Blame view

kernel/linux-rt-4.4.41/Documentation/DocBook/iio.tmpl 25.6 KB
5113f6f70   김현기   kernel add
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
  <?xml version="1.0" encoding="UTF-8"?>
  <!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
  	"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
  
  <book id="iioid">
    <bookinfo>
      <title>Industrial I/O driver developer's guide </title>
  
      <authorgroup>
        <author>
          <firstname>Daniel</firstname>
          <surname>Baluta</surname>
          <affiliation>
            <address>
              <email>daniel.baluta@intel.com</email>
            </address>
          </affiliation>
        </author>
      </authorgroup>
  
      <copyright>
        <year>2015</year>
        <holder>Intel Corporation</holder>
      </copyright>
  
      <legalnotice>
        <para>
          This documentation is free software; you can redistribute
          it and/or modify it under the terms of the GNU General Public
          License version 2.
        </para>
      </legalnotice>
    </bookinfo>
  
    <toc></toc>
  
    <chapter id="intro">
      <title>Introduction</title>
      <para>
        The main purpose of the Industrial I/O subsystem (IIO) is to provide
        support for devices that in some sense perform either analog-to-digital
        conversion (ADC) or digital-to-analog conversion (DAC) or both. The aim
        is to fill the gap between the somewhat similar hwmon and input
        subsystems.
        Hwmon is directed at low sample rate sensors used to monitor and
        control the system itself, like fan speed control or temperature
        measurement. Input is, as its name suggests, focused on human interaction
        input devices (keyboard, mouse, touchscreen). In some cases there is
        considerable overlap between these and IIO.
    </para>
    <para>
      Devices that fall into this category include:
      <itemizedlist>
        <listitem>
          analog to digital converters (ADCs)
        </listitem>
        <listitem>
          accelerometers
        </listitem>
        <listitem>
          capacitance to digital converters (CDCs)
        </listitem>
        <listitem>
          digital to analog converters (DACs)
        </listitem>
        <listitem>
          gyroscopes
        </listitem>
        <listitem>
          inertial measurement units (IMUs)
        </listitem>
        <listitem>
          color and light sensors
        </listitem>
        <listitem>
          magnetometers
        </listitem>
        <listitem>
          pressure sensors
        </listitem>
        <listitem>
          proximity sensors
        </listitem>
        <listitem>
          temperature sensors
        </listitem>
      </itemizedlist>
      Usually these sensors are connected via SPI or I2C. A common use case of the
      sensors devices is to have combined functionality (e.g. light plus proximity
      sensor).
    </para>
    </chapter>
    <chapter id='iiosubsys'>
      <title>Industrial I/O core</title>
      <para>
        The Industrial I/O core offers:
        <itemizedlist>
          <listitem>
           a unified framework for writing drivers for many different types of
           embedded sensors.
          </listitem>
          <listitem>
           a standard interface to user space applications manipulating sensors.
          </listitem>
        </itemizedlist>
        The implementation can be found under <filename>
        drivers/iio/industrialio-*</filename>
    </para>
    <sect1 id="iiodevice">
      <title> Industrial I/O devices </title>
  
  !Finclude/linux/iio/iio.h iio_dev
  !Fdrivers/iio/industrialio-core.c iio_device_alloc
  !Fdrivers/iio/industrialio-core.c iio_device_free
  !Fdrivers/iio/industrialio-core.c iio_device_register
  !Fdrivers/iio/industrialio-core.c iio_device_unregister
  
