Blame view

kernel/linux-rt-4.4.41/arch/mips/netlogic/xlp/ahci-init-xlp2.c 12.4 KB
5113f6f70   김현기   kernel add
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
  /*
   * Copyright (c) 2003-2014 Broadcom Corporation
   * All Rights Reserved
   *
   * This software is available to you under a choice of one of two
   * licenses.  You may choose to be licensed under the terms of the GNU
   * General Public License (GPL) Version 2, available from the file
   * COPYING in the main directory of this source tree, or the Broadcom
   * license below:
   *
   * Redistribution and use in source and binary forms, with or without
   * modification, are permitted provided that the following conditions
   * are met:
   *
   * 1. Redistributions of source code must retain the above copyright
   *    notice, this list of conditions and the following disclaimer.
   * 2. Redistributions in binary form must reproduce the above copyright
   *    notice, this list of conditions and the following disclaimer in
   *    the documentation and/or other materials provided with the
   *    distribution.
   *
   * THIS SOFTWARE IS PROVIDED BY BROADCOM ``AS IS'' AND ANY EXPRESS OR
   * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
   * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   * ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM OR CONTRIBUTORS BE LIABLE
   * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
   * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
   * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
   * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
   * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   */
  
  #include <linux/dma-mapping.h>
  #include <linux/kernel.h>
  #include <linux/delay.h>
  #include <linux/init.h>
  #include <linux/pci.h>
  #include <linux/irq.h>
  #include <linux/bitops.h>
  #include <linux/pci_ids.h>
  #include <linux/nodemask.h>
  
  #include <asm/cpu.h>
  #include <asm/mipsregs.h>
  
  #include <asm/netlogic/common.h>
  #include <asm/netlogic/haldefs.h>
  #include <asm/netlogic/mips-extns.h>
  #include <asm/netlogic/xlp-hal/xlp.h>
  #include <asm/netlogic/xlp-hal/iomap.h>
  
  #define SATA_CTL		0x0
  #define SATA_STATUS		0x1 /* Status Reg */
  #define SATA_INT		0x2 /* Interrupt Reg */
  #define SATA_INT_MASK		0x3 /* Interrupt Mask Reg */
  #define SATA_BIU_TIMEOUT	0x4
  #define AXIWRSPERRLOG		0x5
  #define AXIRDSPERRLOG		0x6
  #define BiuTimeoutLow		0x7
  #define BiuTimeoutHi		0x8
  #define BiuSlvErLow		0x9
  #define BiuSlvErHi		0xa
  #define IO_CONFIG_SWAP_DIS	0xb
  #define CR_REG_TIMER		0xc
  #define CORE_ID			0xd
  #define AXI_SLAVE_OPT1		0xe
  #define PHY_MEM_ACCESS		0xf
  #define PHY0_CNTRL		0x10
  #define PHY0_STAT		0x11
  #define PHY0_RX_ALIGN		0x12
  #define PHY0_RX_EQ_LO		0x13
  #define PHY0_RX_EQ_HI		0x14
  #define PHY0_BIST_LOOP		0x15
  #define PHY1_CNTRL		0x16
  #define PHY1_STAT		0x17
  #define PHY1_RX_ALIGN		0x18
  #define PHY1_RX_EQ_LO		0x19
  #define PHY1_RX_EQ_HI		0x1a
  #define PHY1_BIST_LOOP		0x1b
  #define RdExBase		0x1c
  #define RdExLimit		0x1d
  #define CacheAllocBase		0x1e
  #define CacheAllocLimit		0x1f
  #define BiuSlaveCmdGstNum	0x20
  
