/* * Texas Instruments N-Port Ethernet Switch Address Lookup Engine * * Copyright (C) 2012 Texas Instruments * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation version 2. * * This program is distributed "as is" WITHOUT ANY WARRANTY of any * kind, whether express or implied; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include "cpsw_ale.h" #define BITMASK(bits) (BIT(bits) - 1) #define ALE_ENTRY_BITS 68 #define ALE_ENTRY_WORDS DIV_ROUND_UP(ALE_ENTRY_BITS, 32) #define ALE_VERSION_MAJOR(rev, mask) (((rev) >> 8) & (mask)) #define ALE_VERSION_MINOR(rev) (rev & 0xff) #define ALE_VERSION_1R3 0x0103 #define ALE_VERSION_1R4 0x0104 #define ALE_VERSION_9R3 0x0903 /* ALE Registers */ #define ALE_IDVER 0x00 #define ALE_STATUS 0x04 #define ALE_CONTROL 0x08 #define ALE_PRESCALE 0x10 #define ALE_UNKNOWNVLAN 0x18 #define ALE_TABLE_CONTROL 0x20 #define ALE_TABLE 0x34 #define ALE_PORTCTL 0x40 /* ALE NetCP NU switch specific Registers */ #define ALE_UNKNOWNVLAN_MEMBER 0x90 #define ALE_UNKNOWNVLAN_UNREG_MCAST_FLOOD 0x94 #define ALE_UNKNOWNVLAN_REG_MCAST_FLOOD 0x98 #define ALE_UNKNOWNVLAN_FORCE_UNTAG_EGRESS 0x9C #define ALE_VLAN_MASK_MUX(reg) (0xc0 + (0x4 * reg)) #define ALE_TABLE_WRITE BIT(31) #define ALE_TYPE_FREE 0 #define ALE_TYPE_ADDR 1 #define ALE_TYPE_VLAN 2 #define ALE_TYPE_VLAN_ADDR 3 #define ALE_UCAST_PERSISTANT 0 #define ALE_UCAST_UNTOUCHED 1 #define ALE_UCAST_OUI 2 #define ALE_UCAST_TOUCHED 3 #define ALE_TBL_ENTRY_SHOW_LEN 160 #define ALE_RAW_TBL_ENTRY_SHOW_LEN 32 #define ALE_TABLE_SIZE_MULTIPLIER 1024 #define ALE_STATUS_SIZE_MASK 0x1f #define ALE_TABLE_SIZE_DEFAULT 64 /* ALE Table store VLAN command param indices */ enum { ALE_VP_VID, ALE_VP_FORCE_UT_EGR, ALE_VP_REG_FLD, ALE_VP_UNREG_FLD, ALE_VP_M_LIST, ALE_VP_NUM, }; /* ALE Table store UCAST command param indices */ enum { ALE_UP_PORT, ALE_UP_BLOCK, ALE_UP_SECURE, ALE_UP_AGEABLE, ALE_UP_ADDR, ALE_UP_VID, ALE_UP_NUM, }; /* ALE Table store MCAST command param indices */ enum { ALE_MP_PORT_MASK, ALE_MP_SUPER, ALE_MP_FW_ST, ALE_MP_ADDR, ALE_MP_VID, ALE_MP_NUM }; static inline int cpsw_ale_get_field(u32 *ale_entry, u32 start, u32 bits) { int idx; idx = start / 32; start -= idx * 32; idx = 2 - idx; /* flip */ return (ale_entry[idx] >> start) & BITMASK(bits); } static inline void cpsw_ale_set_field(u32 *ale_entry, u32 start, u32 bits, u32 value) { int idx; value &= BITMASK(bits); idx = start / 32; start -= idx * 32; idx = 2 - idx; /* flip */ ale_entry[idx] &= ~(BITMASK(bits) << start); ale_entry[idx] |= (value << start); } #define DEFINE_ALE_FIELD(name, start, bits) \ static inline int cpsw_ale_get_##name(u32 *ale_entry) \ { \ return cpsw_ale_get_field(ale_entry, start, bits); \ } \ static inline void cpsw_ale_set_##name(u32 *ale_entry, u32 value) \ { \ cpsw_ale_set_field(ale_entry, start, bits, value); \ } #define DEFINE_ALE_FIELD1(name, start) \ static inline int cpsw_ale_get_##name(u32 *ale_entry, u32 bits) \ { \ return cpsw_ale_get_field(ale_entry, start, bits); \ } \ static inline void cpsw_ale_set_##name(u32 *ale_entry, u32 value, \ u32 bits) \ { \ cpsw_ale_set_field(ale_entry, start, bits, value); \ } DEFINE_ALE_FIELD(entry_type, 60, 2) DEFINE_ALE_FIELD(vlan_id, 48, 12) DEFINE_ALE_FIELD(mcast_state, 62, 2) DEFINE_ALE_FIELD1(port_mask, 66) DEFINE_ALE_FIELD(super, 65, 1) DEFINE_ALE_FIELD(ucast_type, 62, 2) DEFINE_ALE_FIELD1(port_num, 66) DEFINE_ALE_FIELD(blocked, 65, 1) DEFINE_ALE_FIELD(secure, 64, 1) DEFINE_ALE_FIELD1(vlan_untag_force, 24) DEFINE_ALE_FIELD1(vlan_reg_mcast, 16) DEFINE_ALE_FIELD1(vlan_unreg_mcast, 8) DEFINE_ALE_FIELD1(vlan_member_list, 0) DEFINE_ALE_FIELD(mcast, 40, 1) /* ALE NetCP nu switch specific */ DEFINE_ALE_FIELD(vlan_unreg_mcast_idx, 20, 3) DEFINE_ALE_FIELD(vlan_reg_mcast_idx, 44, 3) /* The MAC address field in the ALE entry cannot be macroized as above */ static inline void cpsw_ale_get_addr(u32 *ale_entry, u8 *addr) { int i; for (i = 0; i < 6; i++) addr[i] = cpsw_ale_get_field(ale_entry, 40 - 8*i, 8); } static inline void cpsw_ale_set_addr(u32 *ale_entry, u8 *addr) { int i; for (i = 0; i < 6; i++) cpsw_ale_set_field(ale_entry, 40 - 8*i, 8, addr[i]); } static int cpsw_ale_read(struct cpsw_ale *ale, int idx, u32 *ale_entry) { int i; WARN_ON(idx > ale->params.ale_entries); __raw_writel(idx, ale->params.ale_regs + ALE_TABLE_CONTROL); for (i = 0; i < ALE_ENTRY_WORDS; i++) ale_entry[i] = __raw_readl(ale->params.ale_regs + ALE_TABLE + 4 * i); return idx; } static int cpsw_ale_write(struct cpsw_ale *ale, int idx, u32 *ale_entry) { int i; WARN_ON(idx > ale->params.ale_entries); for (i = 0; i < ALE_ENTRY_WORDS; i++) __raw_writel(ale_entry[i], ale->params.ale_regs + ALE_TABLE + 4 * i); __raw_writel(idx | ALE_TABLE_WRITE, ale->params.ale_regs + ALE_TABLE_CONTROL); return idx; } static int cpsw_ale_match_addr(struct cpsw_ale *ale, u8 *addr, u16 vid) { u32 ale_entry[ALE_ENTRY_WORDS]; int type, idx; for (idx = 0; idx < ale->params.ale_entries; idx++) { u8 entry_addr[6]; cpsw_ale_read(ale, idx, ale_entry); type = cpsw_ale_get_entry_type(ale_entry); if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR) continue; if (cpsw_ale_get_vlan_id(ale_entry) != vid) continue; cpsw_ale_get_addr(ale_entry, entry_addr); if (ether_addr_equal(entry_addr, addr)) return idx; } return -ENOENT; } static int cpsw_ale_match_vlan(struct cpsw_ale *ale, u16 vid) { u32 ale_entry[ALE_ENTRY_WORDS]; int type, idx; for (idx = 0; idx < ale->params.ale_entries; idx++) { cpsw_ale_read(ale, idx, ale_entry); type = cpsw_ale_get_entry_type(ale_entry); if (type != ALE_TYPE_VLAN) continue; if (cpsw_ale_get_vlan_id(ale_entry) == vid) return idx; } return -ENOENT; } static int cpsw_ale_match_free(struct cpsw_ale *ale) { u32 ale_entry[ALE_ENTRY_WORDS]; int type, idx; for (idx = 0; idx < ale->params.ale_entries; idx++) { cpsw_ale_read(ale, idx, ale_entry); type = cpsw_ale_get_entry_type(ale_entry); if (type == ALE_TYPE_FREE) return idx; } return -ENOENT; } static int cpsw_ale_find_ageable(struct cpsw_ale *ale) { u32 ale_entry[ALE_ENTRY_WORDS]; int type, idx; for (idx = 0; idx < ale->params.ale_entries; idx++) { cpsw_ale_read(ale, idx, ale_entry); type = cpsw_ale_get_entry_type(ale_entry); if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR) continue; if (cpsw_ale_get_mcast(ale_entry)) continue; type = cpsw_ale_get_ucast_type(ale_entry); if (type != ALE_UCAST_PERSISTANT && type != ALE_UCAST_OUI) return idx; } return -ENOENT; } static void cpsw_ale_flush_mcast(struct cpsw_ale *ale, u32 *ale_entry, int port_mask) { int mask; mask = cpsw_ale_get_port_mask(ale_entry, ale->port_mask_bits); if ((mask & port_mask) == 0) return; /* ports dont intersect, not interested */ mask &= ~port_mask; /* free if only remaining port is host port */ if (mask) cpsw_ale_set_port_mask(ale_entry, mask, ale->port_mask_bits); else cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_FREE); } int cpsw_ale_flush_multicast(struct cpsw_ale *ale, int port_mask, int vid) { u32 ale_entry[ALE_ENTRY_WORDS]; int ret, idx; for (idx = 0; idx < ale->params.ale_entries; idx++) { cpsw_ale_read(ale, idx, ale_entry); ret = cpsw_ale_get_entry_type(ale_entry); if (ret != ALE_TYPE_ADDR && ret != ALE_TYPE_VLAN_ADDR) continue; /* if vid passed is -1 then remove all multicast entry from * the table irrespective of vlan id, if a valid vlan id is * passed then remove only multicast added to that vlan id. * if vlan id doesn't match then move on to next entry. */ if (vid != -1 && cpsw_ale_get_vlan_id(ale_entry) != vid) continue; if (cpsw_ale_get_mcast(ale_entry)) { u8 addr[6]; cpsw_ale_get_addr(ale_entry, addr); if (!is_broadcast_ether_addr(addr)) cpsw_ale_flush_mcast(ale, ale_entry, port_mask); } cpsw_ale_write(ale, idx, ale_entry); } return 0; } EXPORT_SYMBOL_GPL(cpsw_ale_flush_multicast); static inline void cpsw_ale_set_vlan_entry_type(u32 *ale_entry, int flags, u16 vid) { if (flags & ALE_VLAN) { cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_VLAN_ADDR); cpsw_ale_set_vlan_id(ale_entry, vid); } else { cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR); } } int cpsw_ale_add_ucast(struct cpsw_ale *ale, u8 *addr, int port, int flags, u16 vid) { u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0}; int idx; cpsw_ale_set_vlan_entry_type(ale_entry, flags, vid); cpsw_ale_set_addr(ale_entry, addr); cpsw_ale_set_ucast_type(ale_entry, ALE_UCAST_PERSISTANT); cpsw_ale_set_secure(ale_entry, (flags & ALE_SECURE) ? 1 : 0); cpsw_ale_set_blocked(ale_entry, (flags & ALE_BLOCKED) ? 1 : 0); cpsw_ale_set_port_num(ale_entry, port, ale->port_num_bits); idx = cpsw_ale_match_addr(ale, addr, (flags & ALE_VLAN) ? vid : 0); if (idx < 0) idx = cpsw_ale_match_free(ale); if (idx < 0) idx = cpsw_ale_find_ageable(ale); if (idx < 0) return -ENOMEM; cpsw_ale_write(ale, idx, ale_entry); return 0; } EXPORT_SYMBOL_GPL(cpsw_ale_add_ucast); int cpsw_ale_del_ucast(struct cpsw_ale *ale, u8 *addr, int port, int flags, u16 vid) { u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0}; int idx; idx = cpsw_ale_match_addr(ale, addr, (flags & ALE_VLAN) ? vid : 0); if (idx < 0) return -ENOENT; cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_FREE); cpsw_ale_write(ale, idx, ale_entry); return 0; } EXPORT_SYMBOL_GPL(cpsw_ale_del_ucast); int cpsw_ale_add_mcast(struct cpsw_ale *ale, u8 *addr, int port_mask, int flags, u16 vid, int mcast_state) { u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0}; int idx, mask; idx = cpsw_ale_match_addr(ale, addr, (flags & ALE_VLAN) ? vid : 0); if (idx >= 0) cpsw_ale_read(ale, idx, ale_entry); cpsw_ale_set_vlan_entry_type(ale_entry, flags, vid); cpsw_ale_set_addr(ale_entry, addr); cpsw_ale_set_super(ale_entry, (flags & ALE_BLOCKED) ? 