      <para>
        An IIO device usually corresponds to a single hardware sensor and it
        provides all the information needed by a driver handling a device.
        Let's first have a look at the functionality embedded in an IIO
        device then we will show how a device driver makes use of an IIO
        device.
      </para>
      <para>
          There are two ways for a user space application to interact
          with an IIO driver.
        <itemizedlist>
          <listitem>
            <filename>/sys/bus/iio/iio:deviceX/</filename>, this
            represents a hardware sensor and groups together the data
            channels of the same chip.
          </listitem>
          <listitem>
            <filename>/dev/iio:deviceX</filename>, character device node
            interface used for buffered data transfer and for events information
            retrieval.
          </listitem>
        </itemizedlist>
      </para>
      A typical IIO driver will register itself as an I2C or SPI driver and will
      create two routines, <function> probe </function> and <function> remove
      </function>. At <function>probe</function>:
      <itemizedlist>
      <listitem>call <function>iio_device_alloc</function>, which allocates memory
        for an IIO device.
      </listitem>
      <listitem> initialize IIO device fields with driver specific information
                (e.g. device name, device channels).
      </listitem>
      <listitem>call <function> iio_device_register</function>, this registers the
        device with the IIO core. After this call the device is ready to accept
        requests from user space applications.
      </listitem>
      </itemizedlist>
        At <function>remove</function>, we free the resources allocated in
        <function>probe</function> in reverse order:
      <itemizedlist>
      <listitem><function>iio_device_unregister</function>, unregister the device
        from the IIO core.
      </listitem>
      <listitem><function>iio_device_free</function>, free the memory allocated
        for the IIO device.
      </listitem>
      </itemizedlist>
  
      <sect2 id="iioattr"> <title> IIO device sysfs interface </title>
        <para>
          Attributes are sysfs files used to expose chip info and also allowing
          applications to set various configuration parameters. For device
          with index X, attributes can be found under
          <filename>/sys/bus/iio/iio:deviceX/ </filename> directory.
          Common attributes are:
          <itemizedlist>
            <listitem><filename>name</filename>, description of the physical
              chip.
            </listitem>
            <listitem><filename>dev</filename>, shows the major:minor pair
              associated with <filename>/dev/iio:deviceX</filename> node.
            </listitem>
            <listitem><filename>sampling_frequency_available</filename>,
              available discrete set of sampling frequency values for
              device.
            </listitem>
        </itemizedlist>
        Available standard attributes for IIO devices are described in the
        <filename>Documentation/ABI/testing/sysfs-bus-iio </filename> file
        in the Linux kernel sources.
        </para>
      </sect2>
      <sect2 id="iiochannel"> <title> IIO device channels </title>
  !Finclude/linux/iio/iio.h iio_chan_spec structure.
        <para>
          An IIO device channel is a representation of a data channel. An
          IIO device can have one or multiple channels. For example:
          <itemizedlist>
            <listitem>
            a thermometer sensor has one channel representing the
            temperature measurement.
            </listitem>
            <listitem>
            a light sensor with two channels indicating the measurements in
            the visible and infrared spectrum.
            </listitem>
            <listitem>
            an accelerometer can have up to 3 channels representing
            acceleration on X, Y and Z axes.
            </listitem>
          </itemizedlist>
        An IIO channel is described by the <type> struct iio_chan_spec
        </type>. A thermometer driver for the temperature sensor in the
        example above would have to describe its channel as follows:
        <programlisting>
        static const struct iio_chan_spec temp_channel[] = {
            {
                .type = IIO_TEMP,
                .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
            },
        };
  
