fapll.c 15.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 */

#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/math64.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/clk/ti.h>

/* FAPLL Control Register PLL_CTRL */
#define FAPLL_MAIN_MULT_N_SHIFT	16
#define FAPLL_MAIN_DIV_P_SHIFT	8
#define FAPLL_MAIN_LOCK		BIT(7)
#define FAPLL_MAIN_PLLEN	BIT(3)
#define FAPLL_MAIN_BP		BIT(2)
#define FAPLL_MAIN_LOC_CTL	BIT(0)

#define FAPLL_MAIN_MAX_MULT_N	0xffff
#define FAPLL_MAIN_MAX_DIV_P	0xff
#define FAPLL_MAIN_CLEAR_MASK	\
	((FAPLL_MAIN_MAX_MULT_N << FAPLL_MAIN_MULT_N_SHIFT) | \
	 (FAPLL_MAIN_DIV_P_SHIFT << FAPLL_MAIN_DIV_P_SHIFT) | \
	 FAPLL_MAIN_LOC_CTL)

/* FAPLL powerdown register PWD */
#define FAPLL_PWD_OFFSET	4

#define MAX_FAPLL_OUTPUTS	7
#define FAPLL_MAX_RETRIES	1000

#define to_fapll(_hw)		container_of(_hw, struct fapll_data, hw)
#define to_synth(_hw)		container_of(_hw, struct fapll_synth, hw)

/* The bypass bit is inverted on the ddr_pll.. */
#define fapll_is_ddr_pll(va)	(((u32)(va) & 0xffff) == 0x0440)

/*
 * The audio_pll_clk1 input is hard wired to the 27MHz bypass clock,
 * and the audio_pll_clk1 synthesizer is hardwared to 32KiHz output.
 */
#define is_ddr_pll_clk1(va)	(((u32)(va) & 0xffff) == 0x044c)
#define is_audio_pll_clk1(va)	(((u32)(va) & 0xffff) == 0x04a8)

/* Synthesizer divider register */
#define SYNTH_LDMDIV1		BIT(8)

/* Synthesizer frequency register */
#define SYNTH_LDFREQ		BIT(31)

#define SYNTH_PHASE_K		8
#define SYNTH_MAX_INT_DIV	0xf
#define SYNTH_MAX_DIV_M		0xff

struct fapll_data {
	struct clk_hw hw;
	void __iomem *base;
	const char *name;
	struct clk *clk_ref;
	struct clk *clk_bypass;
	struct clk_onecell_data outputs;
	bool bypass_bit_inverted;
};

struct fapll_synth {
	struct clk_hw hw;
	struct fapll_data *fd;
	int index;
	void __iomem *freq;
	void __iomem *div;
	const char *name;
	struct clk *clk_pll;
};

static bool ti_fapll_clock_is_bypass(struct fapll_data *fd)
{
	u32 v = readl_relaxed(fd->base);

	if (fd->bypass_bit_inverted)
		return !(v & FAPLL_MAIN_BP);
	else
		return !!(v & FAPLL_MAIN_BP);
}

static void ti_fapll_set_bypass(struct fapll_data *fd)
{
	u32 v = readl_relaxed(fd->base);

	if (fd->bypass_bit_inverted)
		v &= ~FAPLL_MAIN_BP;
	else
		v |= FAPLL_MAIN_BP;
	writel_relaxed(v, fd->base);
}

static void ti_fapll_clear_bypass(struct fapll_data *fd)
{
	u32 v = readl_relaxed(fd->base);

	if (fd->bypass_bit_inverted)
		v |= FAPLL_MAIN_BP;
	else
		v &= ~FAPLL_MAIN_BP;
	writel_relaxed(v, fd->base);
}

static int ti_fapll_wait_lock(struct fapll_data *fd)
{
	int retries = FAPLL_MAX_RETRIES;
	u32 v;

	while ((v = readl_relaxed(fd->base))) {
		if (v & FAPLL_MAIN_LOCK)
			return 0;

		if (retries-- <= 0)
			break;