1 : 0); cpsw_ale_set_mcast_state(ale_entry, mcast_state); mask = cpsw_ale_get_port_mask(ale_entry, ale->port_mask_bits); port_mask |= mask; cpsw_ale_set_port_mask(ale_entry, port_mask, ale->port_mask_bits); if (idx < 0) idx = cpsw_ale_match_free(ale); if (idx < 0) idx = cpsw_ale_find_ageable(ale); if (idx < 0) return -ENOMEM; cpsw_ale_write(ale, idx, ale_entry); return 0; } EXPORT_SYMBOL_GPL(cpsw_ale_add_mcast); int cpsw_ale_del_mcast(struct cpsw_ale *ale, u8 *addr, int port_mask, int flags, u16 vid) { u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0}; int idx; idx = cpsw_ale_match_addr(ale, addr, (flags & ALE_VLAN) ? vid : 0); if (idx < 0) return -EINVAL; cpsw_ale_read(ale, idx, ale_entry); if (port_mask) cpsw_ale_set_port_mask(ale_entry, port_mask, ale->port_mask_bits); else cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_FREE); cpsw_ale_write(ale, idx, ale_entry); return 0; } EXPORT_SYMBOL_GPL(cpsw_ale_del_mcast); /* ALE NetCP NU switch specific vlan functions */ static void cpsw_ale_set_vlan_mcast(struct cpsw_ale *ale, u32 *ale_entry, int reg_mcast, int unreg_mcast) { int idx; /* Set VLAN registered multicast flood mask */ idx = cpsw_ale_get_vlan_reg_mcast_idx(ale_entry); writel(reg_mcast, ale->params.ale_regs + ALE_VLAN_MASK_MUX(idx)); /* Set VLAN unregistered multicast flood mask */ idx = cpsw_ale_get_vlan_unreg_mcast_idx(ale_entry); writel(unreg_mcast, ale->params.ale_regs + ALE_VLAN_MASK_MUX(idx)); } static void cpsw_ale_get_vlan_mcast(struct cpsw_ale *ale, u32 *ale_entry, int *reg_mcast, int *unreg_mcast) { int idx; /* Get VLAN registered multicast flood mask */ idx = cpsw_ale_get_vlan_reg_mcast_idx(ale_entry); *reg_mcast = __raw_readl(ale->params.ale_regs + ALE_VLAN_MASK_MUX(idx)); /* Get VLAN unregistered multicast flood mask */ idx = cpsw_ale_get_vlan_unreg_mcast_idx(ale_entry); *unreg_mcast = __raw_readl(ale->params.ale_regs + ALE_VLAN_MASK_MUX(idx)); } int cpsw_ale_add_vlan(struct cpsw_ale *ale, u16 vid, int port, int untag, int reg_mcast, int unreg_mcast) { u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0}; int idx; idx = cpsw_ale_match_vlan(ale, vid); if (idx >= 0) cpsw_ale_read(ale, idx, ale_entry); cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_VLAN); cpsw_ale_set_vlan_id(ale_entry, vid); cpsw_ale_set_vlan_untag_force(ale_entry, untag, ale->vlan_field_bits); if (!ale->params.nu_switch_ale) { cpsw_ale_set_vlan_reg_mcast(ale_entry, reg_mcast, ale->vlan_field_bits); cpsw_ale_set_vlan_unreg_mcast(ale_entry, unreg_mcast, ale->vlan_field_bits); } else { cpsw_ale_set_vlan_mcast(ale, ale_entry, reg_mcast, unreg_mcast); } cpsw_ale_set_vlan_member_list(ale_entry, port, ale->vlan_field_bits); if (idx < 0) idx = cpsw_ale_match_free(ale); if (idx < 0) idx = cpsw_ale_find_ageable(ale); if (idx < 0) return -ENOMEM; cpsw_ale_write(ale, idx, ale_entry); return 0; } EXPORT_SYMBOL_GPL(cpsw_ale_add_vlan); int cpsw_ale_del_vlan(struct cpsw_ale *ale, u16 vid, int port_mask) { u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0}; int idx; idx = cpsw_ale_match_vlan(ale, vid); if (idx < 0) return -ENOENT; cpsw_ale_read(ale, idx, ale_entry); if (port_mask) cpsw_ale_set_vlan_member_list(ale_entry, port_mask, ale->vlan_field_bits); else cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_FREE); cpsw_ale_write(ale, idx, ale_entry); return 0; } EXPORT_SYMBOL_GPL(cpsw_ale_del_vlan); void cpsw_ale_set_allmulti(struct cpsw_ale *ale, int allmulti) { u32 ale_entry[ALE_ENTRY_WORDS]; int type, idx; int unreg_mcast = 0; /* Only bother doing the work if the setting is actually changing */ if (ale->allmulti == allmulti) return; /* Remember the new setting to check against next time */ ale->allmulti = allmulti; for (idx = 0; idx < ale->params.ale_entries; idx++) { cpsw_ale_read(ale, idx, ale_entry); type = cpsw_ale_get_entry_type(ale_entry); if (type != ALE_TYPE_VLAN) continue; unreg_mcast = cpsw_ale_get_vlan_unreg_mcast(ale_entry, ale->vlan_field_bits); if (allmulti) unreg_mcast |= 1; else unreg_mcast &= ~1; cpsw_ale_set_vlan_unreg_mcast(ale_entry, unreg_mcast, ale->vlan_field_bits); cpsw_ale_write(ale, idx, ale_entry); } } EXPORT_SYMBOL_GPL(cpsw_ale_set_allmulti); struct ale_control_info { const char *name; int offset, port_offset; int shift, port_shift; int bits; }; static struct ale_control_info ale_controls[ALE_NUM_CONTROLS] = { [ALE_VERSION] = { .name = "version", .offset = ALE_IDVER, .port_offset = 0, .shift = 0, .port_shift = 0, .bits = 32, }, [ALE_ENABLE] = { .name = "enable", .offset = ALE_CONTROL, .port_offset = 0, .shift = 31, .port_shift = 0, .bits = 1, }, [ALE_CLEAR] = { .name = "clear", .offset = ALE_CONTROL, .port_offset = 0, .shift = 30, .port_shift = 0, .bits = 1, }, [ALE_AGEOUT] = { .name = "ageout", .offset = ALE_CONTROL, .port_offset = 0, .shift = 29, .port_shift = 0, .bits = 1, }, [ALE_P0_UNI_FLOOD] = { .name = "port0_unicast_flood", .offset = ALE_CONTROL, .port_offset = 0, .shift = 8, .port_shift = 0, .bits = 1, }, [ALE_VLAN_NOLEARN] = { .name = "vlan_nolearn", .offset = ALE_CONTROL, .port_offset = 0, .shift = 7, .port_shift = 0, .bits = 1, }, [ALE_NO_PORT_VLAN] = { .name = "no_port_vlan", .offset = ALE_CONTROL, .port_offset = 0, .shift = 6, .port_shift = 0, .bits = 1, }, [ALE_OUI_DENY] = { .name = "oui_deny", .offset = ALE_CONTROL, .port_offset = 0, .shift = 5, .port_shift = 0, .bits = 1, }, [ALE_BYPASS] = { .name = "bypass", .offset = ALE_CONTROL, .port_offset = 0, .shift = 4, .port_shift = 0, .bits = 1, }, [ALE_RATE_LIMIT_TX] = { .name = "rate_limit_tx", .offset = ALE_CONTROL, .port_offset = 0, .shift = 3, .port_shift = 0, .bits = 1, }, [ALE_VLAN_AWARE] = { .name = "vlan_aware", .offset = ALE_CONTROL, .port_offset = 0, .shift = 