struct device dev; struct list_head list; bool vbus; bool is_otg; }; static struct class *udc_class; static LIST_HEAD(udc_list); static DEFINE_MUTEX(udc_lock); /* ------------------------------------------------------------------------- */ #ifdef CONFIG_HAS_DMA int usb_gadget_map_request(struct usb_gadget *gadget, struct usb_request *req, int is_in) { struct device *dev = gadget->dev.parent; if (req->length == 0) return 0; if (req->num_sgs) { int mapped; mapped = dma_map_sg(dev, req->sg, req->num_sgs, is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); if (mapped == 0) { dev_err(dev, "failed to map SGs\n"); return -EFAULT; } req->num_mapped_sgs = mapped; } else { req->dma = dma_map_single(dev, req->buf, req->length, is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); if (dma_mapping_error(dev, req->dma)) { dev_err(dev, "failed to map buffer\n"); return -EFAULT; } } return 0; } EXPORT_SYMBOL_GPL(usb_gadget_map_request); void usb_gadget_unmap_request(struct usb_gadget *gadget, struct usb_request *req, int is_in) { if (req->length == 0) return; if (req->num_mapped_sgs) { dma_unmap_sg(gadget->dev.parent, req->sg, req->num_mapped_sgs, is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); req->num_mapped_sgs = 0; } else { dma_unmap_single(gadget->dev.parent, req->dma, req->length, is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); } } EXPORT_SYMBOL_GPL(usb_gadget_unmap_request); #endif /* CONFIG_HAS_DMA */ /* ------------------------------------------------------------------------- */ /** * usb_gadget_giveback_request - give the request back to the gadget layer * Context: in_interrupt() * * This is called by device controller drivers in order to return the * completed request back to the gadget layer. */ void usb_gadget_giveback_request(struct usb_ep *ep, struct usb_request *req) { if (likely(req->status == 0)) usb_led_activity(USB_LED_EVENT_GADGET); req->complete(ep, req); } EXPORT_SYMBOL_GPL(usb_gadget_giveback_request); /* ------------------------------------------------------------------------- */ /** * gadget_find_ep_by_name - returns ep whose name is the same as sting passed * in second parameter or NULL if searched endpoint not found * @g: controller to check for quirk * @name: name of searched endpoint */ struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name) { struct usb_ep *ep; gadget_for_each_ep(ep, g) { if (!strcmp(ep->name, name)) return ep; } return NULL; } EXPORT_SYMBOL_GPL(gadget_find_ep_by_name); /* ------------------------------------------------------------------------- */ int usb_gadget_ep_match_desc(struct usb_gadget *gadget, struct usb_ep *ep, struct usb_endpoint_descriptor *desc, struct usb_ss_ep_comp_descriptor *ep_comp) { u8 type; u16 max; int num_req_streams = 0; /* endpoint already claimed? */ if (ep->claimed) return 0; type = usb_endpoint_type(desc); max = 0x7ff & usb_endpoint_maxp(desc); if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in) return 0; if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out) return 0; if (max > ep->maxpacket_limit) return 0; /* "high bandwidth" works only at high speed */ if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp(desc) & (3<<11)) return 0; switch (type) { case USB_ENDPOINT_XFER_CONTROL: /* only support ep0 for portable CONTROL traffic */ return 0; case USB_ENDPOINT_XFER_ISOC: if (!ep->caps.type_iso) return 0; /* ISO: limit 1023 bytes full speed, 1024 high/super speed */ if (!gadget_is_dualspeed(gadget) && max > 1023) return 0; break; case USB_ENDPOINT_XFER_BULK: if (!ep->caps.type_bulk) return 0; if (ep_comp && gadget_is_superspeed(gadget)) { /* Get the number of required streams from the * EP companion descriptor and see if the EP * matches it */ num_req_streams = ep_comp->bmAttributes & 0x1f; if (num_req_streams > ep->max_streams) return 0; } break; case USB_ENDPOINT_XFER_INT: /* Bulk endpoints handle interrupt transfers, * except the toggle-quirky iso-synch kind */ if (!ep->caps.type_int && !ep->caps.type_bulk) return 0; /* INT: limit 64 bytes full speed, 1024 high/super speed */ if (!gadget_is_dualspeed(gadget) && max > 64) return 0; break; } return 1; } EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc); /* ------------------------------------------------------------------------- */ static void usb_gadget_state_work(struct work_struct *work) { struct usb_gadget *gadget = work_to_gadget(work); struct usb_udc *udc = gadget->udc; if (udc) sysfs_notify(&udc->dev.kobj, NULL, "state"); } void usb_gadget_set_state(struct usb_gadget *gadget, enum usb_device_state state) { gadget->state = state; schedule_work(&gadget->work); } EXPORT_SYMBOL_GPL(usb_gadget_set_state); /* ------------------------------------------------------------------------- */ static void usb_udc_connect_control(struct usb_udc *udc) { if (udc->vbus) usb_gadget_connect(udc->gadget); else usb_gadget_disconnect(udc->gadget); } /** * usb_udc_vbus_handler - updates the udc core vbus status, and try to * connect or disconnect gadget * @gadget: The gadget which vbus change occurs * @status: The vbus status * * The udc driver calls it when it wants to connect or disconnect gadget * according to vbus status. */ void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status) { struct usb_udc *udc = gadget->udc; if (udc) { udc->vbus = status; usb_udc_connect_control(udc); } } EXPORT_SYMBOL_GPL(usb_udc_vbus_handler); /** * usb_gadget_udc_reset - notifies the udc core that bus reset occurs * @gadget: The gadget which bus reset occurs * @driver: The gadget driver we want to notify * * If the udc driver has bus reset handler, it needs to call this when the bus * reset occurs, it notifies the gadget driver that the bus reset occurs as * well as updates gadget state. */ void usb_gadget_udc_reset(struct usb_gadget *gadget, struct usb_gadget_driver *driver) { driver->reset(gadget); usb_gadget_set_state(gadget, USB_STATE_DEFAULT); } EXPORT_SYMBOL_GPL(usb_gadget_udc_reset); /** * usb_gadget_udc_start - tells usb device controller to start up * @udc: The UDC to be started * * This call is issued by the UDC Class driver when it's about * to register a gadget driver to the device controller, before * calling gadget driver's bind() method. * * It allows the controller to be powered off until strictly * necessary to have it powered on. * * Returns zero on success, else negative errno. */ static inline int usb_gadget_udc_start(struct usb_udc *udc) { dev_dbg(&udc->dev, "%s\n", __func__); return udc->gadget->ops->udc_start(udc->gadget, udc->driver); } /** * usb_gadget_udc_stop - tells usb device controller we don't need it anymore * @gadget: The device we want to stop activity * @driver: The driver to unbind from @gadget * * This call is issued by the UDC Class driver after calling * gadget driver's unbind() method. * * The details are implementation specific, but it can go as * far as powering off UDC completely and disable its data * line pullups. */ static inline void usb_gadget_udc_stop(struct usb_udc *udc) { dev_dbg(&udc->dev, "%s\n", __func__); udc->gadget->ops->udc_stop(udc->gadget); } /** * usb_gadget_start - start the usb gadget controller and connect to bus * @gadget: the gadget device to start * * This is external API for use by OTG core. * * Start the usb device controller and connect to bus (enable pull). */ static int usb_gadget_start(struct usb_gadget *gadget) { int ret; struct usb_udc *udc = NULL; dev_dbg(&gadget->dev, "%s\n", __func__); mutex_lock(&udc_lock); list_for_each_entry(udc, &udc_list, list) if (udc->gadget == gadget) goto found; dev_err(gadget->dev.parent, "%s: gadget not registered.