Blame view

kernel/linux-rt-4.4.41/fs/f2fs/inode.c 11.5 KB
5113f6f70   김현기   kernel add
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
  /*
   * fs/f2fs/inode.c
   *
   * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   *             http://www.samsung.com/
   *
   * This program is free software; you can redistribute it and/or modify
   * it under the terms of the GNU General Public License version 2 as
   * published by the Free Software Foundation.
   */
  #include <linux/fs.h>
  #include <linux/f2fs_fs.h>
  #include <linux/buffer_head.h>
  #include <linux/writeback.h>
  
  #include "f2fs.h"
  #include "node.h"
  
  #include <trace/events/f2fs.h>
  
  void f2fs_set_inode_flags(struct inode *inode)
  {
  	unsigned int flags = F2FS_I(inode)->i_flags;
  	unsigned int new_fl = 0;
  
  	if (flags & FS_SYNC_FL)
  		new_fl |= S_SYNC;
  	if (flags & FS_APPEND_FL)
  		new_fl |= S_APPEND;
  	if (flags & FS_IMMUTABLE_FL)
  		new_fl |= S_IMMUTABLE;
  	if (flags & FS_NOATIME_FL)
  		new_fl |= S_NOATIME;
  	if (flags & FS_DIRSYNC_FL)
  		new_fl |= S_DIRSYNC;
  	inode_set_flags(inode, new_fl,
  			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  }
  
  static void __get_inode_rdev(struct inode *inode, struct f2fs_inode *ri)
  {
  	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
  			S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
  		if (ri->i_addr[0])
  			inode->i_rdev =
  				old_decode_dev(le32_to_cpu(ri->i_addr[0]));
  		else
  			inode->i_rdev =
  				new_decode_dev(le32_to_cpu(ri->i_addr[1]));
  	}
  }
  
  static bool __written_first_block(struct f2fs_inode *ri)
  {
  	block_t addr = le32_to_cpu(ri->i_addr[0]);
  
  	if (addr != NEW_ADDR && addr != NULL_ADDR)
  		return true;
  	return false;
  }
  
  static void __set_inode_rdev(struct inode *inode, struct f2fs_inode *ri)
  {
  	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  		if (old_valid_dev(inode->i_rdev)) {
  			ri->i_addr[0] =
  				cpu_to_le32(old_encode_dev(inode->i_rdev));
  			ri->i_addr[1] = 0;
  		} else {
  			ri->i_addr[0] = 0;
  			ri->i_addr[1] =
  				cpu_to_le32(new_encode_dev(inode->i_rdev));
  			ri->i_addr[2] = 0;
  		}
  	}
  }
  
  static void __recover_inline_status(struct inode *inode, struct page *ipage)
  {
  	void *inline_data = inline_data_addr(ipage);
  	__le32 *start = inline_data;
  	__le32 *end = start + MAX_INLINE_DATA / sizeof(__le32);
  
  	while (start < end) {
  		if (*start++) {
  			f2fs_wait_on_page_writeback(ipage, NODE);
  
  			set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
  			set_raw_inline(F2FS_I(inode), F2FS_INODE(ipage));
  			set_page_dirty(ipage);
  			return;
  		}
  	}
  	return;
  }
  
  static int do_read_inode(struct inode *inode)
  {
  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  	struct f2fs_inode_info *fi = F2FS_I(inode);
  	struct page *node_page;
  	struct f2fs_inode *ri;
  
  	/* Check if ino is within scope */
  	if (check_nid_range(sbi, inode->i_ino)) {
  		f2fs_msg(inode->i_sb, KERN_ERR, "bad inode number: %lu",
  			 (unsigned long) inode->i_ino);
  		WARN_ON(1);
  		return -EINVAL;
  	}
  
  	node_page = get_node_page(sbi, inode->i_ino);
  	if (IS_ERR(node_page))
  		return PTR_ERR(node_page);
  
  	ri = F2FS_INODE(node_page);
  