2, .port_shift = 0, .bits = 1, }, [ALE_AUTH_ENABLE] = { .name = "auth_enable", .offset = ALE_CONTROL, .port_offset = 0, .shift = 1, .port_shift = 0, .bits = 1, }, [ALE_RATE_LIMIT] = { .name = "rate_limit", .offset = ALE_CONTROL, .port_offset = 0, .shift = 0, .port_shift = 0, .bits = 1, }, [ALE_PORT_STATE] = { .name = "port_state", .offset = ALE_PORTCTL, .port_offset = 4, .shift = 0, .port_shift = 0, .bits = 2, }, [ALE_PORT_DROP_UNTAGGED] = { .name = "drop_untagged", .offset = ALE_PORTCTL, .port_offset = 4, .shift = 2, .port_shift = 0, .bits = 1, }, [ALE_PORT_DROP_UNKNOWN_VLAN] = { .name = "drop_unknown", .offset = ALE_PORTCTL, .port_offset = 4, .shift = 3, .port_shift = 0, .bits = 1, }, [ALE_PORT_NOLEARN] = { .name = "nolearn", .offset = ALE_PORTCTL, .port_offset = 4, .shift = 4, .port_shift = 0, .bits = 1, }, [ALE_PORT_NO_SA_UPDATE] = { .name = "no_source_update", .offset = ALE_PORTCTL, .port_offset = 4, .shift = 5, .port_shift = 0, .bits = 1, }, [ALE_PORT_MCAST_LIMIT] = { .name = "mcast_limit", .offset = ALE_PORTCTL, .port_offset = 4, .shift = 16, .port_shift = 0, .bits = 8, }, [ALE_PORT_BCAST_LIMIT] = { .name = "bcast_limit", .offset = ALE_PORTCTL, .port_offset = 4, .shift = 24, .port_shift = 0, .bits = 8, }, /* Fields below has individual registers on NetCP NU switch */ [ALE_PORT_UNKNOWN_VLAN_MEMBER] = { .name = "unknown_vlan_member", .offset = ALE_UNKNOWNVLAN, .port_offset = 0, .shift = 0, .port_shift = 0, .bits = 6, }, [ALE_PORT_UNKNOWN_MCAST_FLOOD] = { .name = "unknown_mcast_flood", .offset = ALE_UNKNOWNVLAN, .port_offset = 0, .shift = 8, .port_shift = 0, .bits = 6, }, [ALE_PORT_UNKNOWN_REG_MCAST_FLOOD] = { .name = "unknown_reg_flood", .offset = ALE_UNKNOWNVLAN, .port_offset = 0, .shift = 16, .port_shift = 0, .bits = 6, }, [ALE_PORT_UNTAGGED_EGRESS] = { .name = "untagged_egress", .offset = ALE_UNKNOWNVLAN, .port_offset = 0, .shift = 24, .port_shift = 0, .bits = 6, }, }; int cpsw_ale_control_set(struct cpsw_ale *ale, int port, int control, int value) { const struct ale_control_info *info; int offset, shift; u32 tmp, mask; if (control < 0 || control >= ARRAY_SIZE(ale_controls)) return -EINVAL; info = &ale_controls[control]; if (info->port_offset == 0 && info->port_shift == 0) port = 0; /* global, port is a dont care */ if (port < 0 || port > ale->params.ale_ports) return -EINVAL; mask = BITMASK(info->bits); if (value & ~mask) return -EINVAL; offset = info->offset + (port * info->port_offset); shift = info->shift + (port * info->port_shift); tmp = __raw_readl(ale->params.ale_regs + offset); tmp = (tmp & ~(mask << shift)) | (value << shift); __raw_writel(tmp, ale->params.ale_regs + offset); return 0; } EXPORT_SYMBOL_GPL(cpsw_ale_control_set); int cpsw_ale_control_get(struct cpsw_ale *ale, int port, int control) { const struct ale_control_info *info; int offset, shift; u32 tmp; if (control < 0 || control >= ARRAY_SIZE(ale_controls)) return -EINVAL; info = &ale_controls[control]; if (info->port_offset == 0 && info->port_shift == 0) port = 0; /* global, port is a dont care */ if (port < 0 || port > ale->params.ale_ports) return -EINVAL; offset = info->offset + (port * info->port_offset); shift = info->shift + (port * info->port_shift); tmp = __raw_readl(ale->params.ale_regs + offset) >> shift; return tmp & BITMASK(info->bits); } EXPORT_SYMBOL_GPL(cpsw_ale_control_get); static int cpsw_ale_dump_mcast(struct cpsw_ale *ale, u32 *ale_entry, char *buf, int len) { static const char * const str_mcast_state[] = {"f", "blf", "lf", "f"}; int mcast_state = cpsw_ale_get_mcast_state(ale_entry); int port_mask = cpsw_ale_get_port_mask(ale_entry, ale->port_mask_bits); int super = cpsw_ale_get_super(ale_entry); int outlen = 0; outlen += snprintf(buf + outlen, len - outlen, "mcstate: %s(%d), ", str_mcast_state[mcast_state], mcast_state); outlen += snprintf(buf + outlen, len - outlen, "port mask: %x, %ssuper\n", port_mask, super ? "" : "no "); return outlen; } static int cpsw_ale_dump_ucast(struct cpsw_ale *ale, u32 *ale_entry, char *buf, int len) { int outlen = 0; static const char * const str_ucast_type[] = {"persistent", "untouched", "oui", "touched"}; int ucast_type = cpsw_ale_get_ucast_type(ale_entry); int port_num = cpsw_ale_get_port_num(ale_entry, ale->port_num_bits); int secure = cpsw_ale_get_secure(ale_entry); int blocked = cpsw_ale_get_blocked(ale_entry); outlen += snprintf(buf + outlen, len - outlen, "uctype: %s(%d)", str_ucast_type[ucast_type], ucast_type); if (ucast_type == ALE_UCAST_OUI) outlen += snprintf(buf + outlen, len - outlen, "\n"); else outlen += snprintf(buf + outlen, len - outlen, ", port: %d%s%s\n", port_num, secure ? ", Secure" : "", blocked ? ", Blocked" : ""); return outlen; } static int cpsw_ale_dump_vlan(struct cpsw_ale *ale, u32 *ale_entry, char *buf, int len) { int outlen = 0, reg_mc_fld, unreg_mc_fld; int force_utag_egress = cpsw_ale_get_vlan_untag_force(ale_entry, ale->vlan_field_bits); int mem_list = cpsw_ale_get_vlan_member_list(ale_entry, ale->vlan_field_bits); if (!ale->params.nu_switch_ale) { reg_mc_fld = cpsw_ale_get_vlan_reg_mcast(ale_entry, ale->vlan_field_bits); unreg_mc_fld = cpsw_ale_get_vlan_unreg_mcast(ale_entry, ale->vlan_field_bits); } else cpsw_ale_get_vlan_mcast(ale, ale_entry, ®_mc_fld, &unreg_mc_fld); outlen += snprintf(buf + outlen, len - outlen, "force_untag_egress: %02x, ", force_utag_egress); outlen += snprintf(buf + outlen, len - outlen, "reg_fld: %02x, ", reg_mc_fld); outlen += snprintf(buf + outlen, len - outlen, "unreg_fld: %02x, ", unreg_mc_fld); outlen += snprintf(buf + outlen, len - outlen, "mem_list: %02x\n", mem_list); return outlen; } static int cpsw_ale_dump_entry(struct cpsw_ale *ale, int idx, u32 *ale_entry, char *buf, int len) { static const char * const str_type[] = {"free", "addr", "vlan", "vlan+addr"}; int type, outlen = 0; u8 addr[6]; type = cpsw_ale_get_entry_type(ale_entry); if (type == ALE_TYPE_FREE) return outlen; if (len < ALE_TBL_ENTRY_SHOW_LEN) return outlen; if (idx >= 0) { outlen += snprintf(buf + outlen, len - outlen, "index %d, ", idx); } outlen += snprintf(buf + outlen, len - outlen, "raw: %08x %08x %08x, ", ale_entry[0], ale_entry[1], ale_entry[2]); outlen += snprintf(buf + outlen, len - outlen, "type: %s(%d), ", str_type[type], type); if (type != ALE_TYPE_VLAN) { cpsw_ale_get_addr(ale_entry, addr); outlen += snprintf(buf + outlen, len - outlen, "addr: %02x:%02x:%02x:%02x:%02x:%02x, ", (addr)[0], (addr)[1], (addr)[2], (addr)[3], (addr)[4], (addr)[5]); } if (type == ALE_TYPE_VLAN || type == ALE_TYPE_VLAN_ADDR) { outlen += snprintf(buf + outlen, len - outlen, "vlan: %d, ", cpsw_ale_get_vlan_id(ale_entry)); } if (type == ALE_TYPE_VLAN) outlen += cpsw_ale_dump_vlan(ale, ale_entry, buf + outlen, len - outlen); else outlen += cpsw_ale_get_mcast(ale_entry) ? cpsw_ale_dump_mcast(ale, ale_entry, buf + outlen, len - outlen) : cpsw_ale_dump_ucast(ale, ale_entry, buf + outlen, len - outlen); return outlen; } static ssize_t cpsw_ale_control_show(struct device *dev, struct device_attribute *attr, char *buf) { int i, port, len = 0, max_control = ARRAY_SIZE(ale_controls); struct cpsw_ale *ale = control_attr_to_ale(attr); struct cpsw_ale_params *params = &ale->params; const struct ale_control_info *info; const char *fmt = "%s=%d\n"; u32 reg; for (i = 0, info = ale_controls; i < max_control; i++, info++) { if (i == ALE_VERSION) { reg = cpsw_ale_control_get(ale, 0, i); len += snprintf(buf + len, SZ_4K - len, "%s=(ALE_ID=0x%04x) Rev %d.%d\n", info->name, (reg & 0xffff0000) >> 16, ALE_VERSION_MAJOR(reg, params->major_ver_mask), ALE_VERSION_MINOR(reg)); continue; } /* global controls */ if (info->port_shift == 0 && info->port_offset == 0) { if ((i >= ALE_PORT_UNKNOWN_VLAN_MEMBER) && (i <= ALE_PORT_UNTAGGED_EGRESS)) fmt = "%s=0x%x\n"; len += snprintf(buf + len, SZ_4K - len, fmt, info->name, cpsw_ale_control_get(ale, 0, i)); continue; } /* port specific controls */ for (port = 0; port < ale->params.ale_ports; port++) { len += snprintf(buf + len, SZ_4K - len, "%s.%d=%d\n", info->name, port, cpsw_ale_control_get(ale, port, i)); } } return len; } static ssize_t cpsw_ale_control_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int port = 0, value, len, ret, control, max_control = ALE_NUM_CONTROLS; struct cpsw_ale *ale = control_attr_to_ale(attr); char ctrl_str[33], tmp_str[9]; unsigned long end; len = strcspn(buf, ".="); if (len >= 32) return -ENOMEM; strncpy(ctrl_str, buf, len); ctrl_str[len] = '\0'; buf += len; if (*buf == '.') { ++buf; len = strcspn(buf, "="); if (len >= 8) return -ENOMEM; strncpy(tmp_str, buf, len); tmp_str[len] = '\0'; if (kstrtoul(tmp_str, 0, &end)) return -EINVAL; port = (int)end; buf += len; } if (*buf != '=') return -EINVAL; if (kstrtoul(buf + 1, 0, &end)) return -EINVAL; value = (int)end; for (control = 0; control < max_control; control++) if (strcmp(ctrl_str, ale_controls[control].name) == 0) break; if (control >= max_control) return -ENOENT; dev_dbg(ale->params.dev, "processing command %s.%d=%d\n", ale_controls[control].name, port, value); ret = cpsw_ale_control_set(ale, port, control, value); if (ret < 0) return ret; return count; } DEVICE_ATTR(ale_control, S_IRUGO | S_IWUSR, cpsw_ale_control_show, cpsw_ale_control_store); static ssize_t cpsw_ale_table_show(struct device *dev, struct device_attribute *attr, char *buf) { int not_shown = 0, total_outlen = 0, type, shown = 0; struct cpsw_ale *ale = table_attr_to_ale(attr); int len = SZ_4K, outlen = 0, idx, start; u32 ale_entry[ALE_ENTRY_WORDS]; start = ale->show_next; for (idx = start; (idx < ale->params.ale_entries) && (len > total_outlen); idx++) { cpsw_ale_read(ale, idx, ale_entry); outlen = cpsw_ale_dump_entry(ale, idx, ale_entry, buf + total_outlen, len - total_outlen); if (outlen == 0) { type = cpsw_ale_get_entry_type(ale_entry); if (type != ALE_TYPE_FREE) { ++not_shown; break; } } else { total_outlen += outlen; ++shown; } } /* update next show index */ if (idx >= ale->params.ale_entries) ale->show_next = 0; else ale->show_next = idx; if (len > total_outlen + 32) total_outlen += snprintf(buf + total_outlen, len - total_outlen, "[%d..