\n", __func__); mutex_unlock(&udc_lock); return -EINVAL; found: ret = usb_gadget_udc_start(udc); if (ret) dev_err(&udc->dev, "USB Device Controller didn't start: %d\n", ret); else usb_udc_connect_control(udc); mutex_unlock(&udc_lock); return ret; } /** * usb_gadget_stop - disconnect from bus and stop the usb gadget * @gadget: The gadget device we want to stop * * This is external API for use by OTG core. * * Disconnect from the bus (disable pull) and stop the * gadget controller. */ static int usb_gadget_stop(struct usb_gadget *gadget) { struct usb_udc *udc = NULL; dev_dbg(&gadget->dev, "%s\n", __func__); mutex_lock(&udc_lock); list_for_each_entry(udc, &udc_list, list) if (udc->gadget == gadget) goto found; dev_err(gadget->dev.parent, "%s: gadget not registered.\n", __func__); mutex_unlock(&udc_lock); return -EINVAL; found: usb_gadget_disconnect(udc->gadget); udc->driver->disconnect(udc->gadget); usb_gadget_udc_stop(udc); mutex_unlock(&udc_lock); return 0; } /** * usb_udc_release - release the usb_udc struct * @dev: the dev member within usb_udc * * This is called by driver's core in order to free memory once the last * reference is released. */ static void usb_udc_release(struct device *dev) { struct usb_udc *udc; udc = container_of(dev, struct usb_udc, dev); dev_dbg(dev, "releasing '%s'\n", dev_name(dev)); kfree(udc); } static const struct attribute_group *usb_udc_attr_groups[]; static void usb_udc_nop_release(struct device *dev) { dev_vdbg(dev, "%s\n", __func__); } /** * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list * @parent: the parent device to this udc. Usually the controller driver's * device. * @gadget: the gadget to be added to the list. * @release: a gadget release function. * * Returns zero on success, negative errno otherwise. */ int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget, void (*release)(struct device *dev)) { struct usb_udc *udc; int ret = -ENOMEM; udc = kzalloc(sizeof(*udc), GFP_KERNEL); if (!udc) goto err1; dev_set_name(&gadget->dev, "gadget"); INIT_WORK(&gadget->work, usb_gadget_state_work); gadget->dev.parent = parent; #ifdef CONFIG_HAS_DMA dma_set_coherent_mask(&gadget->dev, parent->coherent_dma_mask); gadget->dev.dma_parms = parent->dma_parms; gadget->dev.dma_mask = parent->dma_mask; #endif if (release) gadget->dev.release = release; else gadget->dev.release = usb_udc_nop_release; ret = device_register(&gadget->dev); if (ret) goto err2; device_initialize(&udc->dev); udc->dev.release = usb_udc_release; udc->dev.class = udc_class; udc->dev.groups = usb_udc_attr_groups; udc->dev.parent = parent; ret = dev_set_name(&udc->dev, "%s", kobject_name(&parent->kobj)); if (ret) goto err3; udc->gadget = gadget; gadget->udc = udc; mutex_lock(&udc_lock); list_add_tail(&udc->list, &udc_list); ret = device_add(&udc->dev); if (ret) goto err4; usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED); udc->vbus = true; mutex_unlock(&udc_lock); return 0; err4: list_del(&udc->list); mutex_unlock(&udc_lock); err3: put_device(&udc->dev); device_del(&gadget->dev); err2: put_device(&gadget->dev); kfree(udc); err1: return ret; } EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release); /** * usb_add_gadget_udc - adds a new gadget to the udc class driver list * @parent: the parent device to this udc. Usually the controller * driver's device. * @gadget: the gadget to be added to the list * * Returns zero on success, negative errno otherwise. */ int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget) { return usb_add_gadget_udc_release(parent, gadget, NULL); } EXPORT_SYMBOL_GPL(usb_add_gadget_udc); /* udc_lock must be held */ static void usb_gadget_remove_driver(struct usb_udc *udc) { dev_dbg(&udc->dev, "unregistering