  	inode->i_mode = le16_to_cpu(ri->i_mode);
  	i_uid_write(inode, le32_to_cpu(ri->i_uid));
  	i_gid_write(inode, le32_to_cpu(ri->i_gid));
  	set_nlink(inode, le32_to_cpu(ri->i_links));
  	inode->i_size = le64_to_cpu(ri->i_size);
  	inode->i_blocks = le64_to_cpu(ri->i_blocks);
  
  	inode->i_atime.tv_sec = le64_to_cpu(ri->i_atime);
  	inode->i_ctime.tv_sec = le64_to_cpu(ri->i_ctime);
  	inode->i_mtime.tv_sec = le64_to_cpu(ri->i_mtime);
  	inode->i_atime.tv_nsec = le32_to_cpu(ri->i_atime_nsec);
  	inode->i_ctime.tv_nsec = le32_to_cpu(ri->i_ctime_nsec);
  	inode->i_mtime.tv_nsec = le32_to_cpu(ri->i_mtime_nsec);
  	inode->i_generation = le32_to_cpu(ri->i_generation);
  
  	fi->i_current_depth = le32_to_cpu(ri->i_current_depth);
  	fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid);
  	fi->i_flags = le32_to_cpu(ri->i_flags);
  	fi->flags = 0;
  	fi->i_advise = ri->i_advise;
  	fi->i_pino = le32_to_cpu(ri->i_pino);
  	fi->i_dir_level = ri->i_dir_level;
  
  	f2fs_init_extent_tree(inode, &ri->i_ext);
  
  	get_inline_info(fi, ri);
  
  	/* check data exist */
  	if (f2fs_has_inline_data(inode) && !f2fs_exist_data(inode))
  		__recover_inline_status(inode, node_page);
  
  	/* get rdev by using inline_info */
  	__get_inode_rdev(inode, ri);
  
  	if (__written_first_block(ri))
  		set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
  
  	f2fs_put_page(node_page, 1);
  
  	stat_inc_inline_xattr(inode);
  	stat_inc_inline_inode(inode);
  	stat_inc_inline_dir(inode);
  
  	return 0;
  }
  
  struct inode *f2fs_iget(struct super_block *sb, unsigned long ino)
  {
  	struct f2fs_sb_info *sbi = F2FS_SB(sb);
  	struct inode *inode;
  	int ret = 0;
  
  	inode = iget_locked(sb, ino);
  	if (!inode)
  		return ERR_PTR(-ENOMEM);
  
  	if (!(inode->i_state & I_NEW)) {
  		trace_f2fs_iget(inode);
  		return inode;
  	}
  	if (ino == F2FS_NODE_INO(sbi) || ino == F2FS_META_INO(sbi))
  		goto make_now;
  
  	ret = do_read_inode(inode);
  	if (ret)
  		goto bad_inode;
  make_now:
  	if (ino == F2FS_NODE_INO(sbi)) {
  		inode->i_mapping->a_ops = &f2fs_node_aops;
  		mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
  	} else if (ino == F2FS_META_INO(sbi)) {
  		inode->i_mapping->a_ops = &f2fs_meta_aops;
  		mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
  	} else if (S_ISREG(inode->i_mode)) {
  		inode->i_op = &f2fs_file_inode_operations;
  		inode->i_fop = &f2fs_file_operations;
  		inode->i_mapping->a_ops = &f2fs_dblock_aops;
  	} else if (S_ISDIR(inode->i_mode)) {
  		inode->i_op = &f2fs_dir_inode_operations;
  		inode->i_fop = &f2fs_dir_operations;
  		inode->i_mapping->a_ops = &f2fs_dblock_aops;
  		mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_HIGH_ZERO);
  	} else if (S_ISLNK(inode->i_mode)) {
  		if (f2fs_encrypted_inode(inode))
  			inode->i_op = &f2fs_encrypted_symlink_inode_operations;
  		else
  			inode->i_op = &f2fs_symlink_inode_operations;
  		inode->i_mapping->a_ops = &f2fs_dblock_aops;
  	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
  			S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
  		inode->i_op = &f2fs_special_inode_operations;
  		init_special_inode(inode, inode->i_mode, inode->i_rdev);
  	} else {
  		ret = -EIO;
  		goto bad_inode;
  	}
  	unlock_new_inode(inode);
  	trace_f2fs_iget(inode);
  	return inode;
  
