mcryptd.c
18.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
/*
* Software multibuffer async crypto daemon.
*
* Copyright (c) 2014 Tim Chen <tim.c.chen@linux.intel.com>
*
* Adapted from crypto daemon.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
*/
#include <crypto/algapi.h>
#include <crypto/internal/hash.h>
#include <crypto/internal/aead.h>
#include <crypto/mcryptd.h>
#include <crypto/crypto_wq.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/hardirq.h>
#define MCRYPTD_MAX_CPU_QLEN 100
#define MCRYPTD_BATCH 9
static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
unsigned int tail);
struct mcryptd_flush_list {
struct list_head list;
struct mutex lock;
};
static struct mcryptd_flush_list __percpu *mcryptd_flist;
struct hashd_instance_ctx {
struct crypto_shash_spawn spawn;
struct mcryptd_queue *queue;
};
static void mcryptd_queue_worker(struct work_struct *work);
void mcryptd_arm_flusher(struct mcryptd_alg_cstate *cstate, unsigned long delay)
{
struct mcryptd_flush_list *flist;
if (!cstate->flusher_engaged) {
/* put the flusher on the flush list */
flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
mutex_lock(&flist->lock);
list_add_tail(&cstate->flush_list, &flist->list);
cstate->flusher_engaged = true;
cstate->next_flush = jiffies + delay;
queue_delayed_work_on(smp_processor_id(), kcrypto_wq,
&cstate->flush, delay);
mutex_unlock(&flist->lock);
}
}
EXPORT_SYMBOL(mcryptd_arm_flusher);
static int mcryptd_init_queue(struct mcryptd_queue *queue,
unsigned int max_cpu_qlen)
{
int cpu;
struct mcryptd_cpu_queue *cpu_queue;
queue->cpu_queue = alloc_percpu(struct mcryptd_cpu_queue);
pr_debug("mqueue:%p mcryptd_cpu_queue %p\n", queue, queue->cpu_queue);
if (!queue->cpu_queue)
return -ENOMEM;
for_each_possible_cpu(cpu) {
cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
pr_debug("cpu_queue #%d %p\n", cpu, queue->cpu_queue);
crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
INIT_WORK(&cpu_queue->work, mcryptd_queue_worker);
}
return 0;
}
static void mcryptd_fini_queue(struct mcryptd_queue *queue)
{
int cpu;
struct mcryptd_cpu_queue *cpu_queue;
for_each_possible_cpu(cpu) {
cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
BUG_ON(cpu_queue->queue.qlen);
}
free_percpu(queue->cpu_queue);
}
static int mcryptd_enqueue_request(struct mcryptd_queue *queue,
struct crypto_async_request *request,
struct mcryptd_hash_request_ctx *rctx)
{
int cpu, err;
struct mcryptd_cpu_queue *cpu_queue;
cpu = get_cpu();
cpu_queue = this_cpu_ptr(queue->cpu_queue);
rctx->tag.cpu = cpu;
err = crypto_enqueue_request(&cpu_queue->queue, request);
pr_debug("enqueue request: cpu %d cpu_queue %p request %p\n",
cpu, cpu_queue, request);
queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
put_cpu();
return err;
}
/*
* Try to opportunisticlly flush the partially completed jobs if
* crypto daemon is the only task running.
*/
static void mcryptd_opportunistic_flush(void)
{
struct mcryptd_flush_list *flist;
struct mcryptd_alg_cstate *cstate;
flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
while (single_task_running()) {
mutex_lock(&flist->lock);
if (list_empty(&flist->list)) {
mutex_unlock(&flist->lock);
return;
}
cstate = list_entry(flist->list.next,
struct mcryptd_alg_cstate, flush_list);
if (!cstate->flusher_engaged) {
mutex_unlock(&flist->lock);
return;
}
list_del(&cstate->flush_list);
cstate->flusher_engaged = false;
mutex_unlock(&flist->lock);
cstate->alg_state->flusher(cstate);
}
}
/*
* Called in workqueue context, do one real cryption work (via
* req->complete) and reschedule itself if there are more work to
* do.