        </programlisting>
        Channel sysfs attributes exposed to userspace are specified in
        the form of <emphasis>bitmasks</emphasis>. Depending on their
        shared info, attributes can be set in one of the following masks:
        <itemizedlist>
        <listitem><emphasis>info_mask_separate</emphasis>, attributes will
          be specific to this channel</listitem>
        <listitem><emphasis>info_mask_shared_by_type</emphasis>,
          attributes are shared by all channels of the same type</listitem>
        <listitem><emphasis>info_mask_shared_by_dir</emphasis>, attributes
          are shared by all channels of the same direction </listitem>
        <listitem><emphasis>info_mask_shared_by_all</emphasis>,
          attributes are shared by all channels</listitem>
        </itemizedlist>
        When there are multiple data channels per channel type we have two
        ways to distinguish between them:
        <itemizedlist>
        <listitem> set <emphasis> .modified</emphasis> field of <type>
          iio_chan_spec</type> to 1. Modifiers are specified using
          <emphasis>.channel2</emphasis> field of the same
          <type>iio_chan_spec</type> structure and are used to indicate a
          physically unique characteristic of the channel such as its direction
          or spectral response. For example, a light sensor can have two channels,
          one for infrared light and one for both infrared and visible light.
        </listitem>
        <listitem> set <emphasis>.indexed </emphasis> field of
          <type>iio_chan_spec</type> to 1. In this case the channel is
          simply another instance with an index specified by the
          <emphasis>.channel</emphasis> field.
        </listitem>
        </itemizedlist>
        Here is how we can make use of the channel's modifiers:
        <programlisting>
        static const struct iio_chan_spec light_channels[] = {
            {
                .type = IIO_INTENSITY,
                .modified = 1,
                .channel2 = IIO_MOD_LIGHT_IR,
                .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
                .info_mask_shared = BIT(IIO_CHAN_INFO_SAMP_FREQ),
            },
            {
                .type = IIO_INTENSITY,
                .modified = 1,
                .channel2 = IIO_MOD_LIGHT_BOTH,
                .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
                .info_mask_shared = BIT(IIO_CHAN_INFO_SAMP_FREQ),
            },
            {
                .type = IIO_LIGHT,
                .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
                .info_mask_shared = BIT(IIO_CHAN_INFO_SAMP_FREQ),
            },
  
        }
        </programlisting>
        This channel's definition will generate two separate sysfs files
        for raw data retrieval:
        <itemizedlist>
        <listitem>
        <filename>/sys/bus/iio/iio:deviceX/in_intensity_ir_raw</filename>
        </listitem>
        <listitem>
        <filename>/sys/bus/iio/iio:deviceX/in_intensity_both_raw</filename>
        </listitem>
        </itemizedlist>
        one file for processed data:
        <itemizedlist>
        <listitem>
        <filename>/sys/bus/iio/iio:deviceX/in_illuminance_input
        </filename>
        </listitem>
        </itemizedlist>
        and one shared sysfs file for sampling frequency:
        <itemizedlist>
        <listitem>
        <filename>/sys/bus/iio/iio:deviceX/sampling_frequency.
        </filename>
        </listitem>
        </itemizedlist>
        </para>
        <para>
        Here is how we can make use of the channel's indexing:
        <programlisting>
        static const struct iio_chan_spec light_channels[] = {
            {
                .type = IIO_VOLTAGE,
                .indexed = 1,
                .channel = 0,
                .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
            },
            {
                .type = IIO_VOLTAGE,
                .indexed = 1,
                .channel = 1,
                .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
            },
        }
        </programlisting>
        This will generate two separate attributes files for raw data
        retrieval:
        <itemizedlist>
        <listitem>
          <filename>/sys/bus/iio/devices/iio:deviceX/in_voltage0_raw</filename>,
            representing voltage measurement for channel 0.
        </listitem>
        <listitem>
          <filename>/sys/bus/iio/devices/iio:deviceX/in_voltage1_raw</filename>,
            representing voltage measurement for channel 1.
        </listitem>
        </itemizedlist>
        </para>
      </sect2>
    </sect1>
  
    <sect1 id="iiobuffer"> <title> Industrial I/O buffers </title>
  !Finclude/linux/iio/buffer.h iio_buffer
  !Edrivers/iio/industrialio-buffer.c
  
      <para>
      The Industrial I/O core offers a way for continuous data capture
      based on a trigger source. Multiple data channels can be read at once
      from <filename>/dev/iio:deviceX</filename> character device node,
      thus reducing the CPU load.
      </para>
  
      <sect2 id="iiobuffersysfs">
      <title>IIO buffer sysfs interface </title>
      <para>
        An IIO buffer has an associated attributes directory under <filename>
        /sys/bus/iio/iio:deviceX/buffer/</filename>. Here are the existing
        attributes:
        <itemizedlist>
        <listitem>
        <emphasis>length</emphasis>, the total number of data samples
        (capacity) that can be stored by the buffer.
        </listitem>
        <listitem>
          <emphasis>enable</emphasis>, activate buffer capture.
        </listitem>
        </itemizedlist>
  
