page_alloc.c 191 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
#include <linux/jiffies.h>
#include <linux/bootmem.h>
#include <linux/memblock.h>
#include <linux/compiler.h>
#include <linux/kernel.h>
#include <linux/kmemcheck.h>
#include <linux/kasan.h>
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
#include <linux/ratelimit.h>
#include <linux/oom.h>
#include <linux/notifier.h>
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/memory_hotplug.h>
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
#include <linux/vmstat.h>
#include <linux/mempolicy.h>
#include <linux/stop_machine.h>
#include <linux/sort.h>
#include <linux/pfn.h>
#include <linux/backing-dev.h>
#include <linux/fault-inject.h>
#include <linux/page-isolation.h>
#include <linux/page_ext.h>
#include <linux/debugobjects.h>
#include <linux/kmemleak.h>
#include <linux/compaction.h>
#include <trace/events/kmem.h>
#include <linux/prefetch.h>
#include <linux/mm_inline.h>
#include <linux/migrate.h>
#include <linux/page_ext.h>
#include <linux/hugetlb.h>
#include <linux/sched/rt.h>
#include <linux/locallock.h>
#include <linux/page_owner.h>
#include <linux/kthread.h>

#include <asm/sections.h>
#include <asm/tlbflush.h>
#include <asm/div64.h>
#include "internal.h"

/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
#define MIN_PERCPU_PAGELIST_FRACTION	(8)

#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
int _node_numa_mem_[MAX_NUMNODES];
#endif

/*
 * Array of node states.
 */
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
#endif
#ifdef CONFIG_MOVABLE_NODE
	[N_MEMORY] = { { [0] = 1UL } },
#endif
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

/* Protect totalram_pages and zone->managed_pages */
static DEFINE_SPINLOCK(managed_page_count_lock);

unsigned long totalram_pages __read_mostly;
unsigned long totalreserve_pages __read_mostly;
unsigned long totalcma_pages __read_mostly;
/*
 * When calculating the number of globally allowed dirty pages, there
 * is a certain number of per-zone reserves that should not be
 * considered dirtyable memory.  This is the sum of those reserves
 * over all existing zones that contribute dirtyable memory.
 */
unsigned long dirty_balance_reserve __read_mostly;

int percpu_pagelist_fraction;
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;

/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 * they should always be called with pm_mutex held (gfp_allowed_mask also should
 * only be modified with pm_mutex held, unless the suspend/hibernate code is
 * guaranteed not to run in parallel with that modification).
 */

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
{
	WARN_ON(!mutex_is_locked(&pm_mutex));
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
}

void pm_restrict_gfp_mask(void)
{
	WARN_ON(!mutex_is_locked(&pm_mutex));
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
}

bool pm_suspended_storage(void)
{
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
		return false;
	return true;
}
#endif /* CONFIG_PM_SLEEP */

#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
unsigned int pageblock_order __read_mostly;
#endif

static void __free_pages_ok(struct page *page, unsigned int order);

/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
 */
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
#ifdef CONFIG_ZONE_DMA
	 256,
#endif
#ifdef CONFIG_ZONE_DMA32
	 256,
#endif
#ifdef CONFIG_HIGHMEM
	 32,
#endif
	 32,
};

EXPORT_SYMBOL(totalram_pages);

static char * const zone_names[MAX_NR_ZONES] = {
#ifdef CONFIG_ZONE_DMA
	 "DMA",
#endif
#ifdef CONFIG_ZONE_DMA32
	 "DMA32",
#endif
	 "Normal",
#ifdef CONFIG_HIGHMEM
	 "HighMem",
#endif
	 "Movable",
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
};

static void free_compound_page(struct page *page);
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
};

int min_free_kbytes = 1024;
int user_min_free_kbytes = -1;

static unsigned long __meminitdata nr_kernel_pages;
static unsigned long __meminitdata nr_all_pages;
static unsigned long __meminitdata dma_reserve;

#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
static unsigned long __initdata required_kernelcore;
static unsigned long __initdata required_movablecore;
static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */

#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly = MAX_NUMNODES;
int nr_online_nodes __read_mostly = 1;
EXPORT_SYMBOL(nr_node_ids);
EXPORT_SYMBOL(nr_online_nodes);
#endif

static DEFINE_LOCAL_IRQ_LOCK(pa_lock);

#ifdef CONFIG_PREEMPT_RT_BASE
# define cpu_lock_irqsave(cpu, flags)		\
	local_lock_irqsave_on(pa_lock, flags, cpu)
# define cpu_unlock_irqrestore(cpu, flags)	\
	local_unlock_irqrestore_on(pa_lock, flags, cpu)
#else
# define cpu_lock_irqsave(cpu, flags)		local_irq_save(flags)
# define cpu_unlock_irqrestore(cpu, flags)	local_irq_restore(flags)
#endif

int page_group_by_mobility_disabled __read_mostly;

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void reset_deferred_meminit(pg_data_t *pgdat)
{
	pgdat->first_deferred_pfn = ULONG_MAX;
}

/* Returns true if the struct page for the pfn is uninitialised */
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
{
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
		return true;

	return false;
}

static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
{
	if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
		return true;

	return false;
}

/*
 * Returns false when the remaining initialisation should be deferred until
 * later in the boot cycle when it can be parallelised.
 */
static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
	/* Always populate low zones for address-contrained allocations */
	if (zone_end < pgdat_end_pfn(pgdat))
		return true;

	/* Initialise at least 2G of the highest zone */
	(*nr_initialised)++;
	if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		pgdat->first_deferred_pfn = pfn;
		return false;
	}

	return true;
}
#else
static inline void reset_deferred_meminit(pg_data_t *pgdat)
{
}

static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
{
	return false;
}

static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
	return true;
}
#endif


void set_pageblock_migratetype(struct page *page, int migratetype)
{
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
		migratetype = MIGRATE_UNMOVABLE;

	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

#ifdef CONFIG_DEBUG_VM
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
{
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
	unsigned long sp, start_pfn;

	do {
		seq = zone_span_seqbegin(zone);
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
		if (!zone_spans_pfn(zone, pfn))
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

	if (ret)
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);

	return ret;
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
	if (!pfn_valid_within(page_to_pfn(page)))
		return 0;
	if (zone != page_zone(page))
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
static int bad_range(struct zone *zone, struct page *page)
{
	if (page_outside_zone_boundaries(zone, page))
		return 1;
	if (!page_is_consistent(zone, page))
		return 1;

	return 0;
}
#else
static inline int bad_range(struct zone *zone, struct page *page)
{
	return 0;
}
#endif

static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
{
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/* Don't complain about poisoned pages */
	if (PageHWPoison(page)) {
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
	}

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
			printk(KERN_ALERT
			      "BUG: Bad page state: %lu messages suppressed\n",
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
		current->comm, page_to_pfn(page));
	dump_page_badflags(page, reason, bad_flags);

	print_modules();
	dump_stack();
out:
	/* Leave bad fields for debug, except PageBuddy could make trouble */
	page_mapcount_reset(page); /* remove PageBuddy */
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
 *
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
 *
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
 *
 * The first tail page's ->compound_order holds the order of allocation.
 * This usage means that zero-order pages may not be compound.
 */

static void free_compound_page(struct page *page)
{
	__free_pages_ok(page, compound_order(page));
}

void prep_compound_page(struct page *page, unsigned int order)
{
	int i;
	int nr_pages = 1 << order;

	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
		set_page_count(p, 0);
		set_compound_head(p, page);
	}
}

#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
bool _debug_pagealloc_enabled __read_mostly;
bool _debug_guardpage_enabled __read_mostly;

static int __init early_debug_pagealloc(char *buf)
{
	if (!buf)
		return -EINVAL;

	if (strcmp(buf, "on") == 0)
		_debug_pagealloc_enabled = true;

	return 0;
}
early_param("debug_pagealloc", early_debug_pagealloc);

static bool need_debug_guardpage(void)
{
	/* If we don't use debug_pagealloc, we don't need guard page */
	if (!debug_pagealloc_enabled())
		return false;

	return true;
}

static void init_debug_guardpage(void)
{
	if (!debug_pagealloc_enabled())
		return;

	_debug_guardpage_enabled = true;
}

struct page_ext_operations debug_guardpage_ops = {
	.need = need_debug_guardpage,
	.init = init_debug_guardpage,
};

static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
		return 0;
	}
	_debug_guardpage_minorder = res;
	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
	return 0;
}
__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);

static inline void set_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
{
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
		return;

	page_ext = lookup_page_ext(page);
	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
}

static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
{
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
		return;

	page_ext = lookup_page_ext(page);
	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
}
#else
struct page_ext_operations debug_guardpage_ops = { NULL, };
static inline void set_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
#endif

static inline void set_page_order(struct page *page, unsigned int order)
{
	set_page_private(page, order);
	__SetPageBuddy(page);
}

static inline void rmv_page_order(struct page *page)
{
	__ClearPageBuddy(page);
	set_page_private(page, 0);
}

/*
 * This function checks whether a page is free && is the buddy
 * we can do coalesce a page and its buddy if
 * (a) the buddy is not in a hole &&
 * (b) the buddy is in the buddy system &&
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
 *
 * For recording whether a page is in the buddy system, we set ->_mapcount
 * PAGE_BUDDY_MAPCOUNT_VALUE.
 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
 * serialized by zone->lock.
 *
 * For recording page's order, we use page_private(page).
 */
static inline int page_is_buddy(struct page *page, struct page *buddy,
							unsigned int order)
{
	if (!pfn_valid_within(page_to_pfn(buddy)))
		return 0;

	if (page_is_guard(buddy) && page_order(buddy) == order) {
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

		return 1;
	}

	if (PageBuddy(buddy) && page_order(buddy) == order) {
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

		return 1;
	}
	return 0;
}

/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
 * free pages of length of (1 << order) and marked with _mapcount
 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
 * field.
 * So when we are allocating or freeing one, we can derive the state of the
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
 * If a block is freed, and its buddy is also free, then this
 * triggers coalescing into a block of larger size.
 *
 * -- nyc
 */

static inline void __free_one_page(struct page *page,
		unsigned long pfn,
		struct zone *zone, unsigned int order,
		int migratetype)
{
	unsigned long page_idx;
	unsigned long combined_idx;
	unsigned long uninitialized_var(buddy_idx);
	struct page *buddy;
	unsigned int max_order;

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);

	VM_BUG_ON(!zone_is_initialized(zone));
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);

	VM_BUG_ON(migratetype == -1);
	if (likely(!is_migrate_isolate(migratetype)))
		__mod_zone_freepage_state(zone, 1 << order, migratetype);

	page_idx = pfn & ((1 << MAX_ORDER) - 1);

	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
	VM_BUG_ON_PAGE(bad_range(zone, page), page);

continue_merging:
	while (order < max_order - 1) {
		buddy_idx = __find_buddy_index(page_idx, order);
		buddy = page + (buddy_idx - page_idx);
		if (!page_is_buddy(page, buddy, order))
			goto done_merging;
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
		if (page_is_guard(buddy)) {
			clear_page_guard(zone, buddy, order, migratetype);
		} else {
			list_del(&buddy->lru);
			zone->free_area[order].nr_free--;
			rmv_page_order(buddy);
		}
		combined_idx = buddy_idx & page_idx;
		page = page + (combined_idx - page_idx);
		page_idx = combined_idx;
		order++;
	}
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

			buddy_idx = __find_buddy_index(page_idx, order);
			buddy = page + (buddy_idx - page_idx);
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
	set_page_order(page, order);

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
		struct page *higher_page, *higher_buddy;
		combined_idx = buddy_idx & page_idx;
		higher_page = page + (combined_idx - page_idx);
		buddy_idx = __find_buddy_index(combined_idx, order + 1);
		higher_buddy = higher_page + (buddy_idx - combined_idx);
		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
			list_add_tail(&page->lru,
				&zone->free_area[order].free_list[migratetype]);
			goto out;
		}
	}

	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
out:
	zone->free_area[order].nr_free++;
}

static inline int free_pages_check(struct page *page)
{
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;

	if (unlikely(page_mapcount(page)))
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
	if (unlikely(atomic_read(&page->_count) != 0))
		bad_reason = "nonzero _count";
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
	if (unlikely(bad_reason)) {
		bad_page(page, bad_reason, bad_flags);
		return 1;
	}
	page_cpupid_reset_last(page);
	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	return 0;
}

/*
 * Frees a number of pages which have been collected from the pcp lists.
 * Assumes all pages on list are in same zone, and of same order.
 * count is the number of pages to free.
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
static void free_pcppages_bulk(struct zone *zone, int count,
			       struct list_head *list)
{
	int to_free = count;
	unsigned long nr_scanned;
	unsigned long flags;

	spin_lock_irqsave(&zone->lock, flags);

	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
	if (nr_scanned)
		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);

	while (!list_empty(list)) {
		struct page *page = list_first_entry(list, struct page, lru);
		int mt;	/* migratetype of the to-be-freed page */

		/* must delete as __free_one_page list manipulates */
		list_del(&page->lru);

		mt = get_pcppage_migratetype(page);
		/* MIGRATE_ISOLATE page should not go to pcplists */
		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
		/* Pageblock could have been isolated meanwhile */
		if (unlikely(has_isolate_pageblock(zone)))
			mt = get_pageblock_migratetype(page);

