5113f6f70
김현기
kernel add
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
|
/*
* Low-level device IO routines for ST-Ericsson CW1200 drivers
*
* Copyright (c) 2010, ST-Ericsson
* Author: Dmitry Tarnyagin <dmitry.tarnyagin@lockless.no>
*
* Based on:
* ST-Ericsson UMAC CW1200 driver, which is
* Copyright (c) 2010, ST-Ericsson
* Author: Ajitpal Singh <ajitpal.singh@lockless.no>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/types.h>
#include "cw1200.h"
#include "hwio.h"
#include "hwbus.h"
/* Sdio addr is 4*spi_addr */
#define SPI_REG_ADDR_TO_SDIO(spi_reg_addr) ((spi_reg_addr) << 2)
#define SDIO_ADDR17BIT(buf_id, mpf, rfu, reg_id_ofs) \
((((buf_id) & 0x1F) << 7) \
| (((mpf) & 1) << 6) \
| (((rfu) & 1) << 5) \
| (((reg_id_ofs) & 0x1F) << 0))
#define MAX_RETRY 3
static int __cw1200_reg_read(struct cw1200_common *priv, u16 addr,
void *buf, size_t buf_len, int buf_id)
{
u16 addr_sdio;
u32 sdio_reg_addr_17bit;
/* Check if buffer is aligned to 4 byte boundary */
if (WARN_ON(((unsigned long)buf & 3) && (buf_len > 4))) {
pr_err("buffer is not aligned.
");
return -EINVAL;
}
/* Convert to SDIO Register Address */
addr_sdio = SPI_REG_ADDR_TO_SDIO(addr);
sdio_reg_addr_17bit = SDIO_ADDR17BIT(buf_id, 0, 0, addr_sdio);
return priv->hwbus_ops->hwbus_memcpy_fromio(priv->hwbus_priv,
sdio_reg_addr_17bit,
buf, buf_len);
}
static int __cw1200_reg_write(struct cw1200_common *priv, u16 addr,
const void *buf, size_t buf_len, int buf_id)
{
u16 addr_sdio;
u32 sdio_reg_addr_17bit;
/* Convert to SDIO Register Address */
addr_sdio = SPI_REG_ADDR_TO_SDIO(addr);
sdio_reg_addr_17bit = SDIO_ADDR17BIT(buf_id, 0, 0, addr_sdio);
return priv->hwbus_ops->hwbus_memcpy_toio(priv->hwbus_priv,
sdio_reg_addr_17bit,
buf, buf_len);
}
static inline int __cw1200_reg_read_32(struct cw1200_common *priv,
u16 addr, u32 *val)
{
__le32 tmp;
int i = __cw1200_reg_read(priv, addr, &tmp, sizeof(tmp), 0);
*val = le32_to_cpu(tmp);
return i;
}
static inline int __cw1200_reg_write_32(struct cw1200_common *priv,
u16 addr, u32 val)
{
__le32 tmp = cpu_to_le32(val);
return __cw1200_reg_write(priv, addr, &tmp, sizeof(tmp), 0);
}
static inline int __cw1200_reg_read_16(struct cw1200_common *priv,
u16 addr, u16 *val)
{
__le16 tmp;
int i = __cw1200_reg_read(priv, addr, &tmp, sizeof(tmp), 0);
*val = le16_to_cpu(tmp);
return i;
}
static inline int __cw1200_reg_write_16(struct cw1200_common *priv,
u16 addr, u16 val)
{
__le16 tmp = cpu_to_le16(val);
return __cw1200_reg_write(priv, addr, &tmp, sizeof(tmp), 0);
}
int cw1200_reg_read(struct cw1200_common *priv, u16 addr, void *buf,
size_t buf_len)
{
int ret;
priv->hwbus_ops->lock(priv->hwbus_priv);
ret = __cw1200_reg_read(priv, addr, buf, buf_len, 0);
priv->hwbus_ops->unlock(priv->hwbus_priv);
return ret;
}
int cw1200_reg_write(struct cw1200_common *priv, u16 addr, const void *buf,
size_t buf_len)
{
int ret;
priv->hwbus_ops->lock(priv->hwbus_priv);
ret = __cw1200_reg_write(priv, addr, buf, buf_len, 0);
priv->hwbus_ops->unlock(priv->hwbus_priv);
return ret;
}
int cw1200_data_read(struct cw1200_common *priv, void *buf, size_t buf_len)
{
int ret, retry = 1;
int buf_id_rx = priv->buf_id_rx;
priv->hwbus_ops->lock(priv->hwbus_priv);
while (retry <= MAX_RETRY) {
ret = __cw1200_reg_read(priv,
ST90TDS_IN_OUT_QUEUE_REG_ID, buf,
buf_len, buf_id_rx + 1);
if (!ret) {
buf_id_rx = (buf_id_rx + 1) & 3;
priv->buf_id_rx = buf_id_rx;
break;
} else {
retry++;
mdelay(1);
pr_err("error :[%d]
", ret);
}
}
priv->hwbus_ops->unlock(priv->hwbus_priv);
return ret;
}
int cw1200_data_write(struct cw1200_common *priv, const void *buf,
size_t buf_len)
{
int ret, retry = 1;
int buf_id_tx = priv->buf_id_tx;
priv->hwbus_ops->lock(priv->hwbus_priv);
while (retry <= MAX_RETRY) {
ret = __cw1200_reg_write(priv,
ST90TDS_IN_OUT_QUEUE_REG_ID, buf,
buf_len, buf_id_tx);
if (!ret) {
buf_id_tx = (buf_id_tx + 1) & 31;
priv->buf_id_tx = buf_id_tx;
break;
} else {
retry++;
mdelay(1);
pr_err("error :[%d]
", ret);
}
}
priv->hwbus_ops->unlock(priv->hwbus_priv);
return ret;
}
int cw1200_indirect_read(struct cw1200_common *priv, u32 addr, void *buf,
size_t buf_len, u32 prefetch, u16 port_addr)
{
u32 val32 = 0;
int i, ret;
if ((buf_len / 2) >= 0x1000) {
pr_err("Can't read more than 0xfff words.