		udelay(1);
	}

	pr_err("%s failed to lock\n", fd->name);

	return -ETIMEDOUT;
}

static int ti_fapll_enable(struct clk_hw *hw)
{
	struct fapll_data *fd = to_fapll(hw);
	u32 v = readl_relaxed(fd->base);

	v |= FAPLL_MAIN_PLLEN;
	writel_relaxed(v, fd->base);
	ti_fapll_wait_lock(fd);

	return 0;
}

static void ti_fapll_disable(struct clk_hw *hw)
{
	struct fapll_data *fd = to_fapll(hw);
	u32 v = readl_relaxed(fd->base);

	v &= ~FAPLL_MAIN_PLLEN;
	writel_relaxed(v, fd->base);
}

static int ti_fapll_is_enabled(struct clk_hw *hw)
{
	struct fapll_data *fd = to_fapll(hw);
	u32 v = readl_relaxed(fd->base);

	return v & FAPLL_MAIN_PLLEN;
}

static unsigned long ti_fapll_recalc_rate(struct clk_hw *hw,
					  unsigned long parent_rate)
{
	struct fapll_data *fd = to_fapll(hw);
	u32 fapll_n, fapll_p, v;
	u64 rate;

	if (ti_fapll_clock_is_bypass(fd))
		return parent_rate;

	rate = parent_rate;

	/* PLL pre-divider is P and multiplier is N */
	v = readl_relaxed(fd->base);
	fapll_p = (v >> 8) & 0xff;
	if (fapll_p)
		do_div(rate, fapll_p);
	fapll_n = v >> 16;
	if (fapll_n)
		rate *= fapll_n;

	return rate;
}

static u8 ti_fapll_get_parent(struct clk_hw *hw)
{
	struct fapll_data *fd = to_fapll(hw);

	if (ti_fapll_clock_is_bypass(fd))
		return 1;

	return 0;
}

static int ti_fapll_set_div_mult(unsigned long rate,
				 unsigned long parent_rate,
				 u32 *pre_div_p, u32 *mult_n)
{
	/*
	 * So far no luck getting decent clock with PLL divider,
	 * PLL does not seem to lock and the signal does not look
	 * right. It seems the divider can only be used together
	 * with the multiplier?
	 */
	if (rate < parent_rate) {
		pr_warn("FAPLL main divider rates unsupported\n");
		return -EINVAL;
	}

	*mult_n = rate / parent_rate;
	if (*mult_n > FAPLL_MAIN_MAX_MULT_N)
		return -EINVAL;
	*pre_div_p = 1;

	return 0;
}

static long ti_fapll_round_rate(struct clk_hw *hw, unsigned long rate,
				unsigned long *parent_rate)
{
	u32 pre_div_p, mult_n;
	int error;

	if (!rate)
		return -EINVAL;

	error = ti_fapll_set_div_mult(rate, *parent_rate,
				      &pre_div_p, &mult_n);
	if (error)
		return error;

	rate = *parent_rate / pre_div_p;
	rate *= mult_n;

	return rate;
}

static int ti_fapll_set_rate(struct clk_hw *hw, unsigned long rate,
			     unsigned long parent_rate)
{
	struct fapll_data *fd = to_fapll(hw);
	u32 pre_div_p, mult_n, v;
	int error;

	if (!rate)
		return -EINVAL;

	error = ti_fapll_set_div_mult(rate, parent_rate,
				      &pre_div_p, &mult_n);
	if (error)
		return error;

	ti_fapll_set_bypass(fd);
	v = readl_relaxed(fd->base);
	v &= ~FAPLL_MAIN_CLEAR_MASK;
	v |= pre_div_p << FAPLL_MAIN_DIV_P_SHIFT;
	v |= mult_n << FAPLL_MAIN_MULT_N_SHIFT;
	writel_relaxed(v, fd->base);
	if (ti_fapll_is_enabled(hw))
		ti_fapll_wait_lock(fd);
	ti_fapll_clear_bypass(fd);