%d]: %d entries%s\n", start, idx - 1, shown, not_shown ? ", +" : ""); return total_outlen; } struct ale_table_param { const char *name; union { int val; u8 addr[6]; }; }; struct ale_table_cmd { const char *name; int (*process)(struct cpsw_ale *ale, const u8 *params_str, size_t str_len); }; static struct ale_table_param vlan_params[] = { [ALE_VP_VID] = { .name = "vid", }, [ALE_VP_FORCE_UT_EGR] = { .name = "force_untag_egress", }, [ALE_VP_REG_FLD] = { .name = "reg_fld_mask", }, [ALE_VP_UNREG_FLD] = { .name = "unreg_fld_mask", }, [ALE_VP_M_LIST] = { .name = "mem_list", }, }; static struct ale_table_param vlan_ucast_params[] = { [ALE_UP_PORT] = { .name = "port", }, [ALE_UP_BLOCK] = { .name = "block", }, [ALE_UP_SECURE] = { .name = "secure", }, [ALE_UP_AGEABLE] = { .name = "ageable", }, [ALE_UP_ADDR] = { .name = "addr", }, [ALE_UP_VID] = { .name = "vid", }, }; static struct ale_table_param vlan_mcast_params[] = { [ALE_MP_PORT_MASK] = { .name = "port_mask", }, [ALE_MP_SUPER] = { .name = "supervisory", }, [ALE_MP_FW_ST] = { .name = "mc_fw_st", }, [ALE_MP_ADDR] = { .name = "addr", }, [ALE_MP_VID] = { .name = "vid", }, }; static struct ale_table_param oui_params[] = { { .name = "addr", }, }; void cpsw_ale_table_store_init_params( struct ale_table_param *params, int param_num) { int i; for (i = 0; i < param_num; i++) memset(params[i].addr, 0, 6); } static int cpsw_ale_table_store_get_params(struct cpsw_ale *ale, struct ale_table_param *params, int param_num, const u8 *params_str, size_t str_len) { char param_name[33], val_str[33]; size_t tmp_len = str_len; int len, i, n, addr_len; unsigned int iaddr[6]; unsigned long end; while (tmp_len > 0) { len = strcspn(params_str, "="); if (len >= 32) return -ENOMEM; strncpy(param_name, params_str, len); param_name[len] = '\0'; params_str += len; tmp_len -= len; if (*params_str != '=') return -EINVAL; ++params_str; --tmp_len; len = strcspn(params_str, "."); if (len >= 32) return -ENOMEM; strncpy(val_str, params_str, len); val_str[len] = '\0'; params_str += len; tmp_len -= len; if (*params_str == '.') { ++params_str; --tmp_len; } for (n = 0; n < param_num; n++) { if (strcmp(param_name, params[n].name) != 0) continue; if (strcmp(param_name, "addr") == 0) { addr_len = sscanf(val_str, "%02x:%02x:%02x:%02x:%02x:%02x", &iaddr[0], &iaddr[1], &iaddr[2], &iaddr[3], &iaddr[4], &iaddr[5]); if (addr_len != 6 && addr_len != 3) return -EINVAL; for (i = 0; i < addr_len; i++) params[n].addr[i] = iaddr[i]; break; } if (kstrtoul(val_str, 0, &end)) return -EINVAL; params[n].val = (int)end; break; } if (n >= param_num) return -EINVAL; } return str_len; } static int cpsw_ale_table_store_vlan(struct cpsw_ale *ale, const u8 *params_str, size_t str_len) { int ret; cpsw_ale_table_store_init_params(vlan_params, ALE_VP_NUM); vlan_params[ALE_VP_VID].val = -1; ret = cpsw_ale_table_store_get_params(ale, vlan_params, ALE_VP_NUM, params_str, str_len); if (ret < 0) return ret; ret = cpsw_ale_add_vlan(ale, vlan_params[ALE_VP_VID].val, vlan_params[ALE_VP_M_LIST].val, vlan_params[ALE_VP_FORCE_UT_EGR].val, vlan_params[ALE_VP_REG_FLD].val, vlan_params[ALE_VP_UNREG_FLD].val); if (ret < 0) return ret; return str_len; } static int cpsw_ale_table_store_vlan_ucast(struct cpsw_ale *ale, const u8 *params_str, size_t str_len, int has_vid) { int ret, flags = 0; cpsw_ale_table_store_init_params(vlan_ucast_params, ALE_UP_NUM); vlan_ucast_params[ALE_UP_VID].val = -1; ret = cpsw_ale_table_store_get_params(ale, vlan_ucast_params, ALE_UP_NUM, params_str, str_len); if (ret < 0) return ret; if (!has_vid && vlan_ucast_params[ALE_UP_VID].val >= 0) return -EINVAL; if (vlan_ucast_params[ALE_UP_BLOCK].val) flags |= ALE_BLOCKED; if (vlan_ucast_params[ALE_UP_SECURE].val) flags |= ALE_SECURE; ret = cpsw_ale_add_ucast(ale, vlan_ucast_params[ALE_UP_ADDR].addr, vlan_ucast_params[ALE_UP_PORT].val, flags, vlan_ucast_params[ALE_UP_VID].val); if (ret < 0) return ret; return str_len; } static int cpsw_ale_table_store_u_proc(struct cpsw_ale *ale, const u8 *params_str, size_t str_len) { return cpsw_ale_table_store_vlan_ucast(ale, params_str, str_len, 0); } static int cpsw_ale_table_store_vu_proc(struct cpsw_ale *ale, const u8 *params_str, size_t str_len) { return cpsw_ale_table_store_vlan_ucast(ale, params_str, str_len, 1); } static int cpsw_ale_table_store_vlan_mcast(struct cpsw_ale *ale, const u8 *params_str, size_t str_len, int has_vid) { int ret; cpsw_ale_table_store_init_params(vlan_mcast_params, ALE_MP_NUM); vlan_mcast_params[ALE_MP_VID].val = -1; ret = cpsw_ale_table_store_get_params(ale, vlan_mcast_params, ALE_MP_NUM, params_str, str_len); if (ret < 0) return ret; if (!has_vid && vlan_mcast_params[ALE_MP_VID].val >= 0) return -EINVAL; ret = cpsw_ale_add_mcast(ale, vlan_mcast_params[ALE_MP_ADDR].addr, vlan_mcast_params[ALE_MP_PORT_MASK].val, vlan_mcast_params[ALE_MP_SUPER].val, vlan_mcast_params[ALE_MP_FW_ST].val, vlan_mcast_params[ALE_MP_VID].val); if (ret < 0) return ret; return str_len; } static int cpsw_ale_table_store_m_proc(struct cpsw_ale *ale, const u8 *params_str, size_t str_len) { return cpsw_ale_table_store_vlan_mcast(ale, params_str, str_len, 0); } static int cpsw_ale_table_store_vm_proc(struct cpsw_ale *ale, const u8 *params_str, size_t str_len) { return