		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
		trace_mm_page_pcpu_drain(page, 0, mt);
		to_free--;
	}
	WARN_ON(to_free != 0);
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Moves a number of pages from the PCP lists to free list which
 * is freed outside of the locked region.
 *
 * Assumes all pages on list are in same zone, and of same order.
 * count is the number of pages to free.
 */
static void isolate_pcp_pages(int to_free, struct per_cpu_pages *src,
			      struct list_head *dst)
{
	int migratetype = 0;
	int batch_free = 0;

	while (to_free) {
		struct page *page;
		struct list_head *list;

		/*
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
		 */
		do {
			batch_free++;
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &src->lists[migratetype];
		} while (list_empty(list));

		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
			batch_free = to_free;

		do {
			page = list_last_entry(list, struct page, lru);
			list_del(&page->lru);

			list_add(&page->lru, dst);
		} while (--to_free && --batch_free && !list_empty(list));
	}
}

static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
				unsigned int order,
				int migratetype)
{
	unsigned long nr_scanned;
	unsigned long flags;

	spin_lock_irqsave(&zone->lock, flags);
	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
	if (nr_scanned)
		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);

	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
	__free_one_page(page, pfn, zone, order, migratetype);
	spin_unlock_irqrestore(&zone->lock, flags);
}

static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	clear_compound_head(page);
	return ret;
}

static void __meminit __init_single_page(struct page *page, unsigned long pfn,
				unsigned long zone, int nid)
{
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
					int nid)
{
	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
}

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static void init_reserved_page(unsigned long pfn)
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
	__init_single_pfn(pfn, zid, nid);
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

			SetPageReserved(page);
		}
	}
}

static bool free_pages_prepare(struct page *page, unsigned int order)
{
	bool compound = PageCompound(page);
	int i, bad = 0;

	VM_BUG_ON_PAGE(PageTail(page), page);
	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);

	trace_mm_page_free(page, order);
	kmemcheck_free_shadow(page, order);
	kasan_free_pages(page, order);

	if (PageAnon(page))
		page->mapping = NULL;
	bad += free_pages_check(page);
	for (i = 1; i < (1 << order); i++) {
		if (compound)
			bad += free_tail_pages_check(page, page + i);
		bad += free_pages_check(page + i);
	}
	if (bad)
		return false;

	reset_page_owner(page, order);

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
					   PAGE_SIZE << order);
		debug_check_no_obj_freed(page_address(page),
					   PAGE_SIZE << order);
	}
	arch_free_page(page, order);
	kernel_map_pages(page, 1 << order, 0);

	return true;
}

static void __free_pages_ok(struct page *page, unsigned int order)
{
	unsigned long flags;
	int migratetype;
	unsigned long pfn = page_to_pfn(page);

	if (!free_pages_prepare(page, order))
		return;

	migratetype = get_pfnblock_migratetype(page, pfn);
	local_lock_irqsave(pa_lock, flags);
	__count_vm_events(PGFREE, 1 << order);
	free_one_page(page_zone(page), page, pfn, order, migratetype);
	local_unlock_irqrestore(pa_lock, flags);
}

static void __init __free_pages_boot_core(struct page *page,
					unsigned long pfn, unsigned int order)
{
	unsigned int nr_pages = 1 << order;
	struct page *p = page;
	unsigned int loop;

	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
		__ClearPageReserved(p);
		set_page_count(p, 0);
	}
	__ClearPageReserved(p);
	set_page_count(p, 0);

	page_zone(page)->managed_pages += nr_pages;
	set_page_refcounted(page);
	__free_pages(page, order);
}

#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)

static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
	static DEFINE_SPINLOCK(early_pfn_lock);
	int nid;

	spin_lock(&early_pfn_lock);
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
	if (nid < 0)
		nid = first_online_node;
	spin_unlock(&early_pfn_lock);

	return nid;
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
					struct mminit_pfnnid_cache *state)
{
	int nid;

	nid = __early_pfn_to_nid(pfn, state);
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
}

#else

static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
					struct mminit_pfnnid_cache *state)
{
	return true;
}
#endif


void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
	return __free_pages_boot_core(page, pfn, order);
}

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static void __init deferred_free_range(struct page *page,
					unsigned long pfn, int nr_pages)
{
	int i;

	if (!page)
		return;

	/* Free a large naturally-aligned chunk if possible */
	if (nr_pages == MAX_ORDER_NR_PAGES &&
	    (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
		__free_pages_boot_core(page, pfn, MAX_ORDER-1);
		return;
	}

	for (i = 0; i < nr_pages; i++, page++, pfn++)
		__free_pages_boot_core(page, pfn, 0);
}

/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}

/* Initialise remaining memory on a node */
static int __init deferred_init_memmap(void *data)
{
	pg_data_t *pgdat = data;
	int nid = pgdat->node_id;
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long start = jiffies;
	unsigned long nr_pages = 0;
	unsigned long walk_start, walk_end;
	int i, zid;
	struct zone *zone;
	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);

	if (first_init_pfn == ULONG_MAX) {
		pgdat_init_report_one_done();
		return 0;
	}

	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}

	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
		unsigned long pfn, end_pfn;
		struct page *page = NULL;
		struct page *free_base_page = NULL;
		unsigned long free_base_pfn = 0;
		int nr_to_free = 0;

		end_pfn = min(walk_end, zone_end_pfn(zone));
		pfn = first_init_pfn;
		if (pfn < walk_start)
			pfn = walk_start;
		if (pfn < zone->zone_start_pfn)
			pfn = zone->zone_start_pfn;

		for (; pfn < end_pfn; pfn++) {
			if (!pfn_valid_within(pfn))
				goto free_range;

			/*
			 * Ensure pfn_valid is checked every
			 * MAX_ORDER_NR_PAGES for memory holes
			 */
			if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
				if (!pfn_valid(pfn)) {
					page = NULL;
					goto free_range;
				}
			}

			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
				page = NULL;
				goto free_range;
			}

			/* Minimise pfn page lookups and scheduler checks */
			if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
				page++;
			} else {
				nr_pages += nr_to_free;
				deferred_free_range(free_base_page,
						free_base_pfn, nr_to_free);
				free_base_page = NULL;
				free_base_pfn = nr_to_free = 0;

				page = pfn_to_page(pfn);
				cond_resched();
			}

			if (page->flags) {
				VM_BUG_ON(page_zone(page) != zone);
				goto free_range;
			}

			__init_single_page(page, pfn, zid, nid);
			if (!free_base_page) {
				free_base_page = page;
				free_base_pfn = pfn;
				nr_to_free = 0;
			}
			nr_to_free++;

			/* Where possible, batch up pages for a single free */
			continue;
free_range:
			/* Free the current block of pages to allocator */
			nr_pages += nr_to_free;
			deferred_free_range(free_base_page, free_base_pfn,
								nr_to_free);
			free_base_page = NULL;
			free_base_pfn = nr_to_free = 0;
		}

		first_init_pfn = max(end_pfn, first_init_pfn);
	}

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
					jiffies_to_msecs(jiffies - start));

	pgdat_init_report_one_done();
	return 0;
}

void __init page_alloc_init_late(void)
{
	int nid;

	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
	wait_for_completion(&pgdat_init_all_done_comp);

	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

#ifdef CONFIG_CMA
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
	} while (++p, --i);

	set_pageblock_migratetype(page, MIGRATE_CMA);

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

	adjust_managed_page_count(page, pageblock_nr_pages);
}
#endif

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
 * -- nyc
 */
static inline void expand(struct zone *zone, struct page *page,
	int low, int high, struct free_area *area,
	int migratetype)
{
	unsigned long size = 1 << high;

	while (high > low) {
		area--;
		high--;
		size >>= 1;
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);

		if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
			debug_guardpage_enabled() &&
			high < debug_guardpage_minorder()) {
			/*
			 * Mark as guard pages (or page), that will allow to
			 * merge back to allocator when buddy will be freed.
			 * Corresponding page table entries will not be touched,
			 * pages will stay not present in virtual address space
			 */
			set_page_guard(zone, &page[size], high, migratetype);
			continue;
		}
		list_add(&page[size].lru, &area->free_list[migratetype]);
		area->nr_free++;
		set_page_order(&page[size], high);
	}
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;

	if (unlikely(page_mapcount(page)))
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
	if (unlikely(atomic_read(&page->_count) != 0))
		bad_reason = "nonzero _count";
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
	}
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
	if (unlikely(bad_reason)) {
		bad_page(page, bad_reason, bad_flags);
		return 1;
	}
	return 0;
}

static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
								int alloc_flags)
{
	int i;

	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;
		if (unlikely(check_new_page(p)))
			return 1;
	}

	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
	kernel_map_pages(page, 1 << order, 1);
	kasan_alloc_pages(page, order);

	if (gfp_flags & __GFP_ZERO)
		for (i = 0; i < (1 << order); i++)
			clear_highpage(page + i);

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

	set_page_owner(page, order, gfp_flags);

	/*
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);

	return 0;
}

/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
static inline
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
						int migratetype)
{
	unsigned int current_order;
	struct free_area *area;
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
		if (list_empty(&area->free_list[migratetype]))
			continue;

		page = list_entry(area->free_list[migratetype].next,
							struct page, lru);
		list_del(&page->lru);
		rmv_page_order(page);
		area->nr_free--;
		expand(zone, page, order, current_order, area, migratetype);
		set_pcppage_migratetype(page, migratetype);
		return page;
	}

	return NULL;
}


/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
static int fallbacks[MIGRATE_TYPES][4] = {
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
#ifdef CONFIG_CMA
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
#endif
};

#ifdef CONFIG_CMA
static struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

/*
 * Move the free pages in a range to the free lists of the requested type.
 * Note that start_page and end_pages are not aligned on a pageblock
 * boundary. If alignment is required, use move_freepages_block()
 */
int move_freepages(struct zone *zone,
			  struct page *start_page, struct page *end_page,
			  int migratetype)
{
	struct page *page;
	unsigned int order;
	int pages_moved = 0;

#ifndef CONFIG_HOLES_IN_ZONE
	/*
	 * page_zone is not safe to call in this context when
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
	 * anyway as we check zone boundaries in move_freepages_block().
	 * Remove at a later date when no bug reports exist related to
	 * grouping pages by mobility
	 */
	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
#endif

	for (page = start_page; page <= end_page;) {
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);

		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

		if (!PageBuddy(page)) {
			page++;
			continue;
		}

		order = page_order(page);
		list_move(&page->lru,
			  &zone->free_area[order].free_list[migratetype]);
		page += 1 << order;
		pages_moved += 1 << order;
	}

	return pages_moved;
}

int move_freepages_block(struct zone *zone, struct page *page,
				int migratetype)
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

	start_pfn = page_to_pfn(page);
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
	start_page = pfn_to_page(start_pfn);
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;

	/* Do not cross zone boundaries */
	if (!zone_spans_pfn(zone, start_pfn))
		start_page = page;
	if (!zone_spans_pfn(zone, end_pfn))
		return 0;

	return move_freepages(zone, start_page, end_page, migratetype);
}

static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

/*
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
 */
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
 * pageblock and check whether half of pages are moved or not. If half of
 * pages are moved, we can change migratetype of pageblock and permanently
 * use it's pages as requested migratetype in the future.
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
							  int start_type)
{
	unsigned int current_order = page_order(page);
	int pages;

	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
		return;
	}

	pages = move_freepages_block(zone, page, start_type);

	/* Claim the whole block if over half of it is free */
	if (pages >= (1 << (pageblock_order-1)) ||
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
}

/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
		if (fallback_mt == MIGRATE_TYPES)
			break;

		if (list_empty(&area->free_list[fallback_mt]))
			continue;

		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
	}

	return -1;
}

/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
	if (mt != MIGRATE_HIGHATOMIC &&
			!is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
 */
static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
		/* Preserve at least one pageblock */
		if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

			if (list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
				continue;

			page = list_entry(area->free_list[MIGRATE_HIGHATOMIC].next,
						struct page, lru);

			/*
			 * It should never happen but changes to locking could
			 * inadvertently allow a per-cpu drain to add pages
			 * to MIGRATE_HIGHATOMIC while unreserving so be safe
			 * and watch for underflows.
			 */
			zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
				zone->nr_reserved_highatomic);

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
			move_freepages_block(zone, page, ac->migratetype);
			spin_unlock_irqrestore(&zone->lock, flags);
			return;
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
}

/* Remove an element from the buddy allocator from the fallback list */
static inline struct page *
__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
{
	struct free_area *area;
	unsigned int current_order;
	struct page *page;
	int fallback_mt;
	bool can_steal;

	/* Find the largest possible block of pages in the other list */
	for (current_order = MAX_ORDER-1;
				current_order >= order && current_order <= MAX_ORDER-1;
				--current_order) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt == -1)
			continue;

		page = list_entry(area->free_list[fallback_mt].next,
						struct page, lru);
		if (can_steal)
			steal_suitable_fallback(zone, page, start_migratetype);