	return 0;
}

static struct clk_ops ti_fapll_ops = {
	.enable = ti_fapll_enable,
	.disable = ti_fapll_disable,
	.is_enabled = ti_fapll_is_enabled,
	.recalc_rate = ti_fapll_recalc_rate,
	.get_parent = ti_fapll_get_parent,
	.round_rate = ti_fapll_round_rate,
	.set_rate = ti_fapll_set_rate,
};

static int ti_fapll_synth_enable(struct clk_hw *hw)
{
	struct fapll_synth *synth = to_synth(hw);
	u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);

	v &= ~(1 << synth->index);
	writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);

	return 0;
}

static void ti_fapll_synth_disable(struct clk_hw *hw)
{
	struct fapll_synth *synth = to_synth(hw);
	u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);

	v |= 1 << synth->index;
	writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
}

static int ti_fapll_synth_is_enabled(struct clk_hw *hw)
{
	struct fapll_synth *synth = to_synth(hw);
	u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);

	return !(v & (1 << synth->index));
}

/*
 * See dm816x TRM chapter 1.10.3 Flying Adder PLL fore more info
 */
static unsigned long ti_fapll_synth_recalc_rate(struct clk_hw *hw,
						unsigned long parent_rate)
{
	struct fapll_synth *synth = to_synth(hw);
	u32 synth_div_m;
	u64 rate;

	/* The audio_pll_clk1 is hardwired to produce 32.768KiHz clock */
	if (!synth->div)
		return 32768;

	/*
	 * PLL in bypass sets the synths in bypass mode too. The PLL rate
	 * can be also be set to 27MHz, so we can't use parent_rate to
	 * check for bypass mode.
	 */
	if (ti_fapll_clock_is_bypass(synth->fd))
		return parent_rate;

	rate = parent_rate;

	/*
	 * Synth frequency integer and fractional divider.
	 * Note that the phase output K is 8, so the result needs
	 * to be multiplied by SYNTH_PHASE_K.
	 */
	if (synth->freq) {
		u32 v, synth_int_div, synth_frac_div, synth_div_freq;

		v = readl_relaxed(synth->freq);
		synth_int_div = (v >> 24) & 0xf;
		synth_frac_div = v & 0xffffff;
		synth_div_freq = (synth_int_div * 10000000) + synth_frac_div;
		rate *= 10000000;
		do_div(rate, synth_div_freq);
		rate *= SYNTH_PHASE_K;
	}

	/* Synth post-divider M */
	synth_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;

	return DIV_ROUND_UP_ULL(rate, synth_div_m);
}

static unsigned long ti_fapll_synth_get_frac_rate(struct clk_hw *hw,
						  unsigned long parent_rate)
{
	struct fapll_synth *synth = to_synth(hw);
	unsigned long current_rate, frac_rate;
	u32 post_div_m;

	current_rate = ti_fapll_synth_recalc_rate(hw, parent_rate);
	post_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
	frac_rate = current_rate * post_div_m;

	return frac_rate;
}

static u32 ti_fapll_synth_set_frac_rate(struct fapll_synth *synth,
					unsigned long rate,
					unsigned long parent_rate)
{
	u32 post_div_m, synth_int_div = 0, synth_frac_div = 0, v;

	post_div_m = DIV_ROUND_UP_ULL((u64)parent_rate * SYNTH_PHASE_K, rate);
	post_div_m = post_div_m / SYNTH_MAX_INT_DIV;
	if (post_div_m > SYNTH_MAX_DIV_M)
		return -EINVAL;
	if (!post_div_m)
		post_div_m = 1;

	for (; post_div_m < SYNTH_MAX_DIV_M; post_div_m++) {
		synth_int_div = DIV_ROUND_UP_ULL((u64)parent_rate *
						 SYNTH_PHASE_K *
						 10000000,
						 rate * post_div_m);
		synth_frac_div = synth_int_div % 10000000;
		synth_int_div /= 10000000;

		if (synth_int_div <= SYNTH_MAX_INT_DIV)
			break;
	}

	if (synth_int_div > SYNTH_MAX_INT_DIV)
		return -EINVAL;

	v = readl_relaxed(synth->freq);
	v &= ~0x1fffffff;
	v |= (synth_int_div & SYNTH_MAX_INT_DIV) << 24;
	v |= (synth_frac_div & 0xffffff);
	v |= SYNTH_LDFREQ;
	writel_relaxed(v, synth->freq);

	return post_div_m;
}

static long ti_fapll_synth_round_rate(struct clk_hw *hw, unsigned long rate,
				      unsigned long *parent_rate)
{
	struct fapll_synth *synth = to_synth(hw);
	struct fapll_data *fd = synth->fd;
	unsigned long r;

	if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
		return -EINVAL;

