Blame view

kernel/linux-rt-4.4.41/Documentation/vm/numa_memory_policy.txt 22.6 KB
5113f6f70   김현기   kernel add
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
  
  What is Linux Memory Policy?
  
  In the Linux kernel, "memory policy" determines from which node the kernel will
  allocate memory in a NUMA system or in an emulated NUMA system.  Linux has
  supported platforms with Non-Uniform Memory Access architectures since 2.4.?.
  The current memory policy support was added to Linux 2.6 around May 2004.  This
  document attempts to describe the concepts and APIs of the 2.6 memory policy
  support.
  
  Memory policies should not be confused with cpusets
  (Documentation/cgroups/cpusets.txt)
  which is an administrative mechanism for restricting the nodes from which
  memory may be allocated by a set of processes. Memory policies are a
  programming interface that a NUMA-aware application can take advantage of.  When
  both cpusets and policies are applied to a task, the restrictions of the cpuset
  takes priority.  See "MEMORY POLICIES AND CPUSETS" below for more details.
  
  MEMORY POLICY CONCEPTS
  
  Scope of Memory Policies
  
  The Linux kernel supports _scopes_ of memory policy, described here from
  most general to most specific:
  
      System Default Policy:  this policy is "hard coded" into the kernel.  It
      is the policy that governs all page allocations that aren't controlled
      by one of the more specific policy scopes discussed below.  When the
      system is "up and running", the system default policy will use "local
      allocation" described below.  However, during boot up, the system
      default policy will be set to interleave allocations across all nodes
      with "sufficient" memory, so as not to overload the initial boot node
      with boot-time allocations.
  
      Task/Process Policy:  this is an optional, per-task policy.  When defined
      for a specific task, this policy controls all page allocations made by or
      on behalf of the task that aren't controlled by a more specific scope.
      If a task does not define a task policy, then all page allocations that
      would have been controlled by the task policy "fall back" to the System
      Default Policy.
  
  	The task policy applies to the entire address space of a task. Thus,
  	it is inheritable, and indeed is inherited, across both fork()
  	[clone() w/o the CLONE_VM flag] and exec*().  This allows a parent task
  	to establish the task policy for a child task exec()'d from an
  	executable image that has no awareness of memory policy.  See the
  	MEMORY POLICY APIS section, below, for an overview of the system call
  	that a task may use to set/change its task/process policy.
  
  	In a multi-threaded task, task policies apply only to the thread
  	[Linux kernel task] that installs the policy and any threads
  	subsequently created by that thread.  Any sibling threads existing
  	at the time a new task policy is installed retain their current
  	policy.
  
  	A task policy applies only to pages allocated after the policy is
  	installed.  Any pages already faulted in by the task when the task
  	changes its task policy remain where they were allocated based on
  	the policy at the time they were allocated.
  
      VMA Policy:  A "VMA" or "Virtual Memory Area" refers to a range of a task's
      virtual address space.  A task may define a specific policy for a range
      of its virtual address space.   See the MEMORY POLICIES APIS section,
      below, for an overview of the mbind() system call used to set a VMA
      policy.
  
      A VMA policy will govern the allocation of pages that back this region of
      the address space.  Any regions of the task's address space that don't
      have an explicit VMA policy will fall back to the task policy, which may
      itself fall back to the System Default Policy.
  
      VMA policies have a few complicating details:
  
  	VMA policy applies ONLY to anonymous pages.  These include pages
  	allocated for anonymous segments, such as the task stack and heap, and
  	any regions of the address space mmap()ed with the MAP_ANONYMOUS flag.
  	If a VMA policy is applied to a file mapping, it will be ignored if
  	the mapping used the MAP_SHARED flag.  If the file mapping used the
  	MAP_PRIVATE flag, the VMA policy will only be applied when an
  	anonymous page is allocated on an attempt to write to the mapping--
  	i.e., at Copy-On-Write.
  
  	VMA policies are shared between all tasks that share a virtual address
  	space--a.k.a. threads--independent of when the policy is installed; and
  	they are inherited across fork().  However, because VMA policies refer
  	to a specific region of a task's address space, and because the address
  	space is discarded and recreated on exec*(), VMA policies are NOT
  	inheritable across exec().  Thus, only NUMA-aware applications may
  	use VMA policies.
  