		/* Remove the page from the freelists */
		area->nr_free--;
		list_del(&page->lru);
		rmv_page_order(page);

		expand(zone, page, order, current_order, area,
					start_migratetype);
		/*
		 * The pcppage_migratetype may differ from pageblock's
		 * migratetype depending on the decisions in
		 * find_suitable_fallback(). This is OK as long as it does not
		 * differ for MIGRATE_CMA pageblocks. Those can be used as
		 * fallback only via special __rmqueue_cma_fallback() function
		 */
		set_pcppage_migratetype(page, start_migratetype);

		trace_mm_page_alloc_extfrag(page, order, current_order,
			start_migratetype, fallback_mt);

		return page;
	}

	return NULL;
}

/*
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
static struct page *__rmqueue(struct zone *zone, unsigned int order,
				int migratetype, gfp_t gfp_flags)
{
	struct page *page;

	page = __rmqueue_smallest(zone, order, migratetype);
	if (unlikely(!page)) {
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

		if (!page)
			page = __rmqueue_fallback(zone, order, migratetype);
	}

	trace_mm_page_alloc_zone_locked(page, order, migratetype);
	return page;
}

/*
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
static int rmqueue_bulk(struct zone *zone, unsigned int order,
			unsigned long count, struct list_head *list,
			int migratetype, bool cold)
{
	int i;

	spin_lock(&zone->lock);
	for (i = 0; i < count; ++i) {
		struct page *page = __rmqueue(zone, order, migratetype, 0);
		if (unlikely(page == NULL))
			break;

		/*
		 * Split buddy pages returned by expand() are received here
		 * in physical page order. The page is added to the callers and
		 * list and the list head then moves forward. From the callers
		 * perspective, the linked list is ordered by page number in
		 * some conditions. This is useful for IO devices that can
		 * merge IO requests if the physical pages are ordered
		 * properly.
		 */
		if (likely(!cold))
			list_add(&page->lru, list);
		else
			list_add_tail(&page->lru, list);
		list = &page->lru;
		if (is_migrate_cma(get_pcppage_migratetype(page)))
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
	}
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
	spin_unlock(&zone->lock);
	return i;
}

#ifdef CONFIG_NUMA
/*
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
 * Note that this function must be called with the thread pinned to
 * a single processor.
 */
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
{
	unsigned long flags;
	LIST_HEAD(dst);
	int to_drain, batch;

	local_lock_irqsave(pa_lock, flags);
	batch = READ_ONCE(pcp->batch);
	to_drain = min(pcp->count, batch);
	if (to_drain > 0) {
		isolate_pcp_pages(to_drain, pcp, &dst);
		pcp->count -= to_drain;
	}
	local_unlock_irqrestore(pa_lock, flags);
	free_pcppages_bulk(zone, to_drain, &dst);
}
#endif

/*
 * Drain pcplists of the indicated processor and zone.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
{
	unsigned long flags;
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
	LIST_HEAD(dst);
	int count;

	cpu_lock_irqsave(cpu, flags);
	pset = per_cpu_ptr(zone->pageset, cpu);

	pcp = &pset->pcp;
	count = pcp->count;
	if (count) {
		isolate_pcp_pages(count, pcp, &dst);
		pcp->count = 0;
	}
	cpu_unlock_irqrestore(cpu, flags);
	if (count)
		free_pcppages_bulk(zone, count, &dst);
}

/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
	}
}

/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
 */
void drain_local_pages(struct zone *zone)
{
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
}

/*
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
 * Note that this code is protected against sending an IPI to an offline
 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
 * nothing keeps CPUs from showing up after we populated the cpumask and
 * before the call to on_each_cpu_mask().
 */
void drain_all_pages(struct zone *zone)
{
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
		struct per_cpu_pageset *pcp;
		struct zone *z;
		bool has_pcps = false;

		if (zone) {
			pcp = per_cpu_ptr(zone->pageset, cpu);
			if (pcp->pcp.count)
				has_pcps = true;
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
			}
		}

		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
#ifndef CONFIG_PREEMPT_RT_BASE
	on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
								zone, 1);
#else
	for_each_cpu(cpu, &cpus_with_pcps) {
		if (zone)
			drain_pages_zone(cpu, zone);
		else
			drain_pages(cpu);
	}
#endif
}

#ifdef CONFIG_HIBERNATION

void mark_free_pages(struct zone *zone)
{
	unsigned long pfn, max_zone_pfn;
	unsigned long flags;
	unsigned int order, t;
	struct list_head *curr;

	if (zone_is_empty(zone))
		return;

	spin_lock_irqsave(&zone->lock, flags);

	max_zone_pfn = zone_end_pfn(zone);
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
			struct page *page = pfn_to_page(pfn);

			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
		}

	for_each_migratetype_order(order, t) {
		list_for_each(curr, &zone->free_area[order].free_list[t]) {
			unsigned long i;

			pfn = page_to_pfn(list_entry(curr, struct page, lru));
			for (i = 0; i < (1UL << order); i++)
				swsusp_set_page_free(pfn_to_page(pfn + i));
		}
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif /* CONFIG_PM */

/*
 * Free a 0-order page
 * cold == true ? free a cold page : free a hot page
 */
void free_hot_cold_page(struct page *page, bool cold)
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);
	int migratetype;

	if (!free_pages_prepare(page, 0))
		return;

	migratetype = get_pfnblock_migratetype(page, pfn);
	set_pcppage_migratetype(page, migratetype);
	local_lock_irqsave(pa_lock, flags);
	__count_vm_event(PGFREE);

	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
	 * offlined but treat RESERVE as movable pages so we can get those
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
		if (unlikely(is_migrate_isolate(migratetype))) {
			free_one_page(zone, page, pfn, 0, migratetype);
			goto out;
		}
		migratetype = MIGRATE_MOVABLE;
	}

	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	if (!cold)
		list_add(&page->lru, &pcp->lists[migratetype]);
	else
		list_add_tail(&page->lru, &pcp->lists[migratetype]);
	pcp->count++;
	if (pcp->count >= pcp->high) {
		unsigned long batch = READ_ONCE(pcp->batch);
		LIST_HEAD(dst);

		isolate_pcp_pages(batch, pcp, &dst);
		pcp->count -= batch;
		local_unlock_irqrestore(pa_lock, flags);
		free_pcppages_bulk(zone, batch, &dst);
		return;
	}

out:
	local_unlock_irqrestore(pa_lock, flags);
}

/*
 * Free a list of 0-order pages
 */
void free_hot_cold_page_list(struct list_head *list, bool cold)
{
	struct page *page, *next;

	list_for_each_entry_safe(page, next, list, lru) {
		trace_mm_page_free_batched(page, cold);
		free_hot_cold_page(page, cold);
	}
}

/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;
	gfp_t gfp_mask;

	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);

#ifdef CONFIG_KMEMCHECK
	/*
	 * Split shadow pages too, because free(page[0]) would
	 * otherwise free the whole shadow.
	 */
	if (kmemcheck_page_is_tracked(page))
		split_page(virt_to_page(page[0].shadow), order);
#endif

	gfp_mask = get_page_owner_gfp(page);
	set_page_owner(page, 0, gfp_mask);
	for (i = 1; i < (1 << order); i++) {
		set_page_refcounted(page + i);
		set_page_owner(page + i, 0, gfp_mask);
	}
}
EXPORT_SYMBOL_GPL(split_page);

int __isolate_free_page(struct page *page, unsigned int order)
{
	unsigned long watermark;
	struct zone *zone;
	int mt;

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
	mt = get_pageblock_migratetype(page);

	if (!is_migrate_isolate(mt)) {
		/* Obey watermarks as if the page was being allocated */
		watermark = low_wmark_pages(zone) + (1 << order);
		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
			return 0;

		__mod_zone_freepage_state(zone, -(1UL << order), mt);
	}

	/* Remove page from free list */
	list_del(&page->lru);
	zone->free_area[order].nr_free--;
	rmv_page_order(page);

	set_page_owner(page, order, __GFP_MOVABLE);

	/* Set the pageblock if the isolated page is at least a pageblock */
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
	}


	return 1UL << order;
}

/*
 * Similar to split_page except the page is already free. As this is only
 * being used for migration, the migratetype of the block also changes.
 * As this is called with interrupts disabled, the caller is responsible
 * for calling arch_alloc_page() and kernel_map_page() after interrupts
 * are enabled.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
int split_free_page(struct page *page)
{
	unsigned int order;
	int nr_pages;

	order = page_order(page);

	nr_pages = __isolate_free_page(page, order);
	if (!nr_pages)
		return 0;

	/* Split into individual pages */
	set_page_refcounted(page);
	split_page(page, order);
	return nr_pages;
}

/*
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
 */
static inline
struct page *buffered_rmqueue(struct zone *preferred_zone,
			struct zone *zone, unsigned int order,
			gfp_t gfp_flags, int alloc_flags, int migratetype)
{
	unsigned long flags;
	struct page *page;
	bool cold = ((gfp_flags & __GFP_COLD) != 0);

	if (likely(order == 0)) {
		struct per_cpu_pages *pcp;
		struct list_head *list;

		local_lock_irqsave(pa_lock, flags);
		pcp = &this_cpu_ptr(zone->pageset)->pcp;
		list = &pcp->lists[migratetype];
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
					migratetype, cold);
			if (unlikely(list_empty(list)))
				goto failed;
		}

		if (cold)
			page = list_entry(list->prev, struct page, lru);
		else
			page = list_entry(list->next, struct page, lru);

		list_del(&page->lru);
		pcp->count--;
	} else {
		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
			/*
			 * __GFP_NOFAIL is not to be used in new code.
			 *
			 * All __GFP_NOFAIL callers should be fixed so that they
			 * properly detect and handle allocation failures.
			 *
			 * We most definitely don't want callers attempting to
			 * allocate greater than order-1 page units with
			 * __GFP_NOFAIL.
			 */
			WARN_ON_ONCE(order > 1);
		}
		local_spin_lock_irqsave(pa_lock, &zone->lock, flags);

		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
		if (!page)
			page = __rmqueue(zone, order, migratetype, gfp_flags);
		if (!page) {
			spin_unlock(&zone->lock);
			goto failed;
		}
		__mod_zone_freepage_state(zone, -(1 << order),
					  get_pcppage_migratetype(page));
		spin_unlock(&zone->lock);
	}

	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
	if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
	    !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
		set_bit(ZONE_FAIR_DEPLETED, &zone->flags);

	__count_zone_vm_events(PGALLOC, zone, 1 << order);
	zone_statistics(preferred_zone, zone, gfp_flags);
	local_unlock_irqrestore(pa_lock, flags);

	VM_BUG_ON_PAGE(bad_range(zone, page), page);
	return page;

failed:
	local_unlock_irqrestore(pa_lock, flags);
	return NULL;
}

#ifdef CONFIG_FAIL_PAGE_ALLOC

static struct {
	struct fault_attr attr;

	bool ignore_gfp_highmem;
	bool ignore_gfp_reclaim;
	u32 min_order;
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
	.ignore_gfp_reclaim = true,
	.ignore_gfp_highmem = true,
	.min_order = 1,
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
{
	if (order < fail_page_alloc.min_order)
		return false;
	if (gfp_mask & __GFP_NOFAIL)
		return false;
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
		return false;
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
	struct dentry *dir;

	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);

	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
				&fail_page_alloc.ignore_gfp_reclaim))
		goto fail;
	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
				&fail_page_alloc.ignore_gfp_highmem))
		goto fail;
	if (!debugfs_create_u32("min-order", mode, dir,
				&fail_page_alloc.min_order))
		goto fail;

	return 0;
fail:
	debugfs_remove_recursive(dir);

	return -ENOMEM;
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
{
	return false;
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

/*
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
 */
static bool __zone_watermark_ok(struct zone *z, unsigned int order,
			unsigned long mark, int classzone_idx, int alloc_flags,
			long free_pages)
{
	long min = mark;
	int o;
	const int alloc_harder = (alloc_flags & ALLOC_HARDER);

	/* free_pages may go negative - that's OK */
	free_pages -= (1 << order) - 1;

	if (alloc_flags & ALLOC_HIGH)
		min -= min / 2;

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
	if (likely(!alloc_harder))
		free_pages -= z->nr_reserved_highatomic;
	else
		min -= min / 4;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
		return false;

	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		if (alloc_harder)
			return true;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
			if (!list_empty(&area->free_list[mt]))
				return true;
		}

#ifdef CONFIG_CMA
		if ((alloc_flags & ALLOC_CMA) &&
		    !list_empty(&area->free_list[MIGRATE_CMA])) {
			return true;
		}
#endif
	}
	return false;
}

bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
		      int classzone_idx, int alloc_flags)
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
			unsigned long mark, int classzone_idx)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
								free_pages);
}

#ifdef CONFIG_NUMA
static bool zone_local(struct zone *local_zone, struct zone *zone)
{
	return local_zone->node == zone->node;
}

static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
				RECLAIM_DISTANCE;
}
#else	/* CONFIG_NUMA */
static bool zone_local(struct zone *local_zone, struct zone *zone)
{
	return true;
}

static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
#endif	/* CONFIG_NUMA */

static void reset_alloc_batches(struct zone *preferred_zone)
{
	struct zone *zone = preferred_zone->zone_pgdat->node_zones;

	do {
		mod_zone_page_state(zone, NR_ALLOC_BATCH,
			high_wmark_pages(zone) - low_wmark_pages(zone) -
			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
		clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
	} while (zone++ != preferred_zone);
}

/*
 * get_page_from_freelist goes through the zonelist trying to allocate
 * a page.
 */
static struct page *
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
{
	struct zonelist *zonelist = ac->zonelist;
	struct zoneref *z;
	struct page *page = NULL;
	struct zone *zone;
	int nr_fair_skipped = 0;
	bool zonelist_rescan;

zonelist_scan:
	zonelist_rescan = false;