	/* Only post divider m available with no fractional divider? */
	if (!synth->freq) {
		unsigned long frac_rate;
		u32 synth_post_div_m;

		frac_rate = ti_fapll_synth_get_frac_rate(hw, *parent_rate);
		synth_post_div_m = DIV_ROUND_UP(frac_rate, rate);
		r = DIV_ROUND_UP(frac_rate, synth_post_div_m);
		goto out;
	}

	r = *parent_rate * SYNTH_PHASE_K;
	if (rate > r)
		goto out;

	r = DIV_ROUND_UP_ULL(r, SYNTH_MAX_INT_DIV * SYNTH_MAX_DIV_M);
	if (rate < r)
		goto out;

	r = rate;
out:
	return r;
}

static int ti_fapll_synth_set_rate(struct clk_hw *hw, unsigned long rate,
				   unsigned long parent_rate)
{
	struct fapll_synth *synth = to_synth(hw);
	struct fapll_data *fd = synth->fd;
	unsigned long frac_rate, post_rate = 0;
	u32 post_div_m = 0, v;

	if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
		return -EINVAL;

	/* Produce the rate with just post divider M? */
	frac_rate = ti_fapll_synth_get_frac_rate(hw, parent_rate);
	if (frac_rate < rate) {
		if (!synth->freq)
			return -EINVAL;
	} else {
		post_div_m = DIV_ROUND_UP(frac_rate, rate);
		if (post_div_m && (post_div_m <= SYNTH_MAX_DIV_M))
			post_rate = DIV_ROUND_UP(frac_rate, post_div_m);
		if (!synth->freq && !post_rate)
			return -EINVAL;
	}

	/* Need to recalculate the fractional divider? */
	if ((post_rate != rate) && synth->freq)
		post_div_m = ti_fapll_synth_set_frac_rate(synth,
							  rate,
							  parent_rate);

	v = readl_relaxed(synth->div);
	v &= ~SYNTH_MAX_DIV_M;
	v |= post_div_m;
	v |= SYNTH_LDMDIV1;
	writel_relaxed(v, synth->div);

	return 0;
}

static struct clk_ops ti_fapll_synt_ops = {
	.enable = ti_fapll_synth_enable,
	.disable = ti_fapll_synth_disable,
	.is_enabled = ti_fapll_synth_is_enabled,
	.recalc_rate = ti_fapll_synth_recalc_rate,
	.round_rate = ti_fapll_synth_round_rate,
	.set_rate = ti_fapll_synth_set_rate,
};

static struct clk * __init ti_fapll_synth_setup(struct fapll_data *fd,
						void __iomem *freq,
						void __iomem *div,
						int index,
						const char *name,
						const char *parent,
						struct clk *pll_clk)
{
	struct clk_init_data *init;
	struct fapll_synth *synth;

	init = kzalloc(sizeof(*init), GFP_KERNEL);
	if (!init)
		return ERR_PTR(-ENOMEM);

	init->ops = &ti_fapll_synt_ops;
	init->name = name;
	init->parent_names = &parent;
	init->num_parents = 1;

	synth = kzalloc(sizeof(*synth), GFP_KERNEL);
	if (!synth)
		goto free;

	synth->fd = fd;
	synth->index = index;
	synth->freq = freq;
	synth->div = div;
	synth->name = name;
	synth->hw.init = init;
	synth->clk_pll = pll_clk;

	return clk_register(NULL, &synth->hw);

free:
	kfree(synth);
	kfree(init);