      </para>
      </sect2>
      <sect2 id="iiobuffersetup"> <title> IIO buffer setup </title>
        <para>The meta information associated with a channel reading
          placed in a buffer is called a <emphasis> scan element </emphasis>.
          The important bits configuring scan elements are exposed to
          userspace applications via the <filename>
          /sys/bus/iio/iio:deviceX/scan_elements/</filename> directory. This
          file contains attributes of the following form:
        <itemizedlist>
        <listitem><emphasis>enable</emphasis>, used for enabling a channel.
          If and only if its attribute is non zero, then a triggered capture
          will contain data samples for this channel.
        </listitem>
        <listitem><emphasis>type</emphasis>, description of the scan element
          data storage within the buffer and hence the form in which it is
          read from user space. Format is <emphasis>
          [be|le]:[s|u]bits/storagebitsXrepeat[>>shift] </emphasis>.
          <itemizedlist>
          <listitem> <emphasis>be</emphasis> or <emphasis>le</emphasis>, specifies
            big or little endian.
          </listitem>
          <listitem>
          <emphasis>s </emphasis>or <emphasis>u</emphasis>, specifies if
            signed (2's complement) or unsigned.
          </listitem>
          <listitem><emphasis>bits</emphasis>, is the number of valid data
            bits.
          </listitem>
          <listitem><emphasis>storagebits</emphasis>, is the number of bits
            (after padding) that it occupies in the buffer.
          </listitem>
          <listitem>
          <emphasis>shift</emphasis>, if specified, is the shift that needs
            to be applied prior to masking out unused bits.
          </listitem>
          <listitem>
          <emphasis>repeat</emphasis>, specifies the number of bits/storagebits
          repetitions. When the repeat element is 0 or 1, then the repeat
          value is omitted.
          </listitem>
          </itemizedlist>
        </listitem>
        </itemizedlist>
        For example, a driver for a 3-axis accelerometer with 12 bit
        resolution where data is stored in two 8-bits registers as
        follows:
        <programlisting>
          7   6   5   4   3   2   1   0
        +---+---+---+---+---+---+---+---+
        |D3 |D2 |D1 |D0 | X | X | X | X | (LOW byte, address 0x06)
        +---+---+---+---+---+---+---+---+
  
          7   6   5   4   3   2   1   0
        +---+---+---+---+---+---+---+---+
        |D11|D10|D9 |D8 |D7 |D6 |D5 |D4 | (HIGH byte, address 0x07)
        +---+---+---+---+---+---+---+---+
        </programlisting>
  
        will have the following scan element type for each axis:
        <programlisting>
        $ cat /sys/bus/iio/devices/iio:device0/scan_elements/in_accel_y_type
        le:s12/16>>4
        </programlisting>
        A user space application will interpret data samples read from the
        buffer as two byte little endian signed data, that needs a 4 bits
        right shift before masking out the 12 valid bits of data.
      </para>
      <para>
        For implementing buffer support a driver should initialize the following
        fields in <type>iio_chan_spec</type> definition:
        <programlisting>
            struct iio_chan_spec {
                /* other members */
                int scan_index
                struct {
                    char sign;
                    u8 realbits;
                    u8 storagebits;
                    u8 shift;
                    u8 repeat;
                    enum iio_endian endianness;
                } scan_type;
            };
        </programlisting>
        The driver implementing the accelerometer described above will
        have the following channel definition:
        <programlisting>
        struct struct iio_chan_spec accel_channels[] = {
            {
              .type = IIO_ACCEL,
              .modified = 1,
              .channel2 = IIO_MOD_X,
              /* other stuff here */
              .scan_index = 0,
              .scan_type = {
                .sign = 's',
                .realbits = 12,
                .storgebits = 16,
                .shift = 4,
                .endianness = IIO_LE,
              },
          }
          /* similar for Y (with channel2 = IIO_MOD_Y, scan_index = 1)
           * and Z (with channel2 = IIO_MOD_Z, scan_index = 2) axis
           */
      }
      </programlisting>
      </para>
      <para>
      Here <emphasis> scan_index </emphasis> defines the order in which
      the enabled channels are placed inside the buffer. Channels with a lower
      scan_index will be placed before channels with a higher index. Each
      channel needs to have a unique scan_index.
      </para>
      <para>
      Setting scan_index to -1 can be used to indicate that the specific
      channel does not support buffered capture. In this case no entries will
      be created for the channel in the scan_elements directory.
      </para>
      </sect2>
    </sect1>
  