cpsw_ale_table_store_vlan_mcast(ale, params_str, str_len, 1); } static int cpsw_ale_add_oui(struct cpsw_ale *ale, u8 *addr) { u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0}; int idx; cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR); cpsw_ale_set_addr(ale_entry, addr); cpsw_ale_set_ucast_type(ale_entry, ALE_UCAST_OUI); idx = cpsw_ale_match_addr(ale, addr, -1); if (idx < 0) idx = cpsw_ale_match_free(ale); if (idx < 0) idx = cpsw_ale_find_ageable(ale); if (idx < 0) return -ENOMEM; cpsw_ale_write(ale, idx, ale_entry); return 0; } static int cpsw_ale_table_store_oui(struct cpsw_ale *ale, const u8 *params_str, size_t str_len) { int ret; cpsw_ale_table_store_init_params(oui_params, 1); ret = cpsw_ale_table_store_get_params(ale, oui_params, 1, params_str, str_len); if (ret < 0) return ret; /* Clear out the don't cares */ oui_params[0].addr[3] = 0; oui_params[0].addr[4] = 0; oui_params[0].addr[5] = 0; ret = cpsw_ale_add_oui(ale, oui_params[0].addr); if (ret < 0) return ret; return str_len; } static int cpsw_ale_table_store_del(struct cpsw_ale *ale, int idx) { u32 ale_entry[ALE_ENTRY_WORDS]; int type; dev_dbg(ale->params.dev, "deleting entry[%d] ...\n", idx); if (idx >= ale->params.ale_entries) return -EINVAL; cpsw_ale_read(ale, idx, ale_entry); type = cpsw_ale_get_entry_type(ale_entry); if (type == ALE_TYPE_FREE) return -EINVAL; cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_FREE); cpsw_ale_write(ale, idx, ale_entry); return 0; } static struct ale_table_cmd ale_table_cmds[] = { { .name = "v", .process = cpsw_ale_table_store_vlan, }, { .name = "m", .process = cpsw_ale_table_store_m_proc, }, { .name = "vm", .process = cpsw_ale_table_store_vm_proc, }, { .name = "u", .process = cpsw_ale_table_store_u_proc, }, { .name = "vu", .process = cpsw_ale_table_store_vu_proc, }, { .name = "o", .process = cpsw_ale_table_store_oui, }, }; static ssize_t cpsw_ale_table_store_proc(struct cpsw_ale *ale, const char *buf, size_t count) { int len, i, tmp_count = count, ret = -EINVAL; char ctrl_str[33]; unsigned long end; len = strcspn(buf, ".:"); if (len >= 5) return -ENOMEM; strncpy(ctrl_str, buf, len); ctrl_str[len] = '\0'; /* skip to param beginning */ buf += len; tmp_count -= len; if (*buf == ':') { /* delete cmd */ if (kstrtoul(ctrl_str, 0, &end)) return -EINVAL; ret = cpsw_ale_table_store_del(ale, end); if (ret != 0) return ret; else return count; } if (len >= 3) return -ENOMEM; if (*buf != '.') return -EINVAL; ++buf; --tmp_count; for (i = 0; i < ARRAY_SIZE(ale_table_cmds); i++) { if (strcmp(ale_table_cmds[i].name, ctrl_str) == 0) { ret = ale_table_cmds[i].process(ale, buf, tmp_count); break; } } if (ret < 0) return ret; else return count; } static ssize_t cpsw_ale_table_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct cpsw_ale *ale = table_attr_to_ale(attr); return cpsw_ale_table_store_proc(ale, buf, count); } DEVICE_ATTR(ale_table, S_IRUGO | S_IWUSR, cpsw_ale_table_show, cpsw_ale_table_store); static int cpsw_ale_dump_entry_raw(int idx, u32 *ale_entry, char *buf, int len) { int type, outlen = 0; type = cpsw_ale_get_entry_type(ale_entry); if (type == ALE_TYPE_FREE) return outlen; if (len < ALE_RAW_TBL_ENTRY_SHOW_LEN) return outlen; if (idx >= 0) outlen += snprintf(buf + outlen, len - outlen, "%d: ", idx); outlen += snprintf(buf + outlen, len - outlen, "%02x %08x %08x\n", ale_entry[0], ale_entry[1], ale_entry[2]); return outlen; } static ssize_t cpsw_ale_table_raw_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cpsw_ale *ale = table_raw_attr_to_ale(attr); int not_shown = 0, total_outlen = 0, shown = 0; int outlen = 0, idx, start, type; u32 ale_entry[ALE_ENTRY_WORDS]; start = ale->raw_show_next; for (idx = start; (idx < ale->params.ale_entries) && (total_outlen < PAGE_SIZE); idx++) { cpsw_ale_read(ale, idx, ale_entry); outlen = cpsw_ale_dump_entry_raw(idx, ale_entry, buf + total_outlen, PAGE_SIZE - total_outlen); if (outlen == 0) { type = cpsw_ale_get_entry_type(ale_entry); if (type != ALE_TYPE_FREE) { ++not_shown; break; } } else { total_outlen += outlen; ++shown; } } /* update next show index */ if (idx >= ale->params.ale_entries) ale->raw_show_next = 0; else ale->raw_show_next = idx; if ((total_outlen + 32) < PAGE_SIZE) total_outlen += snprintf(buf + total_outlen, PAGE_SIZE - total_outlen, "[%d..%d]: %d entries%s\n", start, idx - 1, shown, not_shown ? ", +" : ""); return total_outlen; } static ssize_t cpsw_ale_table_raw_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct cpsw_ale *ale = table_raw_attr_to_ale(attr); unsigned long end; if (kstrtoul(buf, 0, &end) == 0) { /* set start-show-index command */ ale->raw_show_next = (int)end; if (ale->raw_show_next >= ale->params.ale_entries) ale->raw_show_next = 0; return count; } /* add or delete command */ return cpsw_ale_table_store_proc(ale, buf, count); } DEVICE_ATTR(ale_table_raw, S_IRUGO | S_IWUSR, cpsw_ale_table_raw_show, cpsw_ale_table_raw_store); static void cpsw_ale_timer(unsigned long arg) { struct cpsw_ale *ale = (struct cpsw_ale *)arg; cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); if (ale->ageout) { ale->timer.expires = jiffies + ale->ageout; add_timer(&ale->timer); } } void cpsw_ale_start(struct cpsw_ale *ale) { u32 rev, ale_entries; int ret, i; rev = __raw_readl(ale->params.ale_regs + ALE_IDVER); if (!ale->params.major_ver_mask) ale->params.major_ver_mask = 0xff; ale->version = (ALE_VERSION_MAJOR(rev, ale->params.major_ver_mask) << 8) | ALE_VERSION_MINOR(rev); dev_info(ale->params.dev, "initialized cpsw ale version %d.