  /*SATA_CTL Bits */
  #define SATA_RST_N		BIT(0)  /* Active low reset sata_core phy */
  #define SataCtlReserve0		BIT(1)
  #define M_CSYSREQ		BIT(2)  /* AXI master low power, not used */
  #define S_CSYSREQ		BIT(3)  /* AXI slave low power, not used */
  #define P0_CP_DET		BIT(8)  /* Reserved, bring in from pad */
  #define P0_MP_SW		BIT(9)  /* Mech Switch */
  #define P0_DISABLE		BIT(10) /* disable p0 */
  #define P0_ACT_LED_EN		BIT(11) /* Active LED enable */
  #define P0_IRST_HARD_SYNTH	BIT(12) /* PHY hard synth reset */
  #define P0_IRST_HARD_TXRX	BIT(13) /* PHY lane hard reset */
  #define P0_IRST_POR		BIT(14) /* PHY power on reset*/
  #define P0_IPDTXL		BIT(15) /* PHY Tx lane dis/power down */
  #define P0_IPDRXL		BIT(16) /* PHY Rx lane dis/power down */
  #define P0_IPDIPDMSYNTH		BIT(17) /* PHY synthesizer dis/porwer down */
  #define P0_CP_POD_EN		BIT(18) /* CP_POD enable */
  #define P0_AT_BYPASS		BIT(19) /* P0 address translation by pass */
  #define P1_CP_DET		BIT(20) /* Reserved,Cold Detect */
  #define P1_MP_SW		BIT(21) /* Mech Switch */
  #define P1_DISABLE		BIT(22) /* disable p1 */
  #define P1_ACT_LED_EN		BIT(23) /* Active LED enable */
  #define P1_IRST_HARD_SYNTH	BIT(24) /* PHY hard synth reset */
  #define P1_IRST_HARD_TXRX	BIT(25) /* PHY lane hard reset */
  #define P1_IRST_POR		BIT(26) /* PHY power on reset*/
  #define P1_IPDTXL		BIT(27) /* PHY Tx lane dis/porwer down */
  #define P1_IPDRXL		BIT(28) /* PHY Rx lane dis/porwer down */
  #define P1_IPDIPDMSYNTH		BIT(29) /* PHY synthesizer dis/porwer down */
  #define P1_CP_POD_EN		BIT(30)
  #define P1_AT_BYPASS		BIT(31) /* P1 address translation by pass */
  
  /* Status register */
  #define M_CACTIVE		BIT(0)  /* m_cactive, not used */
  #define S_CACTIVE		BIT(1)  /* s_cactive, not used */
  #define P0_PHY_READY		BIT(8)  /* phy is ready */
  #define P0_CP_POD		BIT(9)  /* Cold PowerOn */
  #define P0_SLUMBER		BIT(10) /* power mode slumber */
  #define P0_PATIAL		BIT(11) /* power mode patial */
  #define P0_PHY_SIG_DET		BIT(12) /* phy dignal detect */
  #define P0_PHY_CALI		BIT(13) /* phy calibration done */
  #define P1_PHY_READY		BIT(16) /* phy is ready */
  #define P1_CP_POD		BIT(17) /* Cold PowerOn */
  #define P1_SLUMBER		BIT(18) /* power mode slumber */
  #define P1_PATIAL		BIT(19) /* power mode patial */
  #define P1_PHY_SIG_DET		BIT(20) /* phy dignal detect */
  #define P1_PHY_CALI		BIT(21) /* phy calibration done */
  
  /* SATA CR_REG_TIMER bits */
  #define CR_TIME_SCALE		(0x1000 << 0)
  
  /* SATA PHY specific registers start and end address */
  #define RXCDRCALFOSC0		0x0065
  #define CALDUTY			0x006e
  #define RXDPIF			0x8065
  #define PPMDRIFTMAX_HI		0x80A4
  
  #define nlm_read_sata_reg(b, r)		nlm_read_reg(b, r)
  #define nlm_write_sata_reg(b, r, v)	nlm_write_reg(b, r, v)
  #define nlm_get_sata_pcibase(node)	\
  		nlm_pcicfg_base(XLP9XX_IO_SATA_OFFSET(node))
  #define nlm_get_sata_regbase(node)	\
  		(nlm_get_sata_pcibase(node) + 0x100)
  
  /* SATA PHY config for register block 1 0x0065 .. 0x006e */
  static const u8 sata_phy_config1[]  = {
  	0xC9, 0xC9, 0x07, 0x07, 0x18, 0x18, 0x01, 0x01, 0x22, 0x00
  };
  
  /* SATA PHY config for register block 2 0x8065 .. 0x80A4 */
  static const u8 sata_phy_config2[]  = {
  	0xAA, 0x00, 0x4C, 0xC9, 0xC9, 0x07, 0x07, 0x18,
  	0x18, 0x05, 0x0C, 0x10, 0x00, 0x10, 0x00, 0xFF,
  	0xCF, 0xF7, 0xE1, 0xF5, 0xFD, 0xFD, 0xFF, 0xFF,
  	0xFF, 0xFF, 0xE3, 0xE7, 0xDB, 0xF5, 0xFD, 0xFD,
  	0xF5, 0xF5, 0xFF, 0xFF, 0xE3, 0xE7, 0xDB, 0xF5,
  	0xFD, 0xFD, 0xF5, 0xF5, 0xFF, 0xFF, 0xFF, 0xF5,
  	0x3F, 0x00, 0x32, 0x00, 0x03, 0x01, 0x05, 0x05,
  	0x04, 0x00, 0x00, 0x08, 0x04, 0x00, 0x00, 0x04,
  };
  
  const int sata_phy_debug = 0;	/* set to verify PHY writes */
  
  static void sata_clear_glue_reg(u64 regbase, u32 off, u32 bit)
  {
  	u32 reg_val;
  