	/*
	 * Scan zonelist, looking for a zone with enough free.
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
		unsigned long mark;

		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
			!cpuset_zone_allowed(zone, gfp_mask))
				continue;
		/*
		 * Distribute pages in proportion to the individual
		 * zone size to ensure fair page aging.  The zone a
		 * page was allocated in should have no effect on the
		 * time the page has in memory before being reclaimed.
		 */
		if (alloc_flags & ALLOC_FAIR) {
			if (!zone_local(ac->preferred_zone, zone))
				break;
			if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
				nr_fair_skipped++;
				continue;
			}
		}
		/*
		 * When allocating a page cache page for writing, we
		 * want to get it from a zone that is within its dirty
		 * limit, such that no single zone holds more than its
		 * proportional share of globally allowed dirty pages.
		 * The dirty limits take into account the zone's
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * This may look like it could increase pressure on
		 * lower zones by failing allocations in higher zones
		 * before they are full.  But the pages that do spill
		 * over are limited as the lower zones are protected
		 * by this very same mechanism.  It should not become
		 * a practical burden to them.
		 *
		 * XXX: For now, allow allocations to potentially
		 * exceed the per-zone dirty limit in the slowpath
		 * (spread_dirty_pages unset) before going into reclaim,
		 * which is important when on a NUMA setup the allowed
		 * zones are together not big enough to reach the
		 * global limit.  The proper fix for these situations
		 * will require awareness of zones in the
		 * dirty-throttling and the flusher threads.
		 */
		if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
			continue;

		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
		if (!zone_watermark_ok(zone, order, mark,
				       ac->classzone_idx, alloc_flags)) {
			int ret;

			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

			if (zone_reclaim_mode == 0 ||
			    !zone_allows_reclaim(ac->preferred_zone, zone))
				continue;

			ret = zone_reclaim(zone, gfp_mask, order);
			switch (ret) {
			case ZONE_RECLAIM_NOSCAN:
				/* did not scan */
				continue;
			case ZONE_RECLAIM_FULL:
				/* scanned but unreclaimable */
				continue;
			default:
				/* did we reclaim enough */
				if (zone_watermark_ok(zone, order, mark,
						ac->classzone_idx, alloc_flags))
					goto try_this_zone;

				continue;
			}
		}

try_this_zone:
		page = buffered_rmqueue(ac->preferred_zone, zone, order,
				gfp_mask, alloc_flags, ac->migratetype);
		if (page) {
			if (prep_new_page(page, order, gfp_mask, alloc_flags))
				goto try_this_zone;

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

			return page;
		}
	}

	/*
	 * The first pass makes sure allocations are spread fairly within the
	 * local node.  However, the local node might have free pages left
	 * after the fairness batches are exhausted, and remote zones haven't
	 * even been considered yet.  Try once more without fairness, and
	 * include remote zones now, before entering the slowpath and waking
	 * kswapd: prefer spilling to a remote zone over swapping locally.
	 */
	if (alloc_flags & ALLOC_FAIR) {
		alloc_flags &= ~ALLOC_FAIR;
		if (nr_fair_skipped) {
			zonelist_rescan = true;
			reset_alloc_batches(ac->preferred_zone);
		}
		if (nr_online_nodes > 1)
			zonelist_rescan = true;
	}

	if (zonelist_rescan)
		goto zonelist_scan;

	return NULL;
}

/*
 * Large machines with many possible nodes should not always dump per-node
 * meminfo in irq context.
 */
static inline bool should_suppress_show_mem(void)
{
	bool ret = false;

#if NODES_SHIFT > 8
	ret = in_interrupt();
#endif
	return ret;
}

static DEFINE_RATELIMIT_STATE(nopage_rs,
		DEFAULT_RATELIMIT_INTERVAL,
		DEFAULT_RATELIMIT_BURST);

void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;

	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
	    debug_guardpage_minorder() > 0)
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
		if (test_thread_flag(TIF_MEMDIE) ||
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
		filter &= ~SHOW_MEM_FILTER_NODES;

	if (fmt) {
		struct va_format vaf;
		va_list args;

		va_start(args, fmt);

		vaf.fmt = fmt;
		vaf.va = &args;

		pr_warn("%pV", &vaf);

		va_end(args);
	}

	pr_warn("%s: page allocation failure: order:%u, mode:0x%x\n",
		current->comm, order, gfp_mask);

	dump_stack();
	if (!should_suppress_show_mem())
		show_mem(filter);
}

static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
	const struct alloc_context *ac, unsigned long *did_some_progress)
{
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
		.gfp_mask = gfp_mask,
		.order = order,
	};
	struct page *page;

	*did_some_progress = 0;

	/*
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
	 */
	if (!mutex_trylock(&oom_lock)) {
		*did_some_progress = 1;
		schedule_timeout_uninterruptible(1);
		return NULL;
	}

	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
	 * we're still under heavy pressure.
	 */
	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
	if (page)
		goto out;

	if (!(gfp_mask & __GFP_NOFAIL)) {
		/* Coredumps can quickly deplete all memory reserves */
		if (current->flags & PF_DUMPCORE)
			goto out;
		/* The OOM killer will not help higher order allocs */
		if (order > PAGE_ALLOC_COSTLY_ORDER)
			goto out;
		/* The OOM killer does not needlessly kill tasks for lowmem */
		if (ac->high_zoneidx < ZONE_NORMAL)
			goto out;
		/* The OOM killer does not compensate for IO-less reclaim */
		if (!(gfp_mask & __GFP_FS)) {
			/*
			 * XXX: Page reclaim didn't yield anything,
			 * and the OOM killer can't be invoked, but
			 * keep looping as per tradition.
			 */
			*did_some_progress = 1;
			goto out;
		}
		if (pm_suspended_storage())
			goto out;
		/* The OOM killer may not free memory on a specific node */
		if (gfp_mask & __GFP_THISNODE)
			goto out;
	}
	/* Exhausted what can be done so it's blamo time */
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
		*did_some_progress = 1;
out:
	mutex_unlock(&oom_lock);
	return page;
}

#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
		int alloc_flags, const struct alloc_context *ac,
		enum migrate_mode mode, int *contended_compaction,
		bool *deferred_compaction)
{
	unsigned long compact_result;
	struct page *page;

	if (!order)
		return NULL;

	current->flags |= PF_MEMALLOC;
	compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
						mode, contended_compaction);
	current->flags &= ~PF_MEMALLOC;

	switch (compact_result) {
	case COMPACT_DEFERRED:
		*deferred_compaction = true;
		/* fall-through */
	case COMPACT_SKIPPED:
		return NULL;
	default:
		break;
	}

	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);

	page = get_page_from_freelist(gfp_mask, order,
					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);

	if (page) {
		struct zone *zone = page_zone(page);

		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}

	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);

	cond_resched();

	return NULL;
}
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
		int alloc_flags, const struct alloc_context *ac,
		enum migrate_mode mode, int *contended_compaction,
		bool *deferred_compaction)
{
	return NULL;
}
#endif /* CONFIG_COMPACTION */

/* Perform direct synchronous page reclaim */
static int
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
{
	struct reclaim_state reclaim_state;
	int progress;

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
	current->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	current->reclaim_state = &reclaim_state;

	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);

	current->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	current->flags &= ~PF_MEMALLOC;

	cond_resched();

	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
		int alloc_flags, const struct alloc_context *ac,
		unsigned long *did_some_progress)
{
	struct page *page = NULL;
	bool drained = false;

	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
	if (unlikely(!(*did_some_progress)))
		return NULL;

retry:
	page = get_page_from_freelist(gfp_mask, order,
					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);

	/*
	 * If an allocation failed after direct reclaim, it could be because
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
	 */
	if (!page && !drained) {
		unreserve_highatomic_pageblock(ac);
		drain_all_pages(NULL);
		drained = true;
		goto retry;
	}

	return page;
}

/*
 * This is called in the allocator slow-path if the allocation request is of
 * sufficient urgency to ignore watermarks and take other desperate measures
 */
static inline struct page *
__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
				const struct alloc_context *ac)
{
	struct page *page;

	do {
		page = get_page_from_freelist(gfp_mask, order,
						ALLOC_NO_WATERMARKS, ac);

		if (!page && gfp_mask & __GFP_NOFAIL)
			wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
									HZ/50);
	} while (!page && (gfp_mask & __GFP_NOFAIL));

	return page;
}

static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
						ac->high_zoneidx, ac->nodemask)
		wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
}

static inline int
gfp_to_alloc_flags(gfp_t gfp_mask)
{
	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;

	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);

	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
	 */
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);

	if (gfp_mask & __GFP_ATOMIC) {
		/*
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
		 */
		if (!(gfp_mask & __GFP_NOMEMALLOC))
			alloc_flags |= ALLOC_HARDER;
		/*
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
		 * comment for __cpuset_node_allowed().
		 */
		alloc_flags &= ~ALLOC_CPUSET;
	} else if (unlikely(rt_task(current)) && !in_interrupt())
		alloc_flags |= ALLOC_HARDER;

	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
		if (gfp_mask & __GFP_MEMALLOC)
			alloc_flags |= ALLOC_NO_WATERMARKS;
		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
			alloc_flags |= ALLOC_NO_WATERMARKS;
		else if (!in_interrupt() &&
				((current->flags & PF_MEMALLOC) ||
				 unlikely(test_thread_flag(TIF_MEMDIE))))
			alloc_flags |= ALLOC_NO_WATERMARKS;
	}
#ifdef CONFIG_CMA
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
	return alloc_flags;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
}

static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
{
	return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
}

static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
						struct alloc_context *ac)
{
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
	struct page *page = NULL;
	int alloc_flags;
	unsigned long pages_reclaimed = 0;
	unsigned long did_some_progress;
	enum migrate_mode migration_mode = MIGRATE_ASYNC;
	bool deferred_compaction = false;
	int contended_compaction = COMPACT_CONTENDED_NONE;

	/*
	 * In the slowpath, we sanity check order to avoid ever trying to
	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
	 * be using allocators in order of preference for an area that is
	 * too large.
	 */
	if (order >= MAX_ORDER) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
		return NULL;
	}

	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

	/*
	 * If this allocation cannot block and it is for a specific node, then
	 * fail early.  There's no need to wakeup kswapd or retry for a
	 * speculative node-specific allocation.
	 */
	if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
		goto nopage;

retry:
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		wake_all_kswapds(order, ac);

	/*
	 * OK, we're below the kswapd watermark and have kicked background
	 * reclaim. Now things get more complex, so set up alloc_flags according
	 * to how we want to proceed.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

	/*
	 * Find the true preferred zone if the allocation is unconstrained by
	 * cpusets.
	 */
	if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
		struct zoneref *preferred_zoneref;
		preferred_zoneref = first_zones_zonelist(ac->zonelist,
				ac->high_zoneidx, NULL, &ac->preferred_zone);
		ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
	}

	/* This is the last chance, in general, before the goto nopage. */
	page = get_page_from_freelist(gfp_mask, order,
				alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
	if (page)
		goto got_pg;

	/* Allocate without watermarks if the context allows */
	if (alloc_flags & ALLOC_NO_WATERMARKS) {
		/*
		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
		 * the allocation is high priority and these type of
		 * allocations are system rather than user orientated
		 */
		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);

		page = __alloc_pages_high_priority(gfp_mask, order, ac);

		if (page) {
			goto got_pg;
		}
	}

	/* Caller is not willing to reclaim, we can't balance anything */
	if (!can_direct_reclaim) {
		/*
		 * All existing users of the deprecated __GFP_NOFAIL are
		 * blockable, so warn of any new users that actually allow this
		 * type of allocation to fail.
		 */
		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
		goto nopage;
	}

	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
		goto nopage;

	/* Avoid allocations with no watermarks from looping endlessly */
	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
		goto nopage;

	/*
	 * Try direct compaction. The first pass is asynchronous. Subsequent
	 * attempts after direct reclaim are synchronous
	 */
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
					migration_mode,
					&contended_compaction,
					&deferred_compaction);
	if (page)
		goto got_pg;

	/* Checks for THP-specific high-order allocations */
	if (is_thp_gfp_mask(gfp_mask)) {
		/*
		 * If compaction is deferred for high-order allocations, it is
		 * because sync compaction recently failed. If this is the case
		 * and the caller requested a THP allocation, we do not want
		 * to heavily disrupt the system, so we fail the allocation
		 * instead of entering direct reclaim.
		 */
		if (deferred_compaction)
			goto nopage;

		/*
		 * In all zones where compaction was attempted (and not
		 * deferred or skipped), lock contention has been detected.
		 * For THP allocation we do not want to disrupt the others
		 * so we fallback to base pages instead.
		 */
		if (contended_compaction == COMPACT_CONTENDED_LOCK)
			goto nopage;

		/*
		 * If compaction was aborted due to need_resched(), we do not
		 * want to further increase allocation latency, unless it is
		 * khugepaged trying to collapse.
		 */
		if (contended_compaction == COMPACT_CONTENDED_SCHED
			&& !(current->flags & PF_KTHREAD))
			goto nopage;
	}

	/*
	 * It can become very expensive to allocate transparent hugepages at
	 * fault, so use asynchronous memory compaction for THP unless it is
	 * khugepaged trying to collapse.
	 */
	if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
		migration_mode = MIGRATE_SYNC_LIGHT;

