Blame view

kernel/linux-rt-4.4.41/drivers/mtd/chips/cfi_util.c 11.2 KB
5113f6f70   김현기   kernel add
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
  /*
   * Common Flash Interface support:
   *   Generic utility functions not dependent on command set
   *
   * Copyright (C) 2002 Red Hat
   * Copyright (C) 2003 STMicroelectronics Limited
   *
   * This code is covered by the GPL.
   */
  
  #include <linux/module.h>
  #include <linux/types.h>
  #include <linux/kernel.h>
  #include <asm/io.h>
  #include <asm/byteorder.h>
  
  #include <linux/errno.h>
  #include <linux/slab.h>
  #include <linux/delay.h>
  #include <linux/interrupt.h>
  #include <linux/mtd/xip.h>
  #include <linux/mtd/mtd.h>
  #include <linux/mtd/map.h>
  #include <linux/mtd/cfi.h>
  
  void cfi_udelay(int us)
  {
  	if (us >= 1000) {
  		msleep((us+999)/1000);
  	} else {
  		udelay(us);
  		cond_resched();
  	}
  }
  EXPORT_SYMBOL(cfi_udelay);
  
  /*
   * Returns the command address according to the given geometry.
   */
  uint32_t cfi_build_cmd_addr(uint32_t cmd_ofs,
  				struct map_info *map, struct cfi_private *cfi)
  {
  	unsigned bankwidth = map_bankwidth(map);
  	unsigned interleave = cfi_interleave(cfi);
  	unsigned type = cfi->device_type;
  	uint32_t addr;
  
  	addr = (cmd_ofs * type) * interleave;
  
  	/* Modify the unlock address if we are in compatibility mode.
  	 * For 16bit devices on 8 bit busses
  	 * and 32bit devices on 16 bit busses
  	 * set the low bit of the alternating bit sequence of the address.
  	 */
  	if (((type * interleave) > bankwidth) && ((cmd_ofs & 0xff) == 0xaa))
  		addr |= (type >> 1)*interleave;
  
  	return  addr;
  }
  EXPORT_SYMBOL(cfi_build_cmd_addr);
  
  /*
   * Transforms the CFI command for the given geometry (bus width & interleave).
   * It looks too long to be inline, but in the common case it should almost all
   * get optimised away.
   */
  map_word cfi_build_cmd(u_long cmd, struct map_info *map, struct cfi_private *cfi)
  {
  	map_word val = { {0} };
  	int wordwidth, words_per_bus, chip_mode, chips_per_word;
  	unsigned long onecmd;
  	int i;
  
  	/* We do it this way to give the compiler a fighting chance
  	   of optimising away all the crap for 'bankwidth' larger than
  	   an unsigned long, in the common case where that support is
  	   disabled */
  	if (map_bankwidth_is_large(map)) {
  		wordwidth = sizeof(unsigned long);
  		words_per_bus = (map_bankwidth(map)) / wordwidth; // i.e. normally 1
  	} else {
  		wordwidth = map_bankwidth(map);
  		words_per_bus = 1;
  	}
  
  	chip_mode = map_bankwidth(map) / cfi_interleave(cfi);
  	chips_per_word = wordwidth * cfi_interleave(cfi) / map_bankwidth(map);
  
  	/* First, determine what the bit-pattern should be for a single
  	   device, according to chip mode and endianness... */
  	switch (chip_mode) {
  	default: BUG();
  	case 1:
  		onecmd = cmd;
  		break;
  	case 2:
  		onecmd = cpu_to_cfi16(map, cmd);
  		break;
  	case 4:
  		onecmd = cpu_to_cfi32(map, cmd);
  		break;
  	}
  
  	/* Now replicate it across the size of an unsigned long, or
  	   just to the bus width as appropriate */
  	switch (chips_per_word) {
  	default: BUG();
  #if BITS_PER_LONG >= 64
  	case 8:
  		onecmd |= (onecmd << (chip_mode * 32));
  #endif
  	case 4:
  		onecmd |= (onecmd << (chip_mode * 16));
  	case 2:
  		onecmd |= (onecmd << (chip_mode * 8));
  	case 1:
  		;
  	}
  
  	/* And finally, for the multi-word case, replicate it
  	   in all words in the structure */
  	for (i=0; i < words_per_bus; i++) {
  		val.x[i] = onecmd;
  	}
  
  	return val;
  }
  EXPORT_SYMBOL(cfi_build_cmd);
  
  unsigned long cfi_merge_status(map_word val, struct map_info *map,
  					   struct cfi_private *cfi)
  {
  	int wordwidth, words_per_bus, chip_mode, chips_per_word;
  	unsigned long onestat, res = 0;
  	int i;
  