  	reg_val = nlm_read_sata_reg(regbase, off);
  	nlm_write_sata_reg(regbase, off, (reg_val & ~bit));
  }
  
  static void sata_set_glue_reg(u64 regbase, u32 off, u32 bit)
  {
  	u32 reg_val;
  
  	reg_val = nlm_read_sata_reg(regbase, off);
  	nlm_write_sata_reg(regbase, off, (reg_val | bit));
  }
  
  static void write_phy_reg(u64 regbase, u32 addr, u32 physel, u8 data)
  {
  	nlm_write_sata_reg(regbase, PHY_MEM_ACCESS,
  		(1u << 31) | (physel << 24) | (data << 16) | addr);
  	udelay(850);
  }
  
  static u8 read_phy_reg(u64 regbase, u32 addr, u32 physel)
  {
  	u32 val;
  
  	nlm_write_sata_reg(regbase, PHY_MEM_ACCESS,
  		(0 << 31) | (physel << 24) | (0 << 16) | addr);
  	udelay(850);
  	val = nlm_read_sata_reg(regbase, PHY_MEM_ACCESS);
  	return (val >> 16) & 0xff;
  }
  
  static void config_sata_phy(u64 regbase)
  {
  	u32 port, i, reg;
  	u8 val;
  
  	for (port = 0; port < 2; port++) {
  		for (i = 0, reg = RXCDRCALFOSC0; reg <= CALDUTY; reg++, i++)
  			write_phy_reg(regbase, reg, port, sata_phy_config1[i]);
  
  		for (i = 0, reg = RXDPIF; reg <= PPMDRIFTMAX_HI; reg++, i++)
  			write_phy_reg(regbase, reg, port, sata_phy_config2[i]);
  
  		/* Fix for PHY link up failures at lower temperatures */
  		write_phy_reg(regbase, 0x800F, port, 0x1f);
  
  		val = read_phy_reg(regbase, 0x0029, port);
  		write_phy_reg(regbase, 0x0029, port, val | (0x7 << 1));
  
  		val = read_phy_reg(regbase, 0x0056, port);
  		write_phy_reg(regbase, 0x0056, port, val & ~(1 << 3));
  
  		val = read_phy_reg(regbase, 0x0018, port);
  		write_phy_reg(regbase, 0x0018, port, val & ~(0x7 << 0));
  	}
  }
  
  static void check_phy_register(u64 regbase, u32 addr, u32 physel, u8 xdata)
  {
  	u8 data;
  
  	data = read_phy_reg(regbase, addr, physel);
  	pr_info("PHY read addr = 0x%x physel = %d data = 0x%x %s
  ",
  		addr, physel, data, data == xdata ? "TRUE" : "FALSE");
  }
  
  static void verify_sata_phy_config(u64 regbase)
  {
  	u32 port, i, reg;
  
  	for (port = 0; port < 2; port++) {
  		for (i = 0, reg = RXCDRCALFOSC0; reg <= CALDUTY; reg++, i++)
  			check_phy_register(regbase, reg, port,
  						sata_phy_config1[i]);
  
  		for (i = 0, reg = RXDPIF; reg <= PPMDRIFTMAX_HI; reg++, i++)
  			check_phy_register(regbase, reg, port,
  						sata_phy_config2[i]);
  	}
  }
  
  static void nlm_sata_firmware_init(int node)
  {
  	u32 reg_val;
  	u64 regbase;
  	int n;
  
  	pr_info("Initializing XLP9XX On-chip AHCI...
  ");
  	regbase = nlm_get_sata_regbase(node);
  
  	/* Reset port0 */
  	sata_clear_glue_reg(regbase, SATA_CTL, P0_IRST_POR);
  	sata_clear_glue_reg(regbase, SATA_CTL, P0_IRST_HARD_TXRX);
  	sata_clear_glue_reg(regbase, SATA_CTL, P0_IRST_HARD_SYNTH);
  	sata_clear_glue_reg(regbase, SATA_CTL, P0_IPDTXL);
  	sata_clear_glue_reg(regbase, SATA_CTL, P0_IPDRXL);
  	sata_clear_glue_reg(regbase, SATA_CTL, P0_IPDIPDMSYNTH);
  
  	/* port1 */
  	sata_clear_glue_reg(regbase, SATA_CTL, P1_IRST_POR);
  	sata_clear_glue_reg(regbase, SATA_CTL, P1_IRST_HARD_TXRX);
  	sata_clear_glue_reg(regbase, SATA_CTL, P1_IRST_HARD_SYNTH);
  	sata_clear_glue_reg(regbase, SATA_CTL, P1_IPDTXL);
  	sata_clear_glue_reg(regbase, SATA_CTL, P1_IPDRXL);
  	sata_clear_glue_reg(regbase, SATA_CTL, P1_IPDIPDMSYNTH);
  	udelay(300);
  