	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
		goto noretry;

	/* Keep reclaiming pages as long as there is reasonable progress */
	pages_reclaimed += did_some_progress;
	if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
	    ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
		/* Wait for some write requests to complete then retry */
		wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
		goto retry;
	}

	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

	/* Retry as long as the OOM killer is making progress */
	if (did_some_progress)
		goto retry;

noretry:
	/*
	 * High-order allocations do not necessarily loop after
	 * direct reclaim and reclaim/compaction depends on compaction
	 * being called after reclaim so call directly if necessary
	 */
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
					    ac, migration_mode,
					    &contended_compaction,
					    &deferred_compaction);
	if (page)
		goto got_pg;
nopage:
	warn_alloc_failed(gfp_mask, order, NULL);
got_pg:
	return page;
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
			struct zonelist *zonelist, nodemask_t *nodemask)
{
	struct zoneref *preferred_zoneref;
	struct page *page = NULL;
	unsigned int cpuset_mems_cookie;
	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
	struct alloc_context ac = {
		.high_zoneidx = gfp_zone(gfp_mask),
		.nodemask = nodemask,
		.migratetype = gfpflags_to_migratetype(gfp_mask),
	};

	gfp_mask &= gfp_allowed_mask;

	lockdep_trace_alloc(gfp_mask);

	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);

	if (should_fail_alloc_page(gfp_mask, order))
		return NULL;

	/*
	 * Check the zones suitable for the gfp_mask contain at least one
	 * valid zone. It's possible to have an empty zonelist as a result
	 * of __GFP_THISNODE and a memoryless node
	 */
	if (unlikely(!zonelist->_zonerefs->zone))
		return NULL;

	if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;

retry_cpuset:
	cpuset_mems_cookie = read_mems_allowed_begin();

	/* We set it here, as __alloc_pages_slowpath might have changed it */
	ac.zonelist = zonelist;

	/* Dirty zone balancing only done in the fast path */
	ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);

	/* The preferred zone is used for statistics later */
	preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
				ac.nodemask ? : &cpuset_current_mems_allowed,
				&ac.preferred_zone);
	if (!ac.preferred_zone)
		goto out;
	ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);

	/* First allocation attempt */
	alloc_mask = gfp_mask|__GFP_HARDWALL;
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
	if (unlikely(!page)) {
		/*
		 * Runtime PM, block IO and its error handling path
		 * can deadlock because I/O on the device might not
		 * complete.
		 */
		alloc_mask = memalloc_noio_flags(gfp_mask);
		ac.spread_dirty_pages = false;

		page = __alloc_pages_slowpath(alloc_mask, order, &ac);
	}

	if (kmemcheck_enabled && page)
		kmemcheck_pagealloc_alloc(page, order, gfp_mask);

	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

out:
	/*
	 * When updating a task's mems_allowed, it is possible to race with
	 * parallel threads in such a way that an allocation can fail while
	 * the mask is being updated. If a page allocation is about to fail,
	 * check if the cpuset changed during allocation and if so, retry.
	 */
	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
		goto retry_cpuset;

	return page;
}
EXPORT_SYMBOL(__alloc_pages_nodemask);

/*
 * Common helper functions.
 */
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
{
	struct page *page;

	/*
	 * __get_free_pages() returns a 32-bit address, which cannot represent
	 * a highmem page
	 */
	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);

	page = alloc_pages(gfp_mask, order);
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

unsigned long get_zeroed_page(gfp_t gfp_mask)
{
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
}
EXPORT_SYMBOL(get_zeroed_page);

void __free_pages(struct page *page, unsigned int order)
{
	if (put_page_testzero(page)) {
		if (order == 0)
			free_hot_cold_page(page, false);
		else
			__free_pages_ok(page, order);
	}
}

EXPORT_SYMBOL(__free_pages);

void free_pages(unsigned long addr, unsigned int order)
{
	if (addr != 0) {
		VM_BUG_ON(!virt_addr_valid((void *)addr));
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
static struct page *__page_frag_refill(struct page_frag_cache *nc,
				       gfp_t gfp_mask)
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

void *__alloc_page_frag(struct page_frag_cache *nc,
			unsigned int fragsz, gfp_t gfp_mask)
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
		page = __page_frag_refill(nc, gfp_mask);
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
		atomic_add(size - 1, &page->_count);

		/* reset page count bias and offset to start of new frag */
		nc->pfmemalloc = page_is_pfmemalloc(page);
		nc->pagecnt_bias = size;
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

		if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
		atomic_set(&page->_count, size);

		/* reset page count bias and offset to start of new frag */
		nc->pagecnt_bias = size;
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
EXPORT_SYMBOL(__alloc_page_frag);

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
void __free_page_frag(void *addr)
{
	struct page *page = virt_to_head_page(addr);

	if (unlikely(put_page_testzero(page)))
		__free_pages_ok(page, compound_order(page));
}
EXPORT_SYMBOL(__free_page_frag);

/*
 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
 * of the current memory cgroup.
 *
 * It should be used when the caller would like to use kmalloc, but since the
 * allocation is large, it has to fall back to the page allocator.
 */
struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
{
	struct page *page;

	page = alloc_pages(gfp_mask, order);
	if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
		__free_pages(page, order);
		page = NULL;
	}
	return page;
}

struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
{
	struct page *page;

	page = alloc_pages_node(nid, gfp_mask, order);
	if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
		__free_pages(page, order);
		page = NULL;
	}
	return page;
}

/*
 * __free_kmem_pages and free_kmem_pages will free pages allocated with
 * alloc_kmem_pages.
 */
void __free_kmem_pages(struct page *page, unsigned int order)
{
	memcg_kmem_uncharge(page, order);
	__free_pages(page, order);
}

void free_kmem_pages(unsigned long addr, unsigned int order)
{
	if (addr != 0) {
		VM_BUG_ON(!virt_addr_valid((void *)addr));
		__free_kmem_pages(virt_to_page((void *)addr), order);
	}
}

static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

	addr = __get_free_pages(gfp_mask, order);
	return make_alloc_exact(addr, order, size);
}
EXPORT_SYMBOL(alloc_pages_exact);

/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
 * @nid: the preferred node ID where memory should be allocated
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
 */
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	struct page *p = alloc_pages_node(nid, gfp_mask, order);
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
 * nr_free_zone_pages() counts the number of counts pages which are beyond the
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
 *     managed_pages - high_pages
 */
static unsigned long nr_free_zone_pages(int offset)
{
	struct zoneref *z;
	struct zone *zone;

	/* Just pick one node, since fallback list is circular */
	unsigned long sum = 0;

	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);

	for_each_zone_zonelist(zone, z, zonelist, offset) {
		unsigned long size = zone->managed_pages;
		unsigned long high = high_wmark_pages(zone);
		if (size > high)
			sum += size - high;
	}

	return sum;
}

/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
 */
unsigned long nr_free_buffer_pages(void)
{
	return nr_free_zone_pages(gfp_zone(GFP_USER));
}
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);

/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
 */
unsigned long nr_free_pagecache_pages(void)
{
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
}

static inline void show_node(struct zone *zone)
{
	if (IS_ENABLED(CONFIG_NUMA))
		printk("Node %d ", zone_to_nid(zone));
}

void si_meminfo(struct sysinfo *val)
{
	val->totalram = totalram_pages;
	val->sharedram = global_page_state(NR_SHMEM);
	val->freeram = global_page_state(NR_FREE_PAGES);
	val->bufferram = nr_blockdev_pages();
	val->totalhigh = totalhigh_pages;
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
	pg_data_t *pgdat = NODE_DATA(nid);

	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
		managed_pages += pgdat->node_zones[zone_type].managed_pages;
	val->totalram = managed_pages;
	val->sharedram = node_page_state(nid, NR_SHMEM);
	val->freeram = node_page_state(nid, NR_FREE_PAGES);
#ifdef CONFIG_HIGHMEM
	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
			NR_FREE_PAGES);
#else
	val->totalhigh = 0;
	val->freehigh = 0;
#endif
	val->mem_unit = PAGE_SIZE;
}
#endif

/*
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
 */
bool skip_free_areas_node(unsigned int flags, int nid)
{
	bool ret = false;
	unsigned int cpuset_mems_cookie;

	if (!(flags & SHOW_MEM_FILTER_NODES))
		goto out;

	do {
		cpuset_mems_cookie = read_mems_allowed_begin();
		ret = !node_isset(nid, cpuset_current_mems_allowed);
	} while (read_mems_allowed_retry(cpuset_mems_cookie));
out:
	return ret;
}

#define K(x) ((x) << (PAGE_SHIFT-10))

static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
#ifdef CONFIG_MEMORY_ISOLATION
		[MIGRATE_ISOLATE]	= 'I',
#endif
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
	printk("(%s) ", tmp);
}

/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
 */
void show_free_areas(unsigned int filter)
{
	unsigned long free_pcp = 0;
	int cpu;
	struct zone *zone;

	for_each_populated_zone(zone) {
		if (skip_free_areas_node(filter, zone_to_nid(zone)))
			continue;

		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
	}

	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
		" free:%lu free_pcp:%lu free_cma:%lu\n",
		global_page_state(NR_ACTIVE_ANON),
		global_page_state(NR_INACTIVE_ANON),
		global_page_state(NR_ISOLATED_ANON),
		global_page_state(NR_ACTIVE_FILE),
		global_page_state(NR_INACTIVE_FILE),
		global_page_state(NR_ISOLATED_FILE),
		global_page_state(NR_UNEVICTABLE),
		global_page_state(NR_FILE_DIRTY),
		global_page_state(NR_WRITEBACK),
		global_page_state(NR_UNSTABLE_NFS),
		global_page_state(NR_SLAB_RECLAIMABLE),
		global_page_state(NR_SLAB_UNRECLAIMABLE),
		global_page_state(NR_FILE_MAPPED),
		global_page_state(NR_SHMEM),
		global_page_state(NR_PAGETABLE),
		global_page_state(NR_BOUNCE),
		global_page_state(NR_FREE_PAGES),
		free_pcp,
		global_page_state(NR_FREE_CMA_PAGES));

	for_each_populated_zone(zone) {
		int i;

		if (skip_free_areas_node(filter, zone_to_nid(zone)))
			continue;

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

		show_node(zone);
		printk("%s"
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
			" present:%lukB"
			" managed:%lukB"
			" mlocked:%lukB"
			" dirty:%lukB"
			" writeback:%lukB"
			" mapped:%lukB"
			" shmem:%lukB"
			" slab_reclaimable:%lukB"
			" slab_unreclaimable:%lukB"
			" kernel_stack:%lukB"
			" pagetables:%lukB"
			" unstable:%lukB"
			" bounce:%lukB"
			" free_pcp:%lukB"
			" local_pcp:%ukB"
			" free_cma:%lukB"
			" writeback_tmp:%lukB"
			" pages_scanned:%lu"
			" all_unreclaimable? %s"
			"\n",
			zone->name,
			K(zone_page_state(zone, NR_FREE_PAGES)),
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
			K(zone_page_state(zone, NR_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_UNEVICTABLE)),
			K(zone_page_state(zone, NR_ISOLATED_ANON)),
			K(zone_page_state(zone, NR_ISOLATED_FILE)),
			K(zone->present_pages),
			K(zone->managed_pages),
			K(zone_page_state(zone, NR_MLOCK)),
			K(zone_page_state(zone, NR_FILE_DIRTY)),
			K(zone_page_state(zone, NR_WRITEBACK)),
			K(zone_page_state(zone, NR_FILE_MAPPED)),
			K(zone_page_state(zone, NR_SHMEM)),
			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
			zone_page_state(zone, NR_KERNEL_STACK) *
				THREAD_SIZE / 1024,
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
			K(zone_page_state(zone, NR_BOUNCE)),
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
			K(zone_page_state(zone, NR_PAGES_SCANNED)),
			(!zone_reclaimable(zone) ? "yes" : "no")
			);
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
			printk(" %ld", zone->lowmem_reserve[i]);
		printk("\n");
	}

	for_each_populated_zone(zone) {
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
		unsigned char types[MAX_ORDER];

		if (skip_free_areas_node(filter, zone_to_nid(zone)))
			continue;
		show_node(zone);
		printk("%s: ", zone->name);

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
			total += nr[order] << order;

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
				if (!list_empty(&area->free_list[type]))
					types[order] |= 1 << type;
			}
		}
		spin_unlock_irqrestore(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			printk("%lu*%lukB ", nr[order], K(1UL) << order);
			if (nr[order])
				show_migration_types(types[order]);
		}
		printk("= %lukB\n", K(total));
	}

	hugetlb_show_meminfo();

	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));

	show_swap_cache_info();
}

static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

/*
 * Builds allocation fallback zone lists.
 *
 * Add all populated zones of a node to the zonelist.
 */
static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
				int nr_zones)
{
	struct zone *zone;
	enum zone_type zone_type = MAX_NR_ZONES;

	do {
		zone_type--;
		zone = pgdat->node_zones + zone_type;
		if (populated_zone(zone)) {
			zoneref_set_zone(zone,
				&zonelist->_zonerefs[nr_zones++]);
			check_highest_zone(zone_type);
		}
	} while (zone_type);

	return nr_zones;
}


/*
 *  zonelist_order:
 *  0 = automatic detection of better ordering.
 *  1 = order by ([node] distance, -zonetype)
 *  2 = order by (-zonetype, [node] distance)
 *
 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
 *  the same zonelist. So only NUMA can configure this param.
 */
#define ZONELIST_ORDER_DEFAULT  0
#define ZONELIST_ORDER_NODE     1
#define ZONELIST_ORDER_ZONE     2