  bad_inode:
  	iget_failed(inode);
  	trace_f2fs_iget_exit(inode, ret);
  	return ERR_PTR(ret);
  }
  
  void update_inode(struct inode *inode, struct page *node_page)
  {
  	struct f2fs_inode *ri;
  
  	f2fs_wait_on_page_writeback(node_page, NODE);
  
  	ri = F2FS_INODE(node_page);
  
  	ri->i_mode = cpu_to_le16(inode->i_mode);
  	ri->i_advise = F2FS_I(inode)->i_advise;
  	ri->i_uid = cpu_to_le32(i_uid_read(inode));
  	ri->i_gid = cpu_to_le32(i_gid_read(inode));
  	ri->i_links = cpu_to_le32(inode->i_nlink);
  	ri->i_size = cpu_to_le64(i_size_read(inode));
  	ri->i_blocks = cpu_to_le64(inode->i_blocks);
  
  	if (F2FS_I(inode)->extent_tree)
  		set_raw_extent(&F2FS_I(inode)->extent_tree->largest,
  							&ri->i_ext);
  	else
  		memset(&ri->i_ext, 0, sizeof(ri->i_ext));
  	set_raw_inline(F2FS_I(inode), ri);
  
  	ri->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
  	ri->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec);
  	ri->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec);
  	ri->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
  	ri->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
  	ri->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
  	ri->i_current_depth = cpu_to_le32(F2FS_I(inode)->i_current_depth);
  	ri->i_xattr_nid = cpu_to_le32(F2FS_I(inode)->i_xattr_nid);
  	ri->i_flags = cpu_to_le32(F2FS_I(inode)->i_flags);
  	ri->i_pino = cpu_to_le32(F2FS_I(inode)->i_pino);
  	ri->i_generation = cpu_to_le32(inode->i_generation);
  	ri->i_dir_level = F2FS_I(inode)->i_dir_level;
  
  	__set_inode_rdev(inode, ri);
  	set_cold_node(inode, node_page);
  	set_page_dirty(node_page);
  
  	clear_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
  }
  
  void update_inode_page(struct inode *inode)
  {
  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  	struct page *node_page;
  retry:
  	node_page = get_node_page(sbi, inode->i_ino);
  	if (IS_ERR(node_page)) {
  		int err = PTR_ERR(node_page);
  		if (err == -ENOMEM) {
  			cond_resched();
  			goto retry;
  		} else if (err != -ENOENT) {
  			f2fs_stop_checkpoint(sbi);
  		}
  		return;
  	}
  	update_inode(inode, node_page);
  	f2fs_put_page(node_page, 1);
  }
  
  int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc)
  {
  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  
  	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
  			inode->i_ino == F2FS_META_INO(sbi))
  		return 0;
  
  	if (!is_inode_flag_set(F2FS_I(inode), FI_DIRTY_INODE))
  		return 0;
  
  	/*
  	 * We need to balance fs here to prevent from producing dirty node pages
  	 * during the urgent cleaning time when runing out of free sections.
  	 */
  	update_inode_page(inode);
  
  	f2fs_balance_fs(sbi);
  	return 0;
  }
  
  /*
   * Called at the last iput() if i_nlink is zero
   */
  void f2fs_evict_inode(struct inode *inode)
  {
  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  	struct f2fs_inode_info *fi = F2FS_I(inode);
  	nid_t xnid = fi->i_xattr_nid;
  	int err = 0;
  
  	/* some remained atomic pages should discarded */
  	if (f2fs_is_atomic_file(inode))
  		commit_inmem_pages(inode, true);
  
  	trace_f2fs_evict_inode(inode);
  	truncate_inode_pages_final(&inode->i_data);
  