  	A task may install a new VMA policy on a sub-range of a previously
  	mmap()ed region.  When this happens, Linux splits the existing virtual
  	memory area into 2 or 3 VMAs, each with it's own policy.
  
  	By default, VMA policy applies only to pages allocated after the policy
  	is installed.  Any pages already faulted into the VMA range remain
  	where they were allocated based on the policy at the time they were
  	allocated.  However, since 2.6.16, Linux supports page migration via
  	the mbind() system call, so that page contents can be moved to match
  	a newly installed policy.
  
      Shared Policy:  Conceptually, shared policies apply to "memory objects"
      mapped shared into one or more tasks' distinct address spaces.  An
      application installs a shared policies the same way as VMA policies--using
      the mbind() system call specifying a range of virtual addresses that map
      the shared object.  However, unlike VMA policies, which can be considered
      to be an attribute of a range of a task's address space, shared policies
      apply directly to the shared object.  Thus, all tasks that attach to the
      object share the policy, and all pages allocated for the shared object,
      by any task, will obey the shared policy.
  
  	As of 2.6.22, only shared memory segments, created by shmget() or
  	mmap(MAP_ANONYMOUS|MAP_SHARED), support shared policy.  When shared
  	policy support was added to Linux, the associated data structures were
  	added to hugetlbfs shmem segments.  At the time, hugetlbfs did not
  	support allocation at fault time--a.k.a lazy allocation--so hugetlbfs
  	shmem segments were never "hooked up" to the shared policy support.
  	Although hugetlbfs segments now support lazy allocation, their support
  	for shared policy has not been completed.
  
  	As mentioned above [re: VMA policies], allocations of page cache
  	pages for regular files mmap()ed with MAP_SHARED ignore any VMA
  	policy installed on the virtual address range backed by the shared
  	file mapping.  Rather, shared page cache pages, including pages backing
  	private mappings that have not yet been written by the task, follow
  	task policy, if any, else System Default Policy.
  
  	The shared policy infrastructure supports different policies on subset
  	ranges of the shared object.  However, Linux still splits the VMA of
  	the task that installs the policy for each range of distinct policy.
  	Thus, different tasks that attach to a shared memory segment can have
  	different VMA configurations mapping that one shared object.  This
  	can be seen by examining the /proc/<pid>/numa_maps of tasks sharing
  	a shared memory region, when one task has installed shared policy on
  	one or more ranges of the region.
  
  Components of Memory Policies
  
      A Linux memory policy consists of a "mode", optional mode flags, and an
      optional set of nodes.  The mode determines the behavior of the policy,
      the optional mode flags determine the behavior of the mode, and the
      optional set of nodes can be viewed as the arguments to the policy
      behavior.
  
     Internally, memory policies are implemented by a reference counted
     structure, struct mempolicy.  Details of this structure will be discussed
     in context, below, as required to explain the behavior.
  
     Linux memory policy supports the following 4 behavioral modes:
  
  	Default Mode--MPOL_DEFAULT:  This mode is only used in the memory
  	policy APIs.  Internally, MPOL_DEFAULT is converted to the NULL
  	memory policy in all policy scopes.  Any existing non-default policy
  	will simply be removed when MPOL_DEFAULT is specified.  As a result,
  	MPOL_DEFAULT means "fall back to the next most specific policy scope."
  
  	    For example, a NULL or default task policy will fall back to the
  	    system default policy.  A NULL or default vma policy will fall
  	    back to the task policy.
  
  	    When specified in one of the memory policy APIs, the Default mode
  	    does not use the optional set of nodes.
  
  	    It is an error for the set of nodes specified for this policy to
  	    be non-empty.
  
  	MPOL_BIND:  This mode specifies that memory must come from the
  	set of nodes specified by the policy.  Memory will be allocated from
  	the node in the set with sufficient free memory that is closest to
  	the node where the allocation takes place.
  
  	MPOL_PREFERRED:  This mode specifies that the allocation should be
  	attempted from the single node specified in the policy.  If that
  	allocation fails, the kernel will search other nodes, in order of
  	increasing distance from the preferred node based on information
  	provided by the platform firmware.
  