*/
static void mcryptd_queue_worker(struct work_struct *work)
{
struct mcryptd_cpu_queue *cpu_queue;
struct crypto_async_request *req, *backlog;
int i;
/*
* Need to loop through more than once for multi-buffer to
* be effective.
*/
cpu_queue = container_of(work, struct mcryptd_cpu_queue, work);
i = 0;
while (i < MCRYPTD_BATCH || single_task_running()) {
/*
* preempt_disable/enable is used to prevent
* being preempted by mcryptd_enqueue_request()
*/
local_bh_disable();
preempt_disable();
backlog = crypto_get_backlog(&cpu_queue->queue);
req = crypto_dequeue_request(&cpu_queue->queue);
preempt_enable();
local_bh_enable();
if (!req) {
mcryptd_opportunistic_flush();
return;
}
if (backlog)
backlog->complete(backlog, -EINPROGRESS);
req->complete(req, 0);
if (!cpu_queue->queue.qlen)
return;
++i;
}
if (cpu_queue->queue.qlen)
queue_work(kcrypto_wq, &cpu_queue->work);
}
void mcryptd_flusher(struct work_struct *__work)
{
struct mcryptd_alg_cstate *alg_cpu_state;
struct mcryptd_alg_state *alg_state;
struct mcryptd_flush_list *flist;
int cpu;
cpu = smp_processor_id();
alg_cpu_state = container_of(to_delayed_work(__work),
struct mcryptd_alg_cstate, flush);
alg_state = alg_cpu_state->alg_state;
if (alg_cpu_state->cpu != cpu)
pr_debug("mcryptd error: work on cpu %d, should be cpu %d\n",
cpu, alg_cpu_state->cpu);
if (alg_cpu_state->flusher_engaged) {
flist = per_cpu_ptr(mcryptd_flist, cpu);
mutex_lock(&flist->lock);
list_del(&alg_cpu_state->flush_list);
alg_cpu_state->flusher_engaged = false;
mutex_unlock(&flist->lock);
alg_state->flusher(alg_cpu_state);
}
}
EXPORT_SYMBOL_GPL(mcryptd_flusher);
static inline struct mcryptd_queue *mcryptd_get_queue(struct crypto_tfm *tfm)
{
struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
struct mcryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
return ictx->queue;
}
static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
unsigned int tail)
{
char *p;
struct crypto_instance *inst;
int err;
p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
if (!p)
return ERR_PTR(-ENOMEM);
inst = (void *)(p + head);
err = -ENAMETOOLONG;
if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
"mcryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
goto out_free_inst;
memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
inst->alg.cra_priority = alg->cra_priority + 50;
inst->alg.cra_blocksize = alg->cra_blocksize;
inst->alg.cra_alignmask = alg->cra_alignmask;
out:
return p;
out_free_inst:
kfree(p);
p = ERR_PTR(err);
goto out;
}
static inline bool mcryptd_check_internal(struct rtattr **tb, u32 *type,
u32 *mask)
{
struct crypto_attr_type *algt;
algt = crypto_get_attr_type(tb);
if (IS_ERR(algt))
return false;
*type |= algt->type & CRYPTO_ALG_INTERNAL;
*mask |= algt->mask & CRYPTO_ALG_INTERNAL;
if (*type & *mask & CRYPTO_ALG_INTERNAL)
return true;
else
return false;
}
static int mcryptd_hash_init_tfm(struct crypto_tfm *tfm)
{
struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
struct crypto_shash_spawn *spawn = &ictx->spawn;
struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
struct crypto_shash *hash;
hash = crypto_spawn_shash(spawn);
if (IS_ERR(hash))
return PTR_ERR(hash);
ctx->child = hash;
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct mcryptd_hash_request_ctx) +
crypto_shash_descsize(hash));
return 0;
}
static void mcryptd_hash_exit_tfm(struct crypto_tfm *tfm)