    <sect1 id="iiotrigger"> <title> Industrial I/O triggers  </title>
  !Finclude/linux/iio/trigger.h iio_trigger
  !Edrivers/iio/industrialio-trigger.c
      <para>
        In many situations it is useful for a driver to be able to
        capture data based on some external event (trigger) as opposed
        to periodically polling for data. An IIO trigger can be provided
        by a device driver that also has an IIO device based on hardware
        generated events (e.g. data ready or threshold exceeded) or
        provided by a separate driver from an independent interrupt
        source (e.g. GPIO line connected to some external system, timer
        interrupt or user space writing a specific file in sysfs). A
        trigger may initiate data capture for a number of sensors and
        also it may be completely unrelated to the sensor itself.
      </para>
  
      <sect2 id="iiotrigsysfs"> <title> IIO trigger sysfs interface </title>
        There are two locations in sysfs related to triggers:
        <itemizedlist>
          <listitem><filename>/sys/bus/iio/devices/triggerY</filename>,
            this file is created once an IIO trigger is registered with
            the IIO core and corresponds to trigger with index Y. Because
            triggers can be very different depending on type there are few
            standard attributes that we can describe here:
            <itemizedlist>
              <listitem>
                <emphasis>name</emphasis>, trigger name that can be later
                  used for association with a device.
              </listitem>
              <listitem>
              <emphasis>sampling_frequency</emphasis>, some timer based
                triggers use this attribute to specify the frequency for
                trigger calls.
              </listitem>
            </itemizedlist>
          </listitem>
          <listitem>
            <filename>/sys/bus/iio/devices/iio:deviceX/trigger/</filename>, this
            directory is created once the device supports a triggered
            buffer. We can associate a trigger with our device by writing
            the trigger's name in the <filename>current_trigger</filename> file.
          </listitem>
        </itemizedlist>
      </sect2>
  
      <sect2 id="iiotrigattr"> <title> IIO trigger setup</title>
  
      <para>
        Let's see a simple example of how to setup a trigger to be used
        by a driver.
  
        <programlisting>
        struct iio_trigger_ops trigger_ops = {
            .set_trigger_state = sample_trigger_state,
            .validate_device = sample_validate_device,
        }
  
        struct iio_trigger *trig;
  
        /* first, allocate memory for our trigger */
        trig = iio_trigger_alloc(dev, "trig-%s-%d", name, idx);
  
        /* setup trigger operations field */
        trig->ops = &amp;trigger_ops;
  
        /* now register the trigger with the IIO core */
        iio_trigger_register(trig);
        </programlisting>
      </para>
      </sect2>
  
      <sect2 id="iiotrigsetup"> <title> IIO trigger ops</title>
  !Finclude/linux/iio/trigger.h iio_trigger_ops
       <para>
          Notice that a trigger has a set of operations attached:
          <itemizedlist>
          <listitem>
            <function>set_trigger_state</function>, switch the trigger on/off
            on demand.
          </listitem>
          <listitem>
            <function>validate_device</function>, function to validate the
            device when the current trigger gets changed.
          </listitem>
          </itemizedlist>
        </para>
      </sect2>
    </sect1>
    <sect1 id="iiotriggered_buffer">
      <title> Industrial I/O triggered buffers </title>
      <para>
      Now that we know what buffers and triggers are let's see how they
      work together.
      </para>
      <sect2 id="iiotrigbufsetup"> <title> IIO triggered buffer setup</title>
  !Edrivers/iio/buffer/industrialio-triggered-buffer.c
  !Finclude/linux/iio/iio.h iio_buffer_setup_ops
  