  	/* Set PHY */
  	sata_set_glue_reg(regbase, SATA_CTL, P0_IPDTXL);
  	sata_set_glue_reg(regbase, SATA_CTL, P0_IPDRXL);
  	sata_set_glue_reg(regbase, SATA_CTL, P0_IPDIPDMSYNTH);
  	sata_set_glue_reg(regbase, SATA_CTL, P1_IPDTXL);
  	sata_set_glue_reg(regbase, SATA_CTL, P1_IPDRXL);
  	sata_set_glue_reg(regbase, SATA_CTL, P1_IPDIPDMSYNTH);
  
  	udelay(1000);
  	sata_set_glue_reg(regbase, SATA_CTL, P0_IRST_POR);
  	udelay(1000);
  	sata_set_glue_reg(regbase, SATA_CTL, P1_IRST_POR);
  	udelay(1000);
  
  	/* setup PHY */
  	config_sata_phy(regbase);
  	if (sata_phy_debug)
  		verify_sata_phy_config(regbase);
  
  	udelay(1000);
  	sata_set_glue_reg(regbase, SATA_CTL, P0_IRST_HARD_TXRX);
  	sata_set_glue_reg(regbase, SATA_CTL, P0_IRST_HARD_SYNTH);
  	sata_set_glue_reg(regbase, SATA_CTL, P1_IRST_HARD_TXRX);
  	sata_set_glue_reg(regbase, SATA_CTL, P1_IRST_HARD_SYNTH);
  	udelay(300);
  
  	/* Override reset in serial PHY mode */
  	sata_set_glue_reg(regbase, CR_REG_TIMER, CR_TIME_SCALE);
  	/* Set reset SATA */
  	sata_set_glue_reg(regbase, SATA_CTL, SATA_RST_N);
  	sata_set_glue_reg(regbase, SATA_CTL, M_CSYSREQ);
  	sata_set_glue_reg(regbase, SATA_CTL, S_CSYSREQ);
  
  	pr_debug("Waiting for PHYs to come up.
  ");
  	n = 10000;
  	do {
  		reg_val = nlm_read_sata_reg(regbase, SATA_STATUS);
  		if ((reg_val & P1_PHY_READY) && (reg_val & P0_PHY_READY))
  			break;
  		udelay(10);
  	} while (--n > 0);
  
  	if (reg_val  & P0_PHY_READY)
  		pr_info("PHY0 is up.
  ");
  	else
  		pr_info("PHY0 is down.
  ");
  	if (reg_val  & P1_PHY_READY)
  		pr_info("PHY1 is up.
  ");
  	else
  		pr_info("PHY1 is down.
  ");
  
  	pr_info("XLP AHCI Init Done.
  ");
  }
  
  static int __init nlm_ahci_init(void)
  {
  	int node;
  
  	if (!cpu_is_xlp9xx())
  		return 0;
  	for (node = 0; node < NLM_NR_NODES; node++)
  		if (nlm_node_present(node))
  			nlm_sata_firmware_init(node);
  	return 0;
  }
  
  static void nlm_sata_intr_ack(struct irq_data *data)
  {
  	u64 regbase;
  	u32 val;
  	int node;
  
  	node = data->irq / NLM_IRQS_PER_NODE;
  	regbase = nlm_get_sata_regbase(node);
  	val = nlm_read_sata_reg(regbase, SATA_INT);
  	sata_set_glue_reg(regbase, SATA_INT, val);
  }
  
  static void nlm_sata_fixup_bar(struct pci_dev *dev)
  {
  	dev->resource[5] = dev->resource[0];
  	memset(&dev->resource[0], 0, sizeof(dev->resource[0]));
  }
  
  static void nlm_sata_fixup_final(struct pci_dev *dev)
  {
  	u32 val;
  	u64 regbase;
  	int node;
  
  	/* Find end bridge function to find node */
  	node = xlp_socdev_to_node(dev);
  	regbase = nlm_get_sata_regbase(node);
  
  	/* clear pending interrupts and then enable them */
  	val = nlm_read_sata_reg(regbase, SATA_INT);
  	sata_set_glue_reg(regbase, SATA_INT, val);
  
  	/* Enable only the core interrupt */
  	sata_set_glue_reg(regbase, SATA_INT_MASK, 0x1);
  
  	dev->irq = nlm_irq_to_xirq(node, PIC_SATA_IRQ);
  	nlm_set_pic_extra_ack(node, PIC_SATA_IRQ, nlm_sata_intr_ack);
  }
  
  arch_initcall(nlm_ahci_init);
  
  DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_XLP9XX_SATA,
  		nlm_sata_fixup_bar);
  
  DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_XLP9XX_SATA,
  		nlm_sata_fixup_final);