{
struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
crypto_free_shash(ctx->child);
}
static int mcryptd_hash_setkey(struct crypto_ahash *parent,
const u8 *key, unsigned int keylen)
{
struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(parent);
struct crypto_shash *child = ctx->child;
int err;
crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
CRYPTO_TFM_REQ_MASK);
err = crypto_shash_setkey(child, key, keylen);
crypto_ahash_set_flags(parent, crypto_shash_get_flags(child) &
CRYPTO_TFM_RES_MASK);
return err;
}
static int mcryptd_hash_enqueue(struct ahash_request *req,
crypto_completion_t complete)
{
int ret;
struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct mcryptd_queue *queue =
mcryptd_get_queue(crypto_ahash_tfm(tfm));
rctx->complete = req->base.complete;
req->base.complete = complete;
ret = mcryptd_enqueue_request(queue, &req->base, rctx);
return ret;
}
static void mcryptd_hash_init(struct crypto_async_request *req_async, int err)
{
struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
struct crypto_shash *child = ctx->child;
struct ahash_request *req = ahash_request_cast(req_async);
struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
struct shash_desc *desc = &rctx->desc;
if (unlikely(err == -EINPROGRESS))
goto out;
desc->tfm = child;
desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
err = crypto_shash_init(desc);
req->base.complete = rctx->complete;
out:
local_bh_disable();
rctx->complete(&req->base, err);
local_bh_enable();
}
static int mcryptd_hash_init_enqueue(struct ahash_request *req)
{
return mcryptd_hash_enqueue(req, mcryptd_hash_init);
}
static void mcryptd_hash_update(struct crypto_async_request *req_async, int err)
{
struct ahash_request *req = ahash_request_cast(req_async);
struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
if (unlikely(err == -EINPROGRESS))
goto out;
err = shash_ahash_mcryptd_update(req, &rctx->desc);
if (err) {
req->base.complete = rctx->complete;
goto out;
}
return;
out:
local_bh_disable();
rctx->complete(&req->base, err);
local_bh_enable();
}
static int mcryptd_hash_update_enqueue(struct ahash_request *req)
{
return mcryptd_hash_enqueue(req, mcryptd_hash_update);
}
static void mcryptd_hash_final(struct crypto_async_request *req_async, int err)
{
struct ahash_request *req = ahash_request_cast(req_async);
struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
if (unlikely(err == -EINPROGRESS))
goto out;
err = shash_ahash_mcryptd_final(req, &rctx->desc);
if (err) {
req->base.complete = rctx->complete;
goto out;
}
return;
out:
local_bh_disable();
rctx->complete(&req->base, err);
local_bh_enable();
}
static int mcryptd_hash_final_enqueue(struct ahash_request *req)
{
return mcryptd_hash_enqueue(req, mcryptd_hash_final);
}
static void mcryptd_hash_finup(struct crypto_async_request *req_async, int err)
{
struct ahash_request *req = ahash_request_cast(req_async);
struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
if (unlikely(err == -EINPROGRESS))
goto out;
err = shash_ahash_mcryptd_finup(req, &rctx->desc);
if (err) {
req->base.complete = rctx->complete;
goto out;
}
return;
out:
local_bh_disable();
rctx->complete(&req->base, err);
local_bh_enable();
}
static int mcryptd_hash_finup_enqueue(struct ahash_request *req)
{
return mcryptd_hash_enqueue(req, mcryptd_hash_finup);
}
static void mcryptd_hash_digest(struct crypto_async_request *req_async, int err)