/* zonelist order in the kernel.
 * set_zonelist_order() will set this to NODE or ZONE.
 */
static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};


#ifdef CONFIG_NUMA
/* The value user specified ....changed by config */
static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
/* string for sysctl */
#define NUMA_ZONELIST_ORDER_LEN	16
char numa_zonelist_order[16] = "default";

/*
 * interface for configure zonelist ordering.
 * command line option "numa_zonelist_order"
 *	= "[dD]efault	- default, automatic configuration.
 *	= "[nN]ode 	- order by node locality, then by zone within node
 *	= "[zZ]one      - order by zone, then by locality within zone
 */

static int __parse_numa_zonelist_order(char *s)
{
	if (*s == 'd' || *s == 'D') {
		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
	} else if (*s == 'n' || *s == 'N') {
		user_zonelist_order = ZONELIST_ORDER_NODE;
	} else if (*s == 'z' || *s == 'Z') {
		user_zonelist_order = ZONELIST_ORDER_ZONE;
	} else {
		printk(KERN_WARNING
			"Ignoring invalid numa_zonelist_order value:  "
			"%s\n", s);
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
	int ret;

	if (!s)
		return 0;

	ret = __parse_numa_zonelist_order(s);
	if (ret == 0)
		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);

	return ret;
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

/*
 * sysctl handler for numa_zonelist_order
 */
int numa_zonelist_order_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *length,
		loff_t *ppos)
{
	char saved_string[NUMA_ZONELIST_ORDER_LEN];
	int ret;
	static DEFINE_MUTEX(zl_order_mutex);

	mutex_lock(&zl_order_mutex);
	if (write) {
		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
			ret = -EINVAL;
			goto out;
		}
		strcpy(saved_string, (char *)table->data);
	}
	ret = proc_dostring(table, write, buffer, length, ppos);
	if (ret)
		goto out;
	if (write) {
		int oldval = user_zonelist_order;

		ret = __parse_numa_zonelist_order((char *)table->data);
		if (ret) {
			/*
			 * bogus value.  restore saved string
			 */
			strncpy((char *)table->data, saved_string,
				NUMA_ZONELIST_ORDER_LEN);
			user_zonelist_order = oldval;
		} else if (oldval != user_zonelist_order) {
			mutex_lock(&zonelists_mutex);
			build_all_zonelists(NULL, NULL);
			mutex_unlock(&zonelists_mutex);
		}
	}
out:
	mutex_unlock(&zl_order_mutex);
	return ret;
}


#define MAX_NODE_LOAD (nr_online_nodes)
static int node_load[MAX_NUMNODES];

/**
 * find_next_best_node - find the next node that should appear in a given node's fallback list
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
 * It returns -1 if no node is found.
 */
static int find_next_best_node(int node, nodemask_t *used_node_mask)
{
	int n, val;
	int min_val = INT_MAX;
	int best_node = NUMA_NO_NODE;
	const struct cpumask *tmp = cpumask_of_node(0);

	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}

	for_each_node_state(n, N_MEMORY) {

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

		/* Give preference to headless and unused nodes */
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}


/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
{
	int j;
	struct zonelist *zonelist;

	zonelist = &pgdat->node_zonelists[0];
	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
		;
	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
	zonelist->_zonerefs[j].zone = NULL;
	zonelist->_zonerefs[j].zone_idx = 0;
}

/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
	int j;
	struct zonelist *zonelist;

	zonelist = &pgdat->node_zonelists[1];
	j = build_zonelists_node(pgdat, zonelist, 0);
	zonelist->_zonerefs[j].zone = NULL;
	zonelist->_zonerefs[j].zone_idx = 0;
}

/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */
static int node_order[MAX_NUMNODES];

static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
{
	int pos, j, node;
	int zone_type;		/* needs to be signed */
	struct zone *z;
	struct zonelist *zonelist;

	zonelist = &pgdat->node_zonelists[0];
	pos = 0;
	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
		for (j = 0; j < nr_nodes; j++) {
			node = node_order[j];
			z = &NODE_DATA(node)->node_zones[zone_type];
			if (populated_zone(z)) {
				zoneref_set_zone(z,
					&zonelist->_zonerefs[pos++]);
				check_highest_zone(zone_type);
			}
		}
	}
	zonelist->_zonerefs[pos].zone = NULL;
	zonelist->_zonerefs[pos].zone_idx = 0;
}

#if defined(CONFIG_64BIT)
/*
 * Devices that require DMA32/DMA are relatively rare and do not justify a
 * penalty to every machine in case the specialised case applies. Default
 * to Node-ordering on 64-bit NUMA machines
 */
static int default_zonelist_order(void)
{
	return ZONELIST_ORDER_NODE;
}
#else
/*
 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
 * by the kernel. If processes running on node 0 deplete the low memory zone
 * then reclaim will occur more frequency increasing stalls and potentially
 * be easier to OOM if a large percentage of the zone is under writeback or
 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
 * Hence, default to zone ordering on 32-bit.
 */
static int default_zonelist_order(void)
{
	return ZONELIST_ORDER_ZONE;
}
#endif /* CONFIG_64BIT */

static void set_zonelist_order(void)
{
	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
		current_zonelist_order = default_zonelist_order();
	else
		current_zonelist_order = user_zonelist_order;
}

static void build_zonelists(pg_data_t *pgdat)
{
	int j, node, load;
	enum zone_type i;
	nodemask_t used_mask;
	int local_node, prev_node;
	struct zonelist *zonelist;
	unsigned int order = current_zonelist_order;

	/* initialize zonelists */
	for (i = 0; i < MAX_ZONELISTS; i++) {
		zonelist = pgdat->node_zonelists + i;
		zonelist->_zonerefs[0].zone = NULL;
		zonelist->_zonerefs[0].zone_idx = 0;
	}

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
	load = nr_online_nodes;
	prev_node = local_node;
	nodes_clear(used_mask);

	memset(node_order, 0, sizeof(node_order));
	j = 0;

	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
			node_load[node] = load;

		prev_node = node;
		load--;
		if (order == ZONELIST_ORDER_NODE)
			build_zonelists_in_node_order(pgdat, node);
		else
			node_order[j++] = node;	/* remember order */
	}

	if (order == ZONELIST_ORDER_ZONE) {
		/* calculate node order -- i.e., DMA last! */
		build_zonelists_in_zone_order(pgdat, j);
	}

	build_thisnode_zonelists(pgdat);
}

#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
	struct zone *zone;

	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
				   gfp_zone(GFP_KERNEL),
				   NULL,
				   &zone);
	return zone->node;
}
#endif

#else	/* CONFIG_NUMA */

static void set_zonelist_order(void)
{
	current_zonelist_order = ZONELIST_ORDER_ZONE;
}

static void build_zonelists(pg_data_t *pgdat)
{
	int node, local_node;
	enum zone_type j;
	struct zonelist *zonelist;

	local_node = pgdat->node_id;

	zonelist = &pgdat->node_zonelists[0];
	j = build_zonelists_node(pgdat, zonelist, 0);

	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
	}
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
	}

	zonelist->_zonerefs[j].zone = NULL;
	zonelist->_zonerefs[j].zone_idx = 0;
}

#endif	/* CONFIG_NUMA */

/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
static void setup_zone_pageset(struct zone *zone);

/*
 * Global mutex to protect against size modification of zonelists
 * as well as to serialize pageset setup for the new populated zone.
 */
DEFINE_MUTEX(zonelists_mutex);

/* return values int ....just for stop_machine() */
static int __build_all_zonelists(void *data)
{
	int nid;
	int cpu;
	pg_data_t *self = data;

#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif

	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
	}

	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);

		build_zonelists(pgdat);
	}

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu) {
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
		if (cpu_online(cpu))
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
#endif
	}

	return 0;
}

static noinline void __init
build_all_zonelists_init(void)
{
	__build_all_zonelists(NULL);
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

/*
 * Called with zonelists_mutex held always
 * unless system_state == SYSTEM_BOOTING.
 *
 * __ref due to (1) call of __meminit annotated setup_zone_pageset
 * [we're only called with non-NULL zone through __meminit paths] and
 * (2) call of __init annotated helper build_all_zonelists_init
 * [protected by SYSTEM_BOOTING].
 */
void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
{
	set_zonelist_order();

	if (system_state == SYSTEM_BOOTING) {
		build_all_zonelists_init();
	} else {
#ifdef CONFIG_MEMORY_HOTPLUG
		if (zone)
			setup_zone_pageset(zone);
#endif
		/* we have to stop all cpus to guarantee there is no user
		   of zonelist */
		stop_machine(__build_all_zonelists, pgdat, NULL);
		/* cpuset refresh routine should be here */
	}
	vm_total_pages = nr_free_pagecache_pages();
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

	pr_info("Built %i zonelists in %s order, mobility grouping %s.  "
		"Total pages: %ld\n",
			nr_online_nodes,
			zonelist_order_name[current_zonelist_order],
			page_group_by_mobility_disabled ? "off" : "on",
			vm_total_pages);
#ifdef CONFIG_NUMA
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
#endif
}

/*
 * Helper functions to size the waitqueue hash table.
 * Essentially these want to choose hash table sizes sufficiently
 * large so that collisions trying to wait on pages are rare.
 * But in fact, the number of active page waitqueues on typical
 * systems is ridiculously low, less than 200. So this is even
 * conservative, even though it seems large.
 *
 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
 * waitqueues, i.e. the size of the waitq table given the number of pages.
 */
#define PAGES_PER_WAITQUEUE	256

#ifndef CONFIG_MEMORY_HOTPLUG
static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
{
	unsigned long size = 1;

	pages /= PAGES_PER_WAITQUEUE;

	while (size < pages)
		size <<= 1;

	/*
	 * Once we have dozens or even hundreds of threads sleeping
	 * on IO we've got bigger problems than wait queue collision.
	 * Limit the size of the wait table to a reasonable size.
	 */
	size = min(size, 4096UL);

	return max(size, 4UL);
}
#else
/*
 * A zone's size might be changed by hot-add, so it is not possible to determine
 * a suitable size for its wait_table.  So we use the maximum size now.
 *
 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
 *
 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
 *
 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
 * or more by the traditional way. (See above).  It equals:
 *
 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
 *    powerpc (64K page size)             : =  (32G +16M)byte.
 */
static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
{
	return 4096UL;
}
#endif

/*
 * This is an integer logarithm so that shifts can be used later
 * to extract the more random high bits from the multiplicative
 * hash function before the remainder is taken.
 */
static inline unsigned long wait_table_bits(unsigned long size)
{
	return ffz(~size);
}

/*
 * Initially all pages are reserved - free ones are freed
 * up by free_all_bootmem() once the early boot process is
 * done. Non-atomic initialization, single-pass.
 */
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
		unsigned long start_pfn, enum memmap_context context)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	unsigned long end_pfn = start_pfn + size;
	unsigned long pfn;
	struct zone *z;
	unsigned long nr_initialised = 0;

	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

	z = &pgdat->node_zones[zone];
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
		/*
		 * There can be holes in boot-time mem_map[]s
		 * handed to this function.  They do not
		 * exist on hotplugged memory.
		 */
		if (context == MEMMAP_EARLY) {
			if (!early_pfn_valid(pfn))
				continue;
			if (!early_pfn_in_nid(pfn, nid))
				continue;
			if (!update_defer_init(pgdat, pfn, end_pfn,
						&nr_initialised))
				break;
		}

		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
		 * kernel allocations are made.
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			struct page *page = pfn_to_page(pfn);

			__init_single_page(page, pfn, zone, nid);
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
		} else {
			__init_single_pfn(pfn, zone, nid);
		}
	}
}

static void __meminit zone_init_free_lists(struct zone *zone)
{
	unsigned int order, t;
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
		zone->free_area[order].nr_free = 0;
	}
}

#ifndef __HAVE_ARCH_MEMMAP_INIT
#define memmap_init(size, nid, zone, start_pfn) \
	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
#endif

static int zone_batchsize(struct zone *zone)
{
#ifdef CONFIG_MMU
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
	 * size of the zone.  But no more than 1/2 of a meg.
	 *
	 * OK, so we don't know how big the cache is.  So guess.
	 */
	batch = zone->managed_pages / 1024;
	if (batch * PAGE_SIZE > 512 * 1024)
		batch = (512 * 1024) / PAGE_SIZE;
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
	 *
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
	 */
	batch = rounddown_pow_of_two(batch + batch/2) - 1;

	return batch;

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
}

/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

/* a companion to pageset_set_high() */
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
}

static void pageset_init(struct per_cpu_pageset *p)
{
	struct per_cpu_pages *pcp;
	int migratetype;

	memset(p, 0, sizeof(*p));

	pcp = &p->pcp;
	pcp->count = 0;
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
}

static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

/*
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
 * to the value high for the pageset p.
 */
static void pageset_set_high(struct per_cpu_pageset *p,
				unsigned long high)
{
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;

	pageset_update(&p->pcp, high, batch);
}

static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
{
	if (percpu_pagelist_fraction)
		pageset_set_high(pcp,
			(zone->managed_pages /
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

static void __meminit setup_zone_pageset(struct zone *zone)
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
}