  	    Internally, the Preferred policy uses a single node--the
  	    preferred_node member of struct mempolicy.  When the internal
  	    mode flag MPOL_F_LOCAL is set, the preferred_node is ignored and
  	    the policy is interpreted as local allocation.  "Local" allocation
  	    policy can be viewed as a Preferred policy that starts at the node
  	    containing the cpu where the allocation takes place.
  
  	    It is possible for the user to specify that local allocation is
  	    always preferred by passing an empty nodemask with this mode.
  	    If an empty nodemask is passed, the policy cannot use the
  	    MPOL_F_STATIC_NODES or MPOL_F_RELATIVE_NODES flags described
  	    below.
  
  	MPOL_INTERLEAVED:  This mode specifies that page allocations be
  	interleaved, on a page granularity, across the nodes specified in
  	the policy.  This mode also behaves slightly differently, based on
  	the context where it is used:
  
  	    For allocation of anonymous pages and shared memory pages,
  	    Interleave mode indexes the set of nodes specified by the policy
  	    using the page offset of the faulting address into the segment
  	    [VMA] containing the address modulo the number of nodes specified
  	    by the policy.  It then attempts to allocate a page, starting at
  	    the selected node, as if the node had been specified by a Preferred
  	    policy or had been selected by a local allocation.  That is,
  	    allocation will follow the per node zonelist.
  
  	    For allocation of page cache pages, Interleave mode indexes the set
  	    of nodes specified by the policy using a node counter maintained
  	    per task.  This counter wraps around to the lowest specified node
  	    after it reaches the highest specified node.  This will tend to
  	    spread the pages out over the nodes specified by the policy based
  	    on the order in which they are allocated, rather than based on any
  	    page offset into an address range or file.  During system boot up,
  	    the temporary interleaved system default policy works in this
  	    mode.
  
     Linux memory policy supports the following optional mode flags:
  
  	MPOL_F_STATIC_NODES:  This flag specifies that the nodemask passed by
  	the user should not be remapped if the task or VMA's set of allowed
  	nodes changes after the memory policy has been defined.
  
  	    Without this flag, anytime a mempolicy is rebound because of a
  	    change in the set of allowed nodes, the node (Preferred) or
  	    nodemask (Bind, Interleave) is remapped to the new set of
  	    allowed nodes.  This may result in nodes being used that were
  	    previously undesired.
  
  	    With this flag, if the user-specified nodes overlap with the
  	    nodes allowed by the task's cpuset, then the memory policy is
  	    applied to their intersection.  If the two sets of nodes do not
  	    overlap, the Default policy is used.
  
  	    For example, consider a task that is attached to a cpuset with
  	    mems 1-3 that sets an Interleave policy over the same set.  If
  	    the cpuset's mems change to 3-5, the Interleave will now occur
  	    over nodes 3, 4, and 5.  With this flag, however, since only node
  	    3 is allowed from the user's nodemask, the "interleave" only
  	    occurs over that node.  If no nodes from the user's nodemask are
  	    now allowed, the Default behavior is used.
  
  	    MPOL_F_STATIC_NODES cannot be combined with the
  	    MPOL_F_RELATIVE_NODES flag.  It also cannot be used for
  	    MPOL_PREFERRED policies that were created with an empty nodemask
  	    (local allocation).
  
  	MPOL_F_RELATIVE_NODES:  This flag specifies that the nodemask passed
  	by the user will be mapped relative to the set of the task or VMA's
  	set of allowed nodes.  The kernel stores the user-passed nodemask,
  	and if the allowed nodes changes, then that original nodemask will
  	be remapped relative to the new set of allowed nodes.
  
  	    Without this flag (and without MPOL_F_STATIC_NODES), anytime a
  	    mempolicy is rebound because of a change in the set of allowed
  	    nodes, the node (Preferred) or nodemask (Bind, Interleave) is
  	    remapped to the new set of allowed nodes.  That remap may not
  	    preserve the relative nature of the user's passed nodemask to its
  	    set of allowed nodes upon successive rebinds: a nodemask of
  	    1,3,5 may be remapped to 7-9 and then to 1-3 if the set of
  	    allowed nodes is restored to its original state.
  
  	    With this flag, the remap is done so that the node numbers from
  	    the user's passed nodemask are relative to the set of allowed
  	    nodes.  In other words, if nodes 0, 2, and 4 are set in the user's
  	    nodemask, the policy will be effected over the first (and in the
  	    Bind or Interleave case, the third and fifth) nodes in the set of
  	    allowed nodes.  The nodemask passed by the user represents nodes
  	    relative to task or VMA's set of allowed nodes.
  