  	/* We do it this way to give the compiler a fighting chance
  	   of optimising away all the crap for 'bankwidth' larger than
  	   an unsigned long, in the common case where that support is
  	   disabled */
  	if (map_bankwidth_is_large(map)) {
  		wordwidth = sizeof(unsigned long);
  		words_per_bus = (map_bankwidth(map)) / wordwidth; // i.e. normally 1
  	} else {
  		wordwidth = map_bankwidth(map);
  		words_per_bus = 1;
  	}
  
  	chip_mode = map_bankwidth(map) / cfi_interleave(cfi);
  	chips_per_word = wordwidth * cfi_interleave(cfi) / map_bankwidth(map);
  
  	onestat = val.x[0];
  	/* Or all status words together */
  	for (i=1; i < words_per_bus; i++) {
  		onestat |= val.x[i];
  	}
  
  	res = onestat;
  	switch(chips_per_word) {
  	default: BUG();
  #if BITS_PER_LONG >= 64
  	case 8:
  		res |= (onestat >> (chip_mode * 32));
  #endif
  	case 4:
  		res |= (onestat >> (chip_mode * 16));
  	case 2:
  		res |= (onestat >> (chip_mode * 8));
  	case 1:
  		;
  	}
  
  	/* Last, determine what the bit-pattern should be for a single
  	   device, according to chip mode and endianness... */
  	switch (chip_mode) {
  	case 1:
  		break;
  	case 2:
  		res = cfi16_to_cpu(map, res);
  		break;
  	case 4:
  		res = cfi32_to_cpu(map, res);
  		break;
  	default: BUG();
  	}
  	return res;
  }
  EXPORT_SYMBOL(cfi_merge_status);
  
  /*
   * Sends a CFI command to a bank of flash for the given geometry.
   *
   * Returns the offset in flash where the command was written.
   * If prev_val is non-null, it will be set to the value at the command address,
   * before the command was written.
   */
  uint32_t cfi_send_gen_cmd(u_char cmd, uint32_t cmd_addr, uint32_t base,
  				struct map_info *map, struct cfi_private *cfi,
  				int type, map_word *prev_val)
  {
  	map_word val;
  	uint32_t addr = base + cfi_build_cmd_addr(cmd_addr, map, cfi);
  	val = cfi_build_cmd(cmd, map, cfi);
  
  	if (prev_val)
  		*prev_val = map_read(map, addr);
  
  	map_write(map, val, addr);
  
  	return addr - base;
  }
  EXPORT_SYMBOL(cfi_send_gen_cmd);
  
  int __xipram cfi_qry_present(struct map_info *map, __u32 base,
  			     struct cfi_private *cfi)
  {
  	int osf = cfi->interleave * cfi->device_type;	/* scale factor */
  	map_word val[3];
  	map_word qry[3];
  
  	qry[0] = cfi_build_cmd('Q', map, cfi);
  	qry[1] = cfi_build_cmd('R', map, cfi);
  	qry[2] = cfi_build_cmd('Y', map, cfi);
  
  	val[0] = map_read(map, base + osf*0x10);
  	val[1] = map_read(map, base + osf*0x11);
  	val[2] = map_read(map, base + osf*0x12);
  
  	if (!map_word_equal(map, qry[0], val[0]))
  		return 0;
  
  	if (!map_word_equal(map, qry[1], val[1]))
  		return 0;
  
  	if (!map_word_equal(map, qry[2], val[2]))
  		return 0;
  
  	return 1; 	/* "QRY" found */
  }
  EXPORT_SYMBOL_GPL(cfi_qry_present);
  
  int __xipram cfi_qry_mode_on(uint32_t base, struct map_info *map,
  			     struct cfi_private *cfi)
  {
  	cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
  	cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL);
  	if (cfi_qry_present(map, base, cfi))
  		return 1;
  	/* QRY not found probably we deal with some odd CFI chips */
  	/* Some revisions of some old Intel chips? */
  	cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
  	cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL);
  	cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL);
  	if (cfi_qry_present(map, base, cfi))
  		return 1;
  	/* ST M29DW chips */
  	cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
  	cfi_send_gen_cmd(0x98, 0x555, base, map, cfi, cfi->device_type, NULL);
  	if (cfi_qry_present(map, base, cfi))
  		return 1;
  	/* some old SST chips, e.g. 39VF160x/39VF320x */
  	cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
  	cfi_send_gen_cmd(0xAA, 0x5555, base, map, cfi, cfi->device_type, NULL);
  	cfi_send_gen_cmd(0x55, 0x2AAA, base, map, cfi, cfi->device_type, NULL);
  	cfi_send_gen_cmd(0x98, 0x5555, base, map, cfi, cfi->device_type, NULL);
  	if (cfi_qry_present(map, base, cfi))
  		return 1;
  	/* SST 39VF640xB */
  	cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
  	cfi_send_gen_cmd(0xAA, 0x555, base, map, cfi, cfi->device_type, NULL);
  	cfi_send_gen_cmd(0x55, 0x2AA, base, map, cfi, cfi->device_type, NULL);
  	cfi_send_gen_cmd(0x98, 0x555, base, map, cfi, cfi->device_type, NULL);
  	if (cfi_qry_present(map, base, cfi))
  		return 1;
  	/* QRY not found */
  	return 0;
  }
  EXPORT_SYMBOL_GPL(cfi_qry_mode_on);
  