  
      <para>
      A typical triggered buffer setup looks like this:
      <programlisting>
      const struct iio_buffer_setup_ops sensor_buffer_setup_ops = {
        .preenable    = sensor_buffer_preenable,
        .postenable   = sensor_buffer_postenable,
        .postdisable  = sensor_buffer_postdisable,
        .predisable   = sensor_buffer_predisable,
      };
  
      irqreturn_t sensor_iio_pollfunc(int irq, void *p)
      {
          pf->timestamp = iio_get_time_ns();
          return IRQ_WAKE_THREAD;
      }
  
      irqreturn_t sensor_trigger_handler(int irq, void *p)
      {
          u16 buf[8];
          int i = 0;
  
          /* read data for each active channel */
          for_each_set_bit(bit, active_scan_mask, masklength)
              buf[i++] = sensor_get_data(bit)
  
          iio_push_to_buffers_with_timestamp(indio_dev, buf, timestamp);
  
          iio_trigger_notify_done(trigger);
          return IRQ_HANDLED;
      }
  
      /* setup triggered buffer, usually in probe function */
      iio_triggered_buffer_setup(indio_dev, sensor_iio_polfunc,
                                 sensor_trigger_handler,
                                 sensor_buffer_setup_ops);
      </programlisting>
      </para>
      The important things to notice here are:
      <itemizedlist>
      <listitem><function> iio_buffer_setup_ops</function>, the buffer setup
      functions to be called at predefined points in the buffer configuration
      sequence (e.g. before enable, after disable). If not specified, the
      IIO core uses the default <type>iio_triggered_buffer_setup_ops</type>.
      </listitem>
      <listitem><function>sensor_iio_pollfunc</function>, the function that
      will be used as top half of poll function. It should do as little
      processing as possible, because it runs in interrupt context. The most
      common operation is recording of the current timestamp and for this reason
      one can use the IIO core defined <function>iio_pollfunc_store_time
      </function> function.
      </listitem>
      <listitem><function>sensor_trigger_handler</function>, the function that
      will be used as bottom half of the poll function. This runs in the
      context of a kernel thread and all the processing takes place here.
      It usually reads data from the device and stores it in the internal
      buffer together with the timestamp recorded in the top half.
      </listitem>
      </itemizedlist>
      </sect2>
    </sect1>
    </chapter>
    <chapter id='iioresources'>
      <title> Resources </title>
        IIO core may change during time so the best documentation to read is the
        source code. There are several locations where you should look:
        <itemizedlist>
          <listitem>
            <filename>drivers/iio/</filename>, contains the IIO core plus
            and directories for each sensor type (e.g. accel, magnetometer,
            etc.)
          </listitem>
          <listitem>
            <filename>include/linux/iio/</filename>, contains the header
            files, nice to read for the internal kernel interfaces.
          </listitem>
          <listitem>
          <filename>include/uapi/linux/iio/</filename>, contains files to be
            used by user space applications.
          </listitem>
          <listitem>
           <filename>tools/iio/</filename>, contains tools for rapidly
            testing buffers, events and device creation.
          </listitem>
          <listitem>
            <filename>drivers/staging/iio/</filename>, contains code for some
            drivers or experimental features that are not yet mature enough
            to be moved out.
          </listitem>
        </itemizedlist>
      <para>
      Besides the code, there are some good online documentation sources:
      <itemizedlist>
      <listitem>
        <ulink url="http://marc.info/?l=linux-iio"> Industrial I/O mailing
        list </ulink>
      </listitem>
      <listitem>
        <ulink url="http://wiki.analog.com/software/linux/docs/iio/iio">
        Analog Device IIO wiki page </ulink>
      </listitem>
      <listitem>
        <ulink url="https://fosdem.org/2015/schedule/event/iiosdr/">
        Using the Linux IIO framework for SDR, Lars-Peter Clausen's
        presentation at FOSDEM </ulink>
      </listitem>
      </itemizedlist>
      </para>
    </chapter>
  </book>
  
  <!--
  vim: softtabstop=2:shiftwidth=2:expandtab:textwidth=72
  -->