  	    If the user's nodemask includes nodes that are outside the range
  	    of the new set of allowed nodes (for example, node 5 is set in
  	    the user's nodemask when the set of allowed nodes is only 0-3),
  	    then the remap wraps around to the beginning of the nodemask and,
  	    if not already set, sets the node in the mempolicy nodemask.
  
  	    For example, consider a task that is attached to a cpuset with
  	    mems 2-5 that sets an Interleave policy over the same set with
  	    MPOL_F_RELATIVE_NODES.  If the cpuset's mems change to 3-7, the
  	    interleave now occurs over nodes 3,5-7.  If the cpuset's mems
  	    then change to 0,2-3,5, then the interleave occurs over nodes
  	    0,2-3,5.
  
  	    Thanks to the consistent remapping, applications preparing
  	    nodemasks to specify memory policies using this flag should
  	    disregard their current, actual cpuset imposed memory placement
  	    and prepare the nodemask as if they were always located on
  	    memory nodes 0 to N-1, where N is the number of memory nodes the
  	    policy is intended to manage.  Let the kernel then remap to the
  	    set of memory nodes allowed by the task's cpuset, as that may
  	    change over time.
  
  	    MPOL_F_RELATIVE_NODES cannot be combined with the
  	    MPOL_F_STATIC_NODES flag.  It also cannot be used for
  	    MPOL_PREFERRED policies that were created with an empty nodemask
  	    (local allocation).
  
  MEMORY POLICY REFERENCE COUNTING
  
  To resolve use/free races, struct mempolicy contains an atomic reference
  count field.  Internal interfaces, mpol_get()/mpol_put() increment and
  decrement this reference count, respectively.  mpol_put() will only free
  the structure back to the mempolicy kmem cache when the reference count
  goes to zero.
  
  When a new memory policy is allocated, its reference count is initialized
  to '1', representing the reference held by the task that is installing the
  new policy.  When a pointer to a memory policy structure is stored in another
  structure, another reference is added, as the task's reference will be dropped
  on completion of the policy installation.
  
  During run-time "usage" of the policy, we attempt to minimize atomic operations
  on the reference count, as this can lead to cache lines bouncing between cpus
  and NUMA nodes.  "Usage" here means one of the following:
  
  1) querying of the policy, either by the task itself [using the get_mempolicy()
     API discussed below] or by another task using the /proc/<pid>/numa_maps
     interface.
  
  2) examination of the policy to determine the policy mode and associated node
     or node lists, if any, for page allocation.  This is considered a "hot
     path".  Note that for MPOL_BIND, the "usage" extends across the entire
     allocation process, which may sleep during page reclaimation, because the
     BIND policy nodemask is used, by reference, to filter ineligible nodes.
  
  We can avoid taking an extra reference during the usages listed above as
  follows:
  
  1) we never need to get/free the system default policy as this is never
     changed nor freed, once the system is up and running.
  
  2) for querying the policy, we do not need to take an extra reference on the
     target task's task policy nor vma policies because we always acquire the
     task's mm's mmap_sem for read during the query.  The set_mempolicy() and
     mbind() APIs [see below] always acquire the mmap_sem for write when
     installing or replacing task or vma policies.  Thus, there is no possibility
     of a task or thread freeing a policy while another task or thread is
     querying it.
  
  3) Page allocation usage of task or vma policy occurs in the fault path where
     we hold them mmap_sem for read.  Again, because replacing the task or vma
     policy requires that the mmap_sem be held for write, the policy can't be
     freed out from under us while we're using it for page allocation.
  
  4) Shared policies require special consideration.  One task can replace a
     shared memory policy while another task, with a distinct mmap_sem, is
     querying or allocating a page based on the policy.  To resolve this
     potential race, the shared policy infrastructure adds an extra reference
     to the shared policy during lookup while holding a spin lock on the shared
     policy management structure.  This requires that we drop this extra
     reference when we're finished "using" the policy.  We must drop the
     extra reference on shared policies in the same query/allocation paths
     used for non-shared policies.  For this reason, shared policies are marked
     as such, and the extra reference is dropped "conditionally"--i.e., only
     for shared policies.
  