{
struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
struct crypto_shash *child = ctx->child;
struct ahash_request *req = ahash_request_cast(req_async);
struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
struct shash_desc *desc = &rctx->desc;
if (unlikely(err == -EINPROGRESS))
goto out;
desc->tfm = child;
desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; /* check this again */
err = shash_ahash_mcryptd_digest(req, desc);
if (err) {
req->base.complete = rctx->complete;
goto out;
}
return;
out:
local_bh_disable();
rctx->complete(&req->base, err);
local_bh_enable();
}
static int mcryptd_hash_digest_enqueue(struct ahash_request *req)
{
return mcryptd_hash_enqueue(req, mcryptd_hash_digest);
}
static int mcryptd_hash_export(struct ahash_request *req, void *out)
{
struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
return crypto_shash_export(&rctx->desc, out);
}
static int mcryptd_hash_import(struct ahash_request *req, const void *in)
{
struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
return crypto_shash_import(&rctx->desc, in);
}
static int mcryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
struct mcryptd_queue *queue)
{
struct hashd_instance_ctx *ctx;
struct ahash_instance *inst;
struct shash_alg *salg;
struct crypto_alg *alg;
u32 type = 0;
u32 mask = 0;
int err;
if (!mcryptd_check_internal(tb, &type, &mask))
return -EINVAL;
salg = shash_attr_alg(tb[1], type, mask);
if (IS_ERR(salg))
return PTR_ERR(salg);
alg = &salg->base;
pr_debug("crypto: mcryptd hash alg: %s\n", alg->cra_name);
inst = mcryptd_alloc_instance(alg, ahash_instance_headroom(),
sizeof(*ctx));
err = PTR_ERR(inst);
if (IS_ERR(inst))
goto out_put_alg;
ctx = ahash_instance_ctx(inst);
ctx->queue = queue;
err = crypto_init_shash_spawn(&ctx->spawn, salg,
ahash_crypto_instance(inst));
if (err)
goto out_free_inst;
type = CRYPTO_ALG_ASYNC;
if (alg->cra_flags & CRYPTO_ALG_INTERNAL)
type |= CRYPTO_ALG_INTERNAL;
inst->alg.halg.base.cra_flags = type;
inst->alg.halg.digestsize = salg->digestsize;
inst->alg.halg.base.cra_ctxsize = sizeof(struct mcryptd_hash_ctx);
inst->alg.halg.base.cra_init = mcryptd_hash_init_tfm;
inst->alg.halg.base.cra_exit = mcryptd_hash_exit_tfm;
inst->alg.init = mcryptd_hash_init_enqueue;
inst->alg.update = mcryptd_hash_update_enqueue;
inst->alg.final = mcryptd_hash_final_enqueue;
inst->alg.finup = mcryptd_hash_finup_enqueue;
inst->alg.export = mcryptd_hash_export;
inst->alg.import = mcryptd_hash_import;
inst->alg.setkey = mcryptd_hash_setkey;
inst->alg.digest = mcryptd_hash_digest_enqueue;
err = ahash_register_instance(tmpl, inst);
if (err) {
crypto_drop_shash(&ctx->spawn);
out_free_inst:
kfree(inst);
}
out_put_alg:
crypto_mod_put(alg);
return err;
}
static struct mcryptd_queue mqueue;
static int mcryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
{
struct crypto_attr_type *algt;
algt = crypto_get_attr_type(tb);
if (IS_ERR(algt))
return PTR_ERR(algt);
switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
case CRYPTO_ALG_TYPE_DIGEST:
return mcryptd_create_hash(tmpl, tb, &mqueue);
break;
}
return -EINVAL;
}
static void mcryptd_free(struct crypto_instance *inst)
{
struct mcryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
case CRYPTO_ALG_TYPE_AHASH:
crypto_drop_shash(&hctx->spawn);
kfree(ahash_instance(inst));
return;
default:
crypto_drop_spawn(&ctx->spawn);