UDC driver [%s]\n", udc->driver->function); kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE); /* If OTG, the otg core ensures UDC is stopped on unregister */ if (udc->is_otg) { mutex_unlock(&udc_lock); usb_otg_unregister_gadget(udc->gadget); mutex_lock(&udc_lock); } else { usb_gadget_disconnect(udc->gadget); udc->driver->disconnect(udc->gadget); usb_gadget_udc_stop(udc); } udc->driver->unbind(udc->gadget); udc->driver = NULL; udc->dev.driver = NULL; udc->gadget->dev.driver = NULL; } /** * usb_del_gadget_udc - deletes @udc from udc_list * @gadget: the gadget to be removed. * * This, will call usb_gadget_unregister_driver() if * the @udc is still busy. */ void usb_del_gadget_udc(struct usb_gadget *gadget) { struct usb_udc *udc = gadget->udc; if (!udc) return; dev_vdbg(gadget->dev.parent, "unregistering gadget\n"); mutex_lock(&udc_lock); list_del(&udc->list); if (udc->driver) usb_gadget_remove_driver(udc); mutex_unlock(&udc_lock); kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE); flush_work(&gadget->work); device_unregister(&udc->dev); device_unregister(&gadget->dev); } EXPORT_SYMBOL_GPL(usb_del_gadget_udc); /* ------------------------------------------------------------------------- */ struct otg_gadget_ops otg_gadget_intf = { .start = usb_gadget_start, .stop = usb_gadget_stop, }; /* udc_lock must be held */ static int udc_bind_to_driver(struct usb_udc *udc, struct usb_gadget_driver *driver) { int ret; dev_dbg(&udc->dev, "registering UDC driver [%s]\n", driver->function); udc->driver = driver; udc->dev.driver = &driver->driver; udc->gadget->dev.driver = &driver->driver; ret = driver->bind(udc->gadget, driver); if (ret) goto err1; /* If OTG, the otg core starts the UDC when needed */ mutex_unlock(&udc_lock); udc->is_otg = !usb_otg_register_gadget(udc->gadget, &otg_gadget_intf); mutex_lock(&udc_lock); if (!udc->is_otg) { ret = usb_gadget_udc_start(udc); if (ret) { driver->unbind(udc->gadget); goto err1; } usb_udc_connect_control(udc); } kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE); return 0; err1: if (ret != -EISNAM) dev_err(&udc->dev, "failed to start %s: %d\n", udc->driver->function, ret); udc->driver = NULL; udc->dev.driver = NULL; udc->gadget->dev.driver = NULL; return ret; } int usb_udc_attach_driver(const char *name, struct usb_gadget_driver *driver) { struct usb_udc *udc = NULL; int ret = -ENODEV; mutex_lock(&udc_lock); list_for_each_entry(udc, &udc_list, list) { ret = strcmp(name, dev_name(&udc->dev)); if (!ret) break; } if (ret) { ret = -ENODEV; goto out; } if (udc->driver) { ret = -EBUSY; goto out; } ret = udc_bind_to_driver(udc, driver); out: mutex_unlock(&udc_lock); return ret; } EXPORT_SYMBOL_GPL(usb_udc_attach_driver); int usb_gadget_probe_driver(struct usb_gadget_driver *driver) { struct usb_udc *udc = NULL; int ret; if (!driver || !driver->bind || !driver->setup) return -EINVAL; mutex_lock(&udc_lock); list_for_each_entry(udc, &udc_list, list) { /* For now we take the first one */ if (!udc->driver) goto found; } pr_debug("couldn't find an available UDC\n"); mutex_unlock(&udc_lock); return -ENODEV; found: ret = udc_bind_to_driver(udc, driver); mutex_unlock(&udc_lock); return ret; } EXPORT_SYMBOL_GPL(usb_gadget_probe_driver); int usb_gadget_unregister_driver(struct usb_gadget_driver *driver) { struct usb_udc *udc = NULL; int ret = -ENODEV; if (!driver || !driver->unbind) return -EINVAL; mutex_lock(&udc_lock); list_for_each_entry(udc, &udc_list, list) if (udc->driver == driver) { usb_gadget_remove_driver(udc); usb_gadget_set_state(udc->gadget, USB_STATE_NOTATTACHED); ret = 0; break; } mutex_unlock(&udc_lock); return ret; } EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver); /* ------------------------------------------------------------------------- */ static