	return ERR_PTR(-ENOMEM);
}

static void __init ti_fapll_setup(struct device_node *node)
{
	struct fapll_data *fd;
	struct clk_init_data *init = NULL;
	const char *parent_name[2];
	struct clk *pll_clk;
	int i;

	fd = kzalloc(sizeof(*fd), GFP_KERNEL);
	if (!fd)
		return;

	fd->outputs.clks = kzalloc(sizeof(struct clk *) *
				   MAX_FAPLL_OUTPUTS + 1,
				   GFP_KERNEL);
	if (!fd->outputs.clks)
		goto free;

	init = kzalloc(sizeof(*init), GFP_KERNEL);
	if (!init)
		goto free;

	init->ops = &ti_fapll_ops;
	init->name = node->name;

	init->num_parents = of_clk_get_parent_count(node);
	if (init->num_parents != 2) {
		pr_err("%s must have two parents\n", node->name);
		goto free;
	}

	of_clk_parent_fill(node, parent_name, 2);
	init->parent_names = parent_name;

	fd->clk_ref = of_clk_get(node, 0);
	if (IS_ERR(fd->clk_ref)) {
		pr_err("%s could not get clk_ref\n", node->name);
		goto free;
	}

	fd->clk_bypass = of_clk_get(node, 1);
	if (IS_ERR(fd->clk_bypass)) {
		pr_err("%s could not get clk_bypass\n", node->name);
		goto free;
	}

	fd->base = of_iomap(node, 0);
	if (!fd->base) {
		pr_err("%s could not get IO base\n", node->name);
		goto free;
	}

	if (fapll_is_ddr_pll(fd->base))
		fd->bypass_bit_inverted = true;

	fd->name = node->name;
	fd->hw.init = init;

	/* Register the parent PLL */
	pll_clk = clk_register(NULL, &fd->hw);
	if (IS_ERR(pll_clk))
		goto unmap;

	fd->outputs.clks[0] = pll_clk;
	fd->outputs.clk_num++;

	/*
	 * Set up the child synthesizers starting at index 1 as the
	 * PLL output is at index 0. We need to check the clock-indices
	 * for numbering in case there are holes in the synth mapping,
	 * and then probe the synth register to see if it has a FREQ
	 * register available.
	 */
	for (i = 0; i < MAX_FAPLL_OUTPUTS; i++) {
		const char *output_name;
		void __iomem *freq, *div;
		struct clk *synth_clk;
		int output_instance;
		u32 v;

		if (of_property_read_string_index(node, "clock-output-names",
						  i, &output_name))
			continue;

		if (of_property_read_u32_index(node, "clock-indices", i,
					       &output_instance))
			output_instance = i;

		freq = fd->base + (output_instance * 8);
		div = freq + 4;

		/* Check for hardwired audio_pll_clk1 */
		if (is_audio_pll_clk1(freq)) {
			freq = NULL;
			div = NULL;
		} else {
			/* Does the synthesizer have a FREQ register? */
			v = readl_relaxed(freq);
			if (!v)
				freq = NULL;
		}
		synth_clk = ti_fapll_synth_setup(fd, freq, div, output_instance,
						 output_name, node->name,
						 pll_clk);
		if (IS_ERR(synth_clk))
			continue;

		fd->outputs.clks[output_instance] = synth_clk;
		fd->outputs.clk_num++;

		clk_register_clkdev(synth_clk, output_name, NULL);
	}

	/* Register the child synthesizers as the FAPLL outputs */
	of_clk_add_provider(node, of_clk_src_onecell_get, &fd->outputs);
	/* Add clock alias for the outputs */

	kfree(init);

	return;

unmap:
	iounmap(fd->base);
free:
	if (fd->clk_bypass)
		clk_put(fd->clk_bypass);
	if (fd->clk_ref)
		clk_put(fd->clk_ref);
	kfree(fd->outputs.clks);
	kfree(fd);
	kfree(init);
}

CLK_OF_DECLARE(ti_fapll_clock, "ti,dm816-fapll-clock", ti_fapll_setup);