/*
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
 */
void __init setup_per_cpu_pageset(void)
{
	struct zone *zone;

	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
}

static noinline __init_refok
int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
{
	int i;
	size_t alloc_size;

	/*
	 * The per-page waitqueue mechanism uses hashed waitqueues
	 * per zone.
	 */
	zone->wait_table_hash_nr_entries =
		 wait_table_hash_nr_entries(zone_size_pages);
	zone->wait_table_bits =
		wait_table_bits(zone->wait_table_hash_nr_entries);
	alloc_size = zone->wait_table_hash_nr_entries
					* sizeof(wait_queue_head_t);

	if (!slab_is_available()) {
		zone->wait_table = (wait_queue_head_t *)
			memblock_virt_alloc_node_nopanic(
				alloc_size, zone->zone_pgdat->node_id);
	} else {
		/*
		 * This case means that a zone whose size was 0 gets new memory
		 * via memory hot-add.
		 * But it may be the case that a new node was hot-added.  In
		 * this case vmalloc() will not be able to use this new node's
		 * memory - this wait_table must be initialized to use this new
		 * node itself as well.
		 * To use this new node's memory, further consideration will be
		 * necessary.
		 */
		zone->wait_table = vmalloc(alloc_size);
	}
	if (!zone->wait_table)
		return -ENOMEM;

	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
		init_waitqueue_head(zone->wait_table + i);

	return 0;
}

static __meminit void zone_pcp_init(struct zone *zone)
{
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;

	if (populated_zone(zone))
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
}

int __meminit init_currently_empty_zone(struct zone *zone,
					unsigned long zone_start_pfn,
					unsigned long size)
{
	struct pglist_data *pgdat = zone->zone_pgdat;
	int ret;
	ret = zone_wait_table_init(zone, size);
	if (ret)
		return ret;
	pgdat->nr_zones = zone_idx(zone) + 1;

	zone->zone_start_pfn = zone_start_pfn;

	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

	zone_init_free_lists(zone);

	return 0;
}

#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID

/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
{
	unsigned long start_pfn, end_pfn;
	int nid;

	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;

	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != -1) {
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
	}

	return nid;
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
 *
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
 */
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
{
	unsigned long start_pfn, end_pfn;
	int i, this_nid;

	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);

		if (start_pfn < end_pfn)
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
	}
}

/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
 *
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
	unsigned long start_pfn, end_pfn;
	int i, this_nid;

	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
 *
 * It returns the start and end page frame of a node based on information
 * provided by memblock_set_node(). If called for a node
 * with no available memory, a warning is printed and the start and end
 * PFNs will be 0.
 */
void __meminit get_pfn_range_for_nid(unsigned int nid,
			unsigned long *start_pfn, unsigned long *end_pfn)
{
	unsigned long this_start_pfn, this_end_pfn;
	int i;

	*start_pfn = -1UL;
	*end_pfn = 0;

	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
	}

	if (*start_pfn == -1UL)
		*start_pfn = 0;
}

/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
static void __init find_usable_zone_for_movable(void)
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
 * because it is sized independent of architecture. Unlike the other zones,
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
static void __meminit adjust_zone_range_for_zone_movable(int nid,
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
				*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
static unsigned long __meminit zone_spanned_pages_in_node(int nid,
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *ignored)
{
	unsigned long zone_start_pfn, zone_end_pfn;

	/* When hotadd a new node from cpu_up(), the node should be empty */
	if (!node_start_pfn && !node_end_pfn)
		return 0;

	/* Get the start and end of the zone */
	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
				&zone_start_pfn, &zone_end_pfn);

	/* Check that this node has pages within the zone's required range */
	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
		return 0;

	/* Move the zone boundaries inside the node if necessary */
	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
	zone_start_pfn = max(zone_start_pfn, node_start_pfn);

	/* Return the spanned pages */
	return zone_end_pfn - zone_start_pfn;
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
 * then all holes in the requested range will be accounted for.
 */
unsigned long __meminit __absent_pages_in_range(int nid,
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;

	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
	}
	return nr_absent;
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
 * It returns the number of pages frames in memory holes within a range.
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
static unsigned long __meminit zone_absent_pages_in_node(int nid,
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *ignored)
{
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
	unsigned long zone_start_pfn, zone_end_pfn;

	/* When hotadd a new node from cpu_up(), the node should be empty */
	if (!node_start_pfn && !node_end_pfn)
		return 0;

	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);

	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
}

#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zones_size)
{
	return zones_size[zone_type];
}

static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
						unsigned long zone_type,
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}

#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */

static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
{
	unsigned long realtotalpages = 0, totalpages = 0;
	enum zone_type i;

	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
		unsigned long size, real_size;

		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
						  node_start_pfn, node_end_pfn,
						  zholes_size);
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
{
	unsigned long usemapsize;

	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

static void __init setup_usemap(struct pglist_data *pgdat,
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
{
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
	zone->pageblock_flags = NULL;
	if (usemapsize)
		zone->pageblock_flags =
			memblock_virt_alloc_node_nopanic(usemapsize,
							 pgdat->node_id);
}
#else
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
#endif /* CONFIG_SPARSEMEM */

#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE

/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
void __paginginit set_pageblock_order(void)
{
	unsigned int order;

	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

	/*
	 * Assume the largest contiguous order of interest is a huge page.
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
 */
void __paginginit set_pageblock_order(void)
{
}

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
						   unsigned long present_pages)
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
	 * populated regions may not naturally algined on page boundary.
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 *
 * NOTE: pgdat should get zeroed by caller.
 */
static void __paginginit free_area_init_core(struct pglist_data *pgdat)
{
	enum zone_type j;
	int nid = pgdat->node_id;
	unsigned long zone_start_pfn = pgdat->node_start_pfn;
	int ret;

	pgdat_resize_init(pgdat);
#ifdef CONFIG_NUMA_BALANCING
	spin_lock_init(&pgdat->numabalancing_migrate_lock);
	pgdat->numabalancing_migrate_nr_pages = 0;
	pgdat->numabalancing_migrate_next_window = jiffies;
#endif
	init_waitqueue_head(&pgdat->kswapd_wait);
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
	pgdat_page_ext_init(pgdat);

	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
		unsigned long size, realsize, freesize, memmap_pages;

		size = zone->spanned_pages;
		realsize = freesize = zone->present_pages;

		/*
		 * Adjust freesize so that it accounts for how much memory
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
		memmap_pages = calc_memmap_size(size, realsize);
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
				printk(KERN_WARNING
					"  %s zone: %lu pages exceeds freesize %lu\n",
					zone_names[j], memmap_pages, freesize);
		}

		/* Account for reserved pages */
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
					zone_names[0], dma_reserve);
		}

		if (!is_highmem_idx(j))
			nr_kernel_pages += freesize;
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
		nr_all_pages += freesize;

		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
#ifdef CONFIG_NUMA
		zone->node = nid;
		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
						/ 100;
		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
#endif
		zone->name = zone_names[j];
		spin_lock_init(&zone->lock);
		spin_lock_init(&zone->lru_lock);
		zone_seqlock_init(zone);
		zone->zone_pgdat = pgdat;
		zone_pcp_init(zone);

		/* For bootup, initialized properly in watermark setup */
		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);

		lruvec_init(&zone->lruvec);
		if (!size)
			continue;

		set_pageblock_order();
		setup_usemap(pgdat, zone, zone_start_pfn, size);
		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
		BUG_ON(ret);
		memmap_init(size, nid, j, zone_start_pfn);
		zone_start_pfn += size;
	}
}

static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
{
	unsigned long __maybe_unused start = 0;
	unsigned long __maybe_unused offset = 0;

	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

#ifdef CONFIG_FLAT_NODE_MEM_MAP
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
		unsigned long size, end;
		struct page *map;

		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
		end = pgdat_end_pfn(pgdat);
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
		map = alloc_remap(pgdat->node_id, size);
		if (!map)
			map = memblock_virt_alloc_node_nopanic(size,
							       pgdat->node_id);
		pgdat->node_mem_map = map + offset;
	}
#ifndef CONFIG_NEED_MULTIPLE_NODES
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
	if (pgdat == NODE_DATA(0)) {
		mem_map = NODE_DATA(0)->node_mem_map;
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
			mem_map -= offset;
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
	}
#endif
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
}

void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
		unsigned long node_start_pfn, unsigned long *zholes_size)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;

	/* pg_data_t should be reset to zero when it's allocated */
	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);

	reset_deferred_meminit(pgdat);
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);

	alloc_node_mem_map(pgdat);
#ifdef CONFIG_FLAT_NODE_MEM_MAP
	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
		nid, (unsigned long)pgdat,
		(unsigned long)pgdat->node_mem_map);
#endif

	free_area_init_core(pgdat);
}

#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
void __init setup_nr_node_ids(void)
{
	unsigned int highest;

	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
	nr_node_ids = highest + 1;
}
#endif

/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
 * Returns the determined alignment in pfn's.  0 if there is no alignment
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
	unsigned long start, end, mask;
	int last_nid = -1;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

/* Find the lowest pfn for a node */
static unsigned long __init find_min_pfn_for_node(int nid)
{
	unsigned long min_pfn = ULONG_MAX;
	unsigned long start_pfn;
	int i;

	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);

	if (min_pfn == ULONG_MAX) {
		printk(KERN_WARNING
			"Could not find start_pfn for node %d\n", nid);
		return 0;
	}

	return min_pfn;
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
 * It returns the minimum PFN based on information provided via
 * memblock_set_node().
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
 * Populate N_MEMORY for calculating usable_nodes.
 */
static unsigned long __init early_calculate_totalpages(void)
{
	unsigned long totalpages = 0;
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;

		totalpages += pages;
		if (pages)
			node_set_state(nid, N_MEMORY);
	}
	return totalpages;
}

/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
static void __init find_zone_movable_pfns_for_nodes(void)
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
	/* save the state before borrow the nodemask */
	nodemask_t saved_node_state = node_states[N_MEMORY];
	unsigned long totalpages = early_calculate_totalpages();
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
	struct memblock_region *r;

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
				continue;

			nid = r->nid;

			usable_startpfn = PFN_DOWN(r->base);
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}

	/*
	 * If movablecore=nn[KMG] was specified, calculate what size of
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
		required_movablecore = min(totalpages, required_movablecore);
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
		goto out;

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
	for_each_node_state(nid, N_MEMORY) {
		unsigned long start_pfn, end_pfn;

		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
			unsigned long size_pages;

			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
			 * satisfied
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
	 * satisfied
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

out2:
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);

out:
	/* restore the node_state */
	node_states[N_MEMORY] = saved_node_state;
}

/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
{
	enum zone_type zone_type;

	if (N_MEMORY == N_NORMAL_MEMORY)
		return;

	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];
		if (populated_zone(zone)) {
			node_set_state(nid, N_HIGH_MEMORY);
			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
			    zone_type <= ZONE_NORMAL)
				node_set_state(nid, N_NORMAL_MEMORY);
			break;
		}
	}
}

/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
 * @max_zone_pfn: an array of max PFNs for each zone
 *
 * This will call free_area_init_node() for each active node in the system.
 * Using the page ranges provided by memblock_set_node(), the size of each
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
	unsigned long start_pfn, end_pfn;
	int i, nid;

	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
	for (i = 1; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
		arch_zone_lowest_possible_pfn[i] =
			arch_zone_highest_possible_pfn[i-1];
		arch_zone_highest_possible_pfn[i] =
			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
	}
	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
	find_zone_movable_pfns_for_nodes();

	/* Print out the zone ranges */
	pr_info("Zone ranges:\n");
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
		pr_info("  %-8s ", zone_names[i]);
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
			pr_cont("empty\n");
		else
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
					<< PAGE_SHIFT) - 1);
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
	pr_info("Movable zone start for each node\n");
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
	}

	/* Print out the early node map */
	pr_info("Early memory node ranges\n");
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);

	/* Initialise every node */
	mminit_verify_pageflags_layout();
	setup_nr_node_ids();
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
		free_area_init_node(nid, NULL,
				find_min_pfn_for_node(nid), NULL);

		/* Any memory on that node */
		if (pgdat->node_present_pages)
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
	}
}

static int __init cmdline_parse_core(char *p, unsigned long *core)
{
	unsigned long long coremem;
	if (!p)
		return -EINVAL;

	coremem = memparse(p, &p);
	*core = coremem >> PAGE_SHIFT;

	/* Paranoid check that UL is enough for the coremem value */
	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);

	return 0;
}

/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
	return cmdline_parse_core(p, &required_kernelcore);
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
	return cmdline_parse_core(p, &required_movablecore);
}

early_param("kernelcore", cmdline_parse_kernelcore);
early_param("movablecore", cmdline_parse_movablecore);

#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */

void adjust_managed_page_count(struct page *page, long count)
{
	spin_lock(&managed_page_count_lock);
	page_zone(page)->managed_pages += count;
	totalram_pages += count;
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
		totalhigh_pages += count;
#endif
	spin_unlock(&managed_page_count_lock);
}
EXPORT_SYMBOL(adjust_managed_page_count);

unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
{
	void *pos;
	unsigned long pages = 0;