  	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
  			inode->i_ino == F2FS_META_INO(sbi))
  		goto out_clear;
  
  	f2fs_bug_on(sbi, get_dirty_pages(inode));
  	remove_dirty_dir_inode(inode);
  
  	f2fs_destroy_extent_tree(inode);
  
  	if (inode->i_nlink || is_bad_inode(inode))
  		goto no_delete;
  
  	sb_start_intwrite(inode->i_sb);
  	set_inode_flag(fi, FI_NO_ALLOC);
  	i_size_write(inode, 0);
  
  	if (F2FS_HAS_BLOCKS(inode))
  		err = f2fs_truncate(inode, true);
  
  	if (!err) {
  		f2fs_lock_op(sbi);
  		err = remove_inode_page(inode);
  		f2fs_unlock_op(sbi);
  	}
  
  	sb_end_intwrite(inode->i_sb);
  no_delete:
  	stat_dec_inline_xattr(inode);
  	stat_dec_inline_dir(inode);
  	stat_dec_inline_inode(inode);
  
  	invalidate_mapping_pages(NODE_MAPPING(sbi), inode->i_ino, inode->i_ino);
  	if (xnid)
  		invalidate_mapping_pages(NODE_MAPPING(sbi), xnid, xnid);
  	if (is_inode_flag_set(fi, FI_APPEND_WRITE))
  		add_dirty_inode(sbi, inode->i_ino, APPEND_INO);
  	if (is_inode_flag_set(fi, FI_UPDATE_WRITE))
  		add_dirty_inode(sbi, inode->i_ino, UPDATE_INO);
  	if (is_inode_flag_set(fi, FI_FREE_NID)) {
  		if (err && err != -ENOENT)
  			alloc_nid_done(sbi, inode->i_ino);
  		else
  			alloc_nid_failed(sbi, inode->i_ino);
  		clear_inode_flag(fi, FI_FREE_NID);
  	}
  
  	if (err && err != -ENOENT) {
  		if (!exist_written_data(sbi, inode->i_ino, ORPHAN_INO)) {
  			/*
  			 * get here because we failed to release resource
  			 * of inode previously, reminder our user to run fsck
  			 * for fixing.
  			 */
  			set_sbi_flag(sbi, SBI_NEED_FSCK);
  			f2fs_msg(sbi->sb, KERN_WARNING,
  				"inode (ino:%lu) resource leak, run fsck "
  				"to fix this issue!", inode->i_ino);
  		}
  	}
  out_clear:
  #ifdef CONFIG_F2FS_FS_ENCRYPTION
  	if (fi->i_crypt_info)
  		f2fs_free_encryption_info(inode, fi->i_crypt_info);
  #endif
  	clear_inode(inode);
  }
  
  /* caller should call f2fs_lock_op() */
  void handle_failed_inode(struct inode *inode)
  {
  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  	int err = 0;
  
  	clear_nlink(inode);
  	make_bad_inode(inode);
  	unlock_new_inode(inode);
  
  	i_size_write(inode, 0);
  	if (F2FS_HAS_BLOCKS(inode))
  		err = f2fs_truncate(inode, false);
  
  	if (!err)
  		err = remove_inode_page(inode);
  
  	/*
  	 * if we skip truncate_node in remove_inode_page bacause we failed
  	 * before, it's better to find another way to release resource of
  	 * this inode (e.g. valid block count, node block or nid). Here we
  	 * choose to add this inode to orphan list, so that we can call iput
  	 * for releasing in orphan recovery flow.
  	 *
  	 * Note: we should add inode to orphan list before f2fs_unlock_op()
  	 * so we can prevent losing this orphan when encoutering checkpoint
  	 * and following suddenly power-off.
  	 */
  	if (err && err != -ENOENT) {
  		err = acquire_orphan_inode(sbi);
  		if (!err)
  			add_orphan_inode(sbi, inode->i_ino);
  	}
  
  	set_inode_flag(F2FS_I(inode), FI_FREE_NID);
  	f2fs_unlock_op(sbi);
  
  	/* iput will drop the inode object */
  	iput(inode);
  }