");
return -EINVAL;
}
priv->hwbus_ops->lock(priv->hwbus_priv);
/* Write address */
ret = __cw1200_reg_write_32(priv, ST90TDS_SRAM_BASE_ADDR_REG_ID, addr);
if (ret < 0) {
pr_err("Can't write address register.
");
goto out;
}
/* Read CONFIG Register Value - We will read 32 bits */
ret = __cw1200_reg_read_32(priv, ST90TDS_CONFIG_REG_ID, &val32);
if (ret < 0) {
pr_err("Can't read config register.
");
goto out;
}
/* Set PREFETCH bit */
ret = __cw1200_reg_write_32(priv, ST90TDS_CONFIG_REG_ID,
val32 | prefetch);
if (ret < 0) {
pr_err("Can't write prefetch bit.
");
goto out;
}
/* Check for PRE-FETCH bit to be cleared */
for (i = 0; i < 20; i++) {
ret = __cw1200_reg_read_32(priv, ST90TDS_CONFIG_REG_ID, &val32);
if (ret < 0) {
pr_err("Can't check prefetch bit.
");
goto out;
}
if (!(val32 & prefetch))
break;
mdelay(i);
}
if (val32 & prefetch) {
pr_err("Prefetch bit is not cleared.
");
goto out;
}
/* Read data port */
ret = __cw1200_reg_read(priv, port_addr, buf, buf_len, 0);
if (ret < 0) {
pr_err("Can't read data port.
");
goto out;
}
out:
priv->hwbus_ops->unlock(priv->hwbus_priv);
return ret;
}
int cw1200_apb_write(struct cw1200_common *priv, u32 addr, const void *buf,
size_t buf_len)
{
int ret;
if ((buf_len / 2) >= 0x1000) {
pr_err("Can't write more than 0xfff words.
");
return -EINVAL;
}
priv->hwbus_ops->lock(priv->hwbus_priv);
/* Write address */
ret = __cw1200_reg_write_32(priv, ST90TDS_SRAM_BASE_ADDR_REG_ID, addr);
if (ret < 0) {
pr_err("Can't write address register.
");
goto out;
}
/* Write data port */
ret = __cw1200_reg_write(priv, ST90TDS_SRAM_DPORT_REG_ID,
buf, buf_len, 0);
if (ret < 0) {
pr_err("Can't write data port.
");
goto out;
}
out:
priv->hwbus_ops->unlock(priv->hwbus_priv);
return ret;
}
int __cw1200_irq_enable(struct cw1200_common *priv, int enable)
{
u32 val32;
u16 val16;
int ret;
if (HIF_8601_SILICON == priv->hw_type) {
ret = __cw1200_reg_read_32(priv, ST90TDS_CONFIG_REG_ID, &val32);
if (ret < 0) {
pr_err("Can't read config register.
");
return ret;
}
if (enable)
val32 |= ST90TDS_CONF_IRQ_RDY_ENABLE;
else
val32 &= ~ST90TDS_CONF_IRQ_RDY_ENABLE;
ret = __cw1200_reg_write_32(priv, ST90TDS_CONFIG_REG_ID, val32);
if (ret < 0) {
pr_err("Can't write config register.
");
return ret;
}
} else {
ret = __cw1200_reg_read_16(priv, ST90TDS_CONFIG_REG_ID, &val16);
if (ret < 0) {
pr_err("Can't read control register.
");
return ret;
}
if (enable)
val16 |= ST90TDS_CONT_IRQ_RDY_ENABLE;
else
val16 &= ~ST90TDS_CONT_IRQ_RDY_ENABLE;
ret = __cw1200_reg_write_16(priv, ST90TDS_CONFIG_REG_ID, val16);
if (ret < 0) {
pr_err("Can't write control register.
");
return ret;
}
}
return 0;
}
|