	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
		if ((unsigned int)poison <= 0xFF)
			memset(pos, poison, PAGE_SIZE);
		free_reserved_page(virt_to_page(pos));
	}

	if (pages && s)
		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
			s, pages << (PAGE_SHIFT - 10), start, end);

	return pages;
}
EXPORT_SYMBOL(free_reserved_area);

#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
	totalram_pages++;
	page_zone(page)->managed_pages++;
	totalhigh_pages++;
}
#endif


void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

	pr_info("Memory: %luK/%luK available "
	       "(%luK kernel code, %luK rwdata, %luK rodata, "
	       "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
#ifdef	CONFIG_HIGHMEM
	       ", %luK highmem"
#endif
	       "%s%s)\n",
	       nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
	       codesize >> 10, datasize >> 10, rosize >> 10,
	       (init_data_size + init_code_size) >> 10, bss_size >> 10,
	       (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
	       totalcma_pages << (PAGE_SHIFT-10),
#ifdef	CONFIG_HIGHMEM
	       totalhigh_pages << (PAGE_SHIFT-10),
#endif
	       str ? ", " : "", str ? str : "");
}

/**
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
 *
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

void __init free_area_init(unsigned long *zones_size)
{
	free_area_init_node(0, zones_size,
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}

static int page_alloc_cpu_notify(struct notifier_block *self,
				 unsigned long action, void *hcpu)
{
	int cpu = (unsigned long)hcpu;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
		lru_add_drain_cpu(cpu);
		drain_pages(cpu);

		/*
		 * Spill the event counters of the dead processor
		 * into the current processors event counters.
		 * This artificially elevates the count of the current
		 * processor.
		 */
		vm_events_fold_cpu(cpu);

		/*
		 * Zero the differential counters of the dead processor
		 * so that the vm statistics are consistent.
		 *
		 * This is only okay since the processor is dead and cannot
		 * race with what we are doing.
		 */
		cpu_vm_stats_fold(cpu);
	}
	return NOTIFY_OK;
}

void __init page_alloc_init(void)
{
	hotcpu_notifier(page_alloc_cpu_notify, 0);
	local_irq_lock_init(pa_lock);
}

/*
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
	enum zone_type i, j;

	for_each_online_pgdat(pgdat) {
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
			long max = 0;

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);

			if (max > zone->managed_pages)
				max = zone->managed_pages;
			reserve_pages += max;
			/*
			 * Lowmem reserves are not available to
			 * GFP_HIGHUSER page cache allocations and
			 * kswapd tries to balance zones to their high
			 * watermark.  As a result, neither should be
			 * regarded as dirtyable memory, to prevent a
			 * situation where reclaim has to clean pages
			 * in order to balance the zones.
			 */
			zone->dirty_balance_reserve = max;
		}
	}
	dirty_balance_reserve = reserve_pages;
	totalreserve_pages = reserve_pages;
}

/*
 * setup_per_zone_lowmem_reserve - called whenever
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
	enum zone_type j, idx;

	for_each_online_pgdat(pgdat) {
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
			unsigned long managed_pages = zone->managed_pages;

			zone->lowmem_reserve[j] = 0;

			idx = j;
			while (idx) {
				struct zone *lower_zone;

				idx--;

				if (sysctl_lowmem_reserve_ratio[idx] < 1)
					sysctl_lowmem_reserve_ratio[idx] = 1;

				lower_zone = pgdat->node_zones + idx;
				lower_zone->lowmem_reserve[j] = managed_pages /
					sysctl_lowmem_reserve_ratio[idx];
				managed_pages += lower_zone->managed_pages;
			}
		}
	}

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
}

static void __setup_per_zone_wmarks(void)
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
			lowmem_pages += zone->managed_pages;
	}

	for_each_zone(zone) {
		u64 tmp;

		spin_lock_irqsave(&zone->lock, flags);
		tmp = (u64)pages_min * zone->managed_pages;
		do_div(tmp, lowmem_pages);
		if (is_highmem(zone)) {
			/*
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
			 * deltas control asynch page reclaim, and so should
			 * not be capped for highmem.
			 */
			unsigned long min_pages;

			min_pages = zone->managed_pages / 1024;
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
			zone->watermark[WMARK_MIN] = min_pages;
		} else {
			/*
			 * If it's a lowmem zone, reserve a number of pages
			 * proportionate to the zone's size.
			 */
			zone->watermark[WMARK_MIN] = tmp;
		}

		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);

		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
			high_wmark_pages(zone) - low_wmark_pages(zone) -
			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));

		spin_unlock_irqrestore(&zone->lock, flags);
	}

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
}

/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
	mutex_lock(&zonelists_mutex);
	__setup_per_zone_wmarks();
	mutex_unlock(&zonelists_mutex);
}

/*
 * The inactive anon list should be small enough that the VM never has to
 * do too much work, but large enough that each inactive page has a chance
 * to be referenced again before it is swapped out.
 *
 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
 * INACTIVE_ANON pages on this zone's LRU, maintained by the
 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
 * the anonymous pages are kept on the inactive list.
 *
 * total     target    max
 * memory    ratio     inactive anon
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
 */
static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
{
	unsigned int gb, ratio;

	/* Zone size in gigabytes */
	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
	if (gb)
		ratio = int_sqrt(10 * gb);
	else
		ratio = 1;

	zone->inactive_ratio = ratio;
}

static void __meminit setup_per_zone_inactive_ratio(void)
{
	struct zone *zone;

	for_each_zone(zone)
		calculate_zone_inactive_ratio(zone);
}

/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
int __meminit init_per_zone_wmark_min(void)
{
	unsigned long lowmem_kbytes;
	int new_min_free_kbytes;

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
	setup_per_zone_wmarks();
	refresh_zone_stat_thresholds();
	setup_per_zone_lowmem_reserve();
	setup_per_zone_inactive_ratio();
	return 0;
}
core_initcall(init_per_zone_wmark_min)

/*
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write) {
		user_min_free_kbytes = min_free_kbytes;
		setup_per_zone_wmarks();
	}
	return 0;
}

#ifdef CONFIG_NUMA
int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	struct zone *zone;
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	for_each_zone(zone)
		zone->min_unmapped_pages = (zone->managed_pages *
				sysctl_min_unmapped_ratio) / 100;
	return 0;
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	struct zone *zone;
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	for_each_zone(zone)
		zone->min_slab_pages = (zone->managed_pages *
				sysctl_min_slab_ratio) / 100;
	return 0;
}
#endif

/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
 * minimum watermarks. The lowmem reserve ratio can only make sense
 * if in function of the boot time zone sizes.
 */
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);
	setup_per_zone_lowmem_reserve();
	return 0;
}

/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
 */
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	struct zone *zone;
	int old_percpu_pagelist_fraction;
	int ret;

	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;

	for_each_populated_zone(zone) {
		unsigned int cpu;

		for_each_possible_cpu(cpu)
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
	}
out:
	mutex_unlock(&pcp_batch_high_lock);
	return ret;
}

#ifdef CONFIG_NUMA
int hashdist = HASHDIST_DEFAULT;

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
				     unsigned long low_limit,
				     unsigned long high_limit)
{
	unsigned long long max = high_limit;
	unsigned long log2qty, size;
	void *table = NULL;

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
		numentries = nr_kernel_pages;

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);

		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);

		/* Make sure we've got at least a 0-order allocation.. */
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
			numentries = PAGE_SIZE / bucketsize;
	}
	numentries = roundup_pow_of_two(numentries);

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
	max = min(max, 0x80000000ULL);

	if (numentries < low_limit)
		numentries = low_limit;
	if (numentries > max)
		numentries = max;

	log2qty = ilog2(numentries);

	do {
		size = bucketsize << log2qty;
		if (flags & HASH_EARLY)
			table = memblock_virt_alloc_nopanic(size, 0);
		else if (hashdist)
			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
		else {
			/*
			 * If bucketsize is not a power-of-two, we may free
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
			 */
			if (get_order(size) < MAX_ORDER) {
				table = alloc_pages_exact(size, GFP_ATOMIC);
				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
			}
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
	       tablename,
	       (1UL << log2qty),
	       ilog2(size) - PAGE_SHIFT,
	       size);

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}

/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	return __pfn_to_section(pfn)->pageblock_flags;
#else
	return zone->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	struct zone *zone;
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	zone = page_zone(page);
	bitmap = get_pageblock_bitmap(zone, pfn);
	bitidx = pfn_to_bitidx(zone, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	struct zone *zone;
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);

	zone = page_zone(page);
	bitmap = get_pageblock_bitmap(zone, pfn);
	bitidx = pfn_to_bitidx(zone, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}

/*
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
 * PageLRU check without isolation or lru_lock could race so that
 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
 * expect this function should be exact.
 */
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
			 bool skip_hwpoisoned_pages)
{
	unsigned long pfn, iter, found;
	int mt;

	/*
	 * For avoiding noise data, lru_add_drain_all() should be called
	 * If ZONE_MOVABLE, the zone never contains unmovable pages
	 */
	if (zone_idx(zone) == ZONE_MOVABLE)
		return false;
	mt = get_pageblock_migratetype(page);
	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
		return false;

	pfn = page_to_pfn(page);
	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
		unsigned long check = pfn + iter;

		if (!pfn_valid_within(check))
			continue;

		page = pfn_to_page(check);

		/*
		 * Hugepages are not in LRU lists, but they're movable.
		 * We need not scan over tail pages bacause we don't
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
			continue;
		}

		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
		 * because their page->_count is zero at all time.
		 */
		if (!atomic_read(&page->_count)) {
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}

		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (skip_hwpoisoned_pages && PageHWPoison(page))
			continue;

		if (!PageLRU(page))
			found++;
		/*
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
			return true;
	}
	return false;
}

bool is_pageblock_removable_nolock(struct page *page)
{
	struct zone *zone;
	unsigned long pfn;

	/*
	 * We have to be careful here because we are iterating over memory
	 * sections which are not zone aware so we might end up outside of
	 * the zone but still within the section.
	 * We have to take care about the node as well. If the node is offline
	 * its NODE_DATA will be NULL - see page_zone.
	 */
	if (!node_online(page_to_nid(page)))
		return false;

	zone = page_zone(page);
	pfn = page_to_pfn(page);
	if (!zone_spans_pfn(zone, pfn))
		return false;

	return !has_unmovable_pages(zone, page, 0, true);
}

#ifdef CONFIG_CMA

static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
{
	/* This function is based on compact_zone() from compaction.c. */
	unsigned long nr_reclaimed;
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

	migrate_prep();

	while (pfn < end || !list_empty(&cc->migratepages)) {
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
			pfn = isolate_migratepages_range(cc, pfn, end);
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;

		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
				    NULL, 0, cc->mode, MR_CMA);
	}
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
 * aligned, however it's the caller's responsibility to guarantee that
 * we are the only thread that changes migrate type of pageblocks the
 * pages fall in.
 *
 * The PFN range must belong to a single zone.
 *
 * Returns zero on success or negative error code.  On success all
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
int alloc_contig_range(unsigned long start, unsigned long end,
		       unsigned migratetype)
{
	unsigned long outer_start, outer_end;
	unsigned int order;
	int ret = 0;

	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
		.mode = MIGRATE_SYNC,
		.ignore_skip_hint = true,
	};
	INIT_LIST_HEAD(&cc.migratepages);

	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
				       pfn_max_align_up(end), migratetype,
				       false);
	if (ret)
		return ret;

	ret = __alloc_contig_migrate_range(&cc, start, end);
	if (ret)
		goto done;

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();
	drain_all_pages(cc.zone);

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
			ret = -EBUSY;
			goto done;
		}
		outer_start &= ~0UL << order;
	}

	/* Make sure the range is really isolated. */
	if (test_pages_isolated(outer_start, end, false)) {
		pr_info("%s: [%lx, %lx) PFNs busy\n",
			__func__, outer_start, end);
		ret = -EBUSY;
		goto done;
	}

	/* Grab isolated pages from freelists. */
	outer_end = isolate_freepages_range(&cc, outer_start, end);
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
				pfn_max_align_up(end), migratetype);
	return ret;
}

void free_contig_range(unsigned long pfn, unsigned nr_pages)
{
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
}
#endif

#ifdef CONFIG_MEMORY_HOTPLUG
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
void __meminit zone_pcp_update(struct zone *zone)
{
	unsigned cpu;
	mutex_lock(&pcp_batch_high_lock);
	for_each_possible_cpu(cpu)
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
	mutex_unlock(&pcp_batch_high_lock);
}
#endif

void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
	int cpu;
	struct per_cpu_pageset *pset;

	/* avoid races with drain_pages()  */
	local_lock_irqsave(pa_lock, flags);
	if (zone->pageset != &boot_pageset) {
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_unlock_irqrestore(pa_lock, flags);
}

#ifdef CONFIG_MEMORY_HOTREMOVE
/*
 * All pages in the range must be isolated before calling this.
 */
void
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
	unsigned int order, i;
	unsigned long pfn;
	unsigned long flags;
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
		return;
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
			continue;
		}

		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
#ifdef CONFIG_DEBUG_VM
		printk(KERN_INFO "remove from free list %lx %d %lx\n",
		       pfn, 1 << order, end_pfn);
#endif
		list_del(&page->lru);
		rmv_page_order(page);
		zone->free_area[order].nr_free--;
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif

#ifdef CONFIG_MEMORY_FAILURE
bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
	unsigned int order;

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}
#endif