kfree(inst);
}
}
static struct crypto_template mcryptd_tmpl = {
.name = "mcryptd",
.create = mcryptd_create,
.free = mcryptd_free,
.module = THIS_MODULE,
};
struct mcryptd_ahash *mcryptd_alloc_ahash(const char *alg_name,
u32 type, u32 mask)
{
char mcryptd_alg_name[CRYPTO_MAX_ALG_NAME];
struct crypto_ahash *tfm;
if (snprintf(mcryptd_alg_name, CRYPTO_MAX_ALG_NAME,
"mcryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
return ERR_PTR(-EINVAL);
tfm = crypto_alloc_ahash(mcryptd_alg_name, type, mask);
if (IS_ERR(tfm))
return ERR_CAST(tfm);
if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
crypto_free_ahash(tfm);
return ERR_PTR(-EINVAL);
}
return __mcryptd_ahash_cast(tfm);
}
EXPORT_SYMBOL_GPL(mcryptd_alloc_ahash);
int shash_ahash_mcryptd_digest(struct ahash_request *req,
struct shash_desc *desc)
{
int err;
err = crypto_shash_init(desc) ?:
shash_ahash_mcryptd_finup(req, desc);
return err;
}
EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_digest);
int shash_ahash_mcryptd_update(struct ahash_request *req,
struct shash_desc *desc)
{
struct crypto_shash *tfm = desc->tfm;
struct shash_alg *shash = crypto_shash_alg(tfm);
/* alignment is to be done by multi-buffer crypto algorithm if needed */
return shash->update(desc, NULL, 0);
}
EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_update);
int shash_ahash_mcryptd_finup(struct ahash_request *req,
struct shash_desc *desc)
{
struct crypto_shash *tfm = desc->tfm;
struct shash_alg *shash = crypto_shash_alg(tfm);
/* alignment is to be done by multi-buffer crypto algorithm if needed */
return shash->finup(desc, NULL, 0, req->result);
}
EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_finup);
int shash_ahash_mcryptd_final(struct ahash_request *req,
struct shash_desc *desc)
{
struct crypto_shash *tfm = desc->tfm;
struct shash_alg *shash = crypto_shash_alg(tfm);
/* alignment is to be done by multi-buffer crypto algorithm if needed */
return shash->final(desc, req->result);
}
EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_final);
struct crypto_shash *mcryptd_ahash_child(struct mcryptd_ahash *tfm)
{
struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
return ctx->child;
}
EXPORT_SYMBOL_GPL(mcryptd_ahash_child);
struct shash_desc *mcryptd_shash_desc(struct ahash_request *req)
{
struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
return &rctx->desc;
}
EXPORT_SYMBOL_GPL(mcryptd_shash_desc);
void mcryptd_free_ahash(struct mcryptd_ahash *tfm)
{
crypto_free_ahash(&tfm->base);
}
EXPORT_SYMBOL_GPL(mcryptd_free_ahash);
static int __init mcryptd_init(void)
{
int err, cpu;
struct mcryptd_flush_list *flist;
mcryptd_flist = alloc_percpu(struct mcryptd_flush_list);
for_each_possible_cpu(cpu) {
flist = per_cpu_ptr(mcryptd_flist, cpu);
INIT_LIST_HEAD(&flist->list);
mutex_init(&flist->lock);
}
err = mcryptd_init_queue(&mqueue, MCRYPTD_MAX_CPU_QLEN);
if (err) {
free_percpu(mcryptd_flist);
return err;
}
err = crypto_register_template(&mcryptd_tmpl);
if (err) {
mcryptd_fini_queue(&mqueue);
free_percpu(mcryptd_flist);
}
return err;
}
static void __exit mcryptd_exit(void)
{
mcryptd_fini_queue(&mqueue);
crypto_unregister_template(&mcryptd_tmpl);
free_percpu(mcryptd_flist);
}
subsys_initcall(mcryptd_init);
module_exit(mcryptd_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Software async multibuffer crypto daemon");
MODULE_ALIAS_CRYPTO("mcryptd");