%d\n", ALE_VERSION_MAJOR(rev, ale->params.major_ver_mask), ALE_VERSION_MINOR(rev)); if (!ale->params.ale_entries) { ale_entries = __raw_readl(ale->params.ale_regs + ALE_STATUS) & ALE_STATUS_SIZE_MASK; /* ALE available on newer NetCP switches has introduced * a register, ALE_STATUS, to indicate the size of ALE * table which shows the size as a multiple of 1024 entries. * For these, params.ale_entries will be set to zero. So * read the register and update the value of ale_entries. * ALE table on NetCP lite, is much smaller and is indicated * by a value of zero in ALE_STATUS. So use a default value * of ALE_TABLE_SIZE_DEFAULT for this. Caller is expected * to set the value of ale_entries for all other versions * of ALE. */ if (!ale_entries) ale_entries = ALE_TABLE_SIZE_DEFAULT; else ale_entries *= ALE_TABLE_SIZE_MULTIPLIER; ale->params.ale_entries = ale_entries; } dev_info(ale->params.dev, "ALE Table size %ld\n", ale->params.ale_entries); /* set default bits for existing h/w */ ale->port_mask_bits = 3; ale->port_num_bits = 2; ale->vlan_field_bits = 3; /* Set defaults override for ALE on NetCP NU switch and for version * 1R3 */ if (ale->params.nu_switch_ale) { /* Separate registers for unknown vlan configuration. * Also there are N bits, where N is number of ale * ports and shift value should be 0 */ ale_controls[ALE_PORT_UNKNOWN_VLAN_MEMBER].bits = ale->params.ale_ports; ale_controls[ALE_PORT_UNKNOWN_VLAN_MEMBER].offset = ALE_UNKNOWNVLAN_MEMBER; ale_controls[ALE_PORT_UNKNOWN_MCAST_FLOOD].bits = ale->params.ale_ports; ale_controls[ALE_PORT_UNKNOWN_MCAST_FLOOD].shift = 0; ale_controls[ALE_PORT_UNKNOWN_MCAST_FLOOD].offset = ALE_UNKNOWNVLAN_UNREG_MCAST_FLOOD; ale_controls[ALE_PORT_UNKNOWN_REG_MCAST_FLOOD].bits = ale->params.ale_ports; ale_controls[ALE_PORT_UNKNOWN_REG_MCAST_FLOOD].shift = 0; ale_controls[ALE_PORT_UNKNOWN_REG_MCAST_FLOOD].offset = ALE_UNKNOWNVLAN_REG_MCAST_FLOOD; ale_controls[ALE_PORT_UNTAGGED_EGRESS].bits = ale->params.ale_ports; ale_controls[ALE_PORT_UNTAGGED_EGRESS].shift = 0; ale_controls[ALE_PORT_UNTAGGED_EGRESS].offset = ALE_UNKNOWNVLAN_FORCE_UNTAG_EGRESS; ale->port_mask_bits = ale->params.ale_ports; ale->port_num_bits = ale->params.ale_ports - 1; ale->vlan_field_bits = ale->params.ale_ports; } else if (ale->version == ALE_VERSION_1R3) { ale->port_mask_bits = ale->params.ale_ports; ale->port_num_bits = 3; ale->vlan_field_bits = ale->params.ale_ports; } if ((ale->version == ALE_VERSION_1R3) || (ale->params.nu_switch_ale) || (ale->version == ALE_VERSION_9R3)) { /* disable forwarding on all ports */ for (i = 0; i < ale->params.ale_ports; ++i) cpsw_ale_control_set(ale, i, ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); ale->ale_control_attr = dev_attr_ale_control; sysfs_attr_init(&ale->ale_control_attr.attr); ret = device_create_file(ale->params.dev, &ale->ale_control_attr); WARN_ON(ret < 0); ale->ale_table_attr = dev_attr_ale_table; sysfs_attr_init(&ale->ale_table_attr.attr); ret = device_create_file(ale->params.dev, &ale->ale_table_attr); WARN_ON(ret < 0); ale->ale_table_raw_attr = dev_attr_ale_table_raw; sysfs_attr_init(&ale->ale_table_raw_attr.attr); ret = device_create_file(ale->params.dev, &ale->ale_table_raw_attr); WARN_ON(ret < 0); } cpsw_ale_control_set(ale, 0, ALE_ENABLE, 1); cpsw_ale_control_set(ale, 0, ALE_CLEAR, 1); init_timer(&ale->timer); ale->timer.data = (unsigned long)ale; ale->timer.function = cpsw_ale_timer; if (ale->ageout) { ale->timer.expires = jiffies + ale->ageout; add_timer(&ale->timer); } } EXPORT_SYMBOL_GPL(cpsw_ale_start); void cpsw_ale_stop(struct cpsw_ale *ale) { del_timer_sync(&ale->timer); if ((ale->version == ALE_VERSION_1R3) || (ale->params.nu_switch_ale) || (ale->version == ALE_VERSION_9R3)) { device_remove_file(ale->params.dev, &ale->ale_table_attr); device_remove_file(ale->params.dev, &ale->ale_control_attr); device_remove_file(ale->params.dev, &ale->ale_table_raw_attr); } } EXPORT_SYMBOL_GPL(cpsw_ale_stop); struct cpsw_ale *cpsw_ale_create(struct cpsw_ale_params *params) { struct cpsw_ale *ale; ale = kzalloc(sizeof(*ale), GFP_KERNEL); if (!ale) return NULL; ale->params = *params; ale->ageout = ale->params.ale_ageout * HZ; return ale; } EXPORT_SYMBOL_GPL(cpsw_ale_create); int cpsw_ale_destroy(struct cpsw_ale *ale) { if (!ale) return -EINVAL; cpsw_ale_control_set(ale, 0, ALE_ENABLE, 0); kfree(ale); return 0; } EXPORT_SYMBOL_GPL(cpsw_ale_destroy); void cpsw_ale_dump(struct cpsw_ale *ale, u32 *data) { int i; for (i = 0; i < ale->params.ale_entries; i++) { cpsw_ale_read(ale, i, data); data += ALE_ENTRY_WORDS; } } EXPORT_SYMBOL_GPL(cpsw_ale_dump); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("TI CPSW ALE driver"); MODULE_AUTHOR("Texas Instruments");