ssize_t usb_udc_srp_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t n) { struct usb_udc *udc = container_of(dev, struct usb_udc, dev); if (sysfs_streq(buf, "1")) usb_gadget_wakeup(udc->gadget); return n; } static DEVICE_ATTR(srp, S_IWUSR, NULL, usb_udc_srp_store); static ssize_t usb_udc_softconn_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t n) { struct usb_udc *udc = container_of(dev, struct usb_udc, dev); if (!udc->driver) { dev_err(dev, "soft-connect without a gadget driver\n"); return -EOPNOTSUPP; } /* In OTG mode we don't support softconnect, but b_bus_req */ if (udc->is_otg) { dev_err(dev, "soft-connect not supported in OTG mode\n"); return -EOPNOTSUPP; } if (sysfs_streq(buf, "connect")) { usb_gadget_udc_start(udc); usb_udc_connect_control(udc); } else if (sysfs_streq(buf, "disconnect")) { usb_gadget_disconnect(udc->gadget); udc->driver->disconnect(udc->gadget); usb_gadget_udc_stop(udc); } else { dev_err(dev, "unsupported command '%s'\n", buf); return -EINVAL; } return n; } static DEVICE_ATTR(soft_connect, S_IWUSR, NULL, usb_udc_softconn_store); static ssize_t state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_udc *udc = container_of(dev, struct usb_udc, dev); struct usb_gadget *gadget = udc->gadget; return sprintf(buf, "%s\n", usb_state_string(gadget->state)); } static DEVICE_ATTR_RO(state); #define USB_UDC_SPEED_ATTR(name, param) \ ssize_t name##_show(struct device *dev, \ struct device_attribute *attr, char *buf) \ { \ struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \ return snprintf(buf, PAGE_SIZE, "%s\n", \ usb_speed_string(udc->gadget->param)); \ } \ static DEVICE_ATTR_RO(name) static USB_UDC_SPEED_ATTR(current_speed, speed); static USB_UDC_SPEED_ATTR(maximum_speed, max_speed); #define USB_UDC_ATTR(name) \ ssize_t name##_show(struct device *dev, \ struct device_attribute *attr, char *buf) \ { \ struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \ struct usb_gadget *gadget = udc->gadget; \ \ return snprintf(buf, PAGE_SIZE, "%d\n", gadget->name); \ } \ static DEVICE_ATTR_RO(name) static USB_UDC_ATTR(is_otg); static USB_UDC_ATTR(is_a_peripheral); static USB_UDC_ATTR(b_hnp_enable); static USB_UDC_ATTR(a_hnp_support); static USB_UDC_ATTR(a_alt_hnp_support); static USB_UDC_ATTR(is_selfpowered); static struct attribute *usb_udc_attrs[] = { &dev_attr_srp.attr, &dev_attr_soft_connect.attr, &dev_attr_state.attr, &dev_attr_current_speed.attr, &dev_attr_maximum_speed.attr, &dev_attr_is_otg.attr, &dev_attr_is_a_peripheral.attr, &dev_attr_b_hnp_enable.attr, &dev_attr_a_hnp_support.attr, &dev_attr_a_alt_hnp_support.attr, &dev_attr_is_selfpowered.attr, NULL, }; static const struct attribute_group usb_udc_attr_group = { .attrs = usb_udc_attrs, }; static const struct attribute_group *usb_udc_attr_groups[] = { &usb_udc_attr_group, NULL, }; static int usb_udc_uevent(struct device *dev, struct kobj_uevent_env *env) { struct usb_udc *udc = container_of(dev, struct usb_udc, dev); int ret; ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name); if (ret) { dev_err(dev, "failed to add uevent USB_UDC_NAME\n"); return ret; } if (udc->driver) { ret = add_uevent_var(env, "USB_UDC_DRIVER=%s", udc->driver->function); if (ret) { dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n"); return ret; } } return 0; } static int __init usb_udc_init(void) { udc_class = class_create(THIS_MODULE, "udc"); if (IS_ERR(udc_class)) { pr_err("failed to create udc class --> %ld\n", PTR_ERR(udc_class)); return PTR_ERR(udc_class); } udc_class->dev_uevent = usb_udc_uevent; return 0; } subsys_initcall(usb_udc_init); static void __exit usb_udc_exit(void) { class_destroy(udc_class); } module_exit(usb_udc_exit); MODULE_DESCRIPTION("UDC Framework"); MODULE_AUTHOR("Felipe Balbi "); MODULE_LICENSE("GPL v2");