     Because of this extra reference counting, and because we must lookup
     shared policies in a tree structure under spinlock, shared policies are
     more expensive to use in the page allocation path.  This is especially
     true for shared policies on shared memory regions shared by tasks running
     on different NUMA nodes.  This extra overhead can be avoided by always
     falling back to task or system default policy for shared memory regions,
     or by prefaulting the entire shared memory region into memory and locking
     it down.  However, this might not be appropriate for all applications.
  
  MEMORY POLICY APIs
  
  Linux supports 3 system calls for controlling memory policy.  These APIS
  always affect only the calling task, the calling task's address space, or
  some shared object mapped into the calling task's address space.
  
  	Note:  the headers that define these APIs and the parameter data types
  	for user space applications reside in a package that is not part of
  	the Linux kernel.  The kernel system call interfaces, with the 'sys_'
  	prefix, are defined in <linux/syscalls.h>; the mode and flag
  	definitions are defined in <linux/mempolicy.h>.
  
  Set [Task] Memory Policy:
  
  	long set_mempolicy(int mode, const unsigned long *nmask,
  					unsigned long maxnode);
  
  	Set's the calling task's "task/process memory policy" to mode
  	specified by the 'mode' argument and the set of nodes defined
  	by 'nmask'.  'nmask' points to a bit mask of node ids containing
  	at least 'maxnode' ids.  Optional mode flags may be passed by
  	combining the 'mode' argument with the flag (for example:
  	MPOL_INTERLEAVE | MPOL_F_STATIC_NODES).
  
  	See the set_mempolicy(2) man page for more details
  
  
  Get [Task] Memory Policy or Related Information
  
  	long get_mempolicy(int *mode,
  			   const unsigned long *nmask, unsigned long maxnode,
  			   void *addr, int flags);
  
  	Queries the "task/process memory policy" of the calling task, or
  	the policy or location of a specified virtual address, depending
  	on the 'flags' argument.
  
  	See the get_mempolicy(2) man page for more details
  
  
  Install VMA/Shared Policy for a Range of Task's Address Space
  
  	long mbind(void *start, unsigned long len, int mode,
  		   const unsigned long *nmask, unsigned long maxnode,
  		   unsigned flags);
  
  	mbind() installs the policy specified by (mode, nmask, maxnodes) as
  	a VMA policy for the range of the calling task's address space
  	specified by the 'start' and 'len' arguments.  Additional actions
  	may be requested via the 'flags' argument.
  
  	See the mbind(2) man page for more details.
  
  MEMORY POLICY COMMAND LINE INTERFACE
  
  Although not strictly part of the Linux implementation of memory policy,
  a command line tool, numactl(8), exists that allows one to:
  
  + set the task policy for a specified program via set_mempolicy(2), fork(2) and
    exec(2)
  
  + set the shared policy for a shared memory segment via mbind(2)
  
  The numactl(8) tool is packaged with the run-time version of the library
  containing the memory policy system call wrappers.  Some distributions
  package the headers and compile-time libraries in a separate development
  package.
  
  
  MEMORY POLICIES AND CPUSETS
  
  Memory policies work within cpusets as described above.  For memory policies
  that require a node or set of nodes, the nodes are restricted to the set of
  nodes whose memories are allowed by the cpuset constraints.  If the nodemask
  specified for the policy contains nodes that are not allowed by the cpuset and
  MPOL_F_RELATIVE_NODES is not used, the intersection of the set of nodes
  specified for the policy and the set of nodes with memory is used.  If the
  result is the empty set, the policy is considered invalid and cannot be
  installed.  If MPOL_F_RELATIVE_NODES is used, the policy's nodes are mapped
  onto and folded into the task's set of allowed nodes as previously described.
  
  The interaction of memory policies and cpusets can be problematic when tasks
  in two cpusets share access to a memory region, such as shared memory segments
  created by shmget() of mmap() with the MAP_ANONYMOUS and MAP_SHARED flags, and
  any of the tasks install shared policy on the region, only nodes whose
  memories are allowed in both cpusets may be used in the policies.  Obtaining
  this information requires "stepping outside" the memory policy APIs to use the
  cpuset information and requires that one know in what cpusets other task might
  be attaching to the shared region.  Furthermore, if the cpusets' allowed
  memory sets are disjoint, "local" allocation is the only valid policy.