  void __xipram cfi_qry_mode_off(uint32_t base, struct map_info *map,
  			       struct cfi_private *cfi)
  {
  	cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
  	cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL);
  	/* M29W128G flashes require an additional reset command
  	   when exit qry mode */
  	if ((cfi->mfr == CFI_MFR_ST) && (cfi->id == 0x227E || cfi->id == 0x7E))
  		cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
  }
  EXPORT_SYMBOL_GPL(cfi_qry_mode_off);
  
  struct cfi_extquery *
  __xipram cfi_read_pri(struct map_info *map, __u16 adr, __u16 size, const char* name)
  {
  	struct cfi_private *cfi = map->fldrv_priv;
  	__u32 base = 0; // cfi->chips[0].start;
  	int ofs_factor = cfi->interleave * cfi->device_type;
  	int i;
  	struct cfi_extquery *extp = NULL;
  
  	if (!adr)
  		goto out;
  
  	printk(KERN_INFO "%s Extended Query Table at 0x%4.4X
  ", name, adr);
  
  	extp = kmalloc(size, GFP_KERNEL);
  	if (!extp)
  		goto out;
  
  #ifdef CONFIG_MTD_XIP
  	local_irq_disable();
  #endif
  
  	/* Switch it into Query Mode */
  	cfi_qry_mode_on(base, map, cfi);
  	/* Read in the Extended Query Table */
  	for (i=0; i<size; i++) {
  		((unsigned char *)extp)[i] =
  			cfi_read_query(map, base+((adr+i)*ofs_factor));
  	}
  
  	/* Make sure it returns to read mode */
  	cfi_qry_mode_off(base, map, cfi);
  
  #ifdef CONFIG_MTD_XIP
  	(void) map_read(map, base);
  	xip_iprefetch();
  	local_irq_enable();
  #endif
  
   out:	return extp;
  }
  
  EXPORT_SYMBOL(cfi_read_pri);
  
  void cfi_fixup(struct mtd_info *mtd, struct cfi_fixup *fixups)
  {
  	struct map_info *map = mtd->priv;
  	struct cfi_private *cfi = map->fldrv_priv;
  	struct cfi_fixup *f;
  
  	for (f=fixups; f->fixup; f++) {
  		if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi->mfr)) &&
  		    ((f->id  == CFI_ID_ANY)  || (f->id  == cfi->id))) {
  			f->fixup(mtd);
  		}
  	}
  }
  
  EXPORT_SYMBOL(cfi_fixup);
  
  int cfi_varsize_frob(struct mtd_info *mtd, varsize_frob_t frob,
  				     loff_t ofs, size_t len, void *thunk)
  {
  	struct map_info *map = mtd->priv;
  	struct cfi_private *cfi = map->fldrv_priv;
  	unsigned long adr;
  	int chipnum, ret = 0;
  	int i, first;
  	struct mtd_erase_region_info *regions = mtd->eraseregions;
  
  	/* Check that both start and end of the requested erase are
  	 * aligned with the erasesize at the appropriate addresses.
  	 */
  
  	i = 0;
  
  	/* Skip all erase regions which are ended before the start of
  	   the requested erase. Actually, to save on the calculations,
  	   we skip to the first erase region which starts after the
  	   start of the requested erase, and then go back one.
  	*/
  
  	while (i < mtd->numeraseregions && ofs >= regions[i].offset)
  	       i++;
  	i--;
  
  	/* OK, now i is pointing at the erase region in which this
  	   erase request starts. Check the start of the requested
  	   erase range is aligned with the erase size which is in
  	   effect here.
  	*/
  
  	if (ofs & (regions[i].erasesize-1))
  		return -EINVAL;
  
  	/* Remember the erase region we start on */
  	first = i;
  
  	/* Next, check that the end of the requested erase is aligned
  	 * with the erase region at that address.
  	 */
  
  	while (i<mtd->numeraseregions && (ofs + len) >= regions[i].offset)
  		i++;
  
  	/* As before, drop back one to point at the region in which
  	   the address actually falls
  	*/
  	i--;
  
  	if ((ofs + len) & (regions[i].erasesize-1))
  		return -EINVAL;
  
  	chipnum = ofs >> cfi->chipshift;
  	adr = ofs - (chipnum << cfi->chipshift);
  
  	i=first;
  
  	while(len) {
  		int size = regions[i].erasesize;
  
  		ret = (*frob)(map, &cfi->chips[chipnum], adr, size, thunk);
  
  		if (ret)
  			return ret;
  
  		adr += size;
  		ofs += size;
  		len -= size;
  
  		if (ofs == regions[i].offset + size * regions[i].numblocks)
  			i++;
  
  		if (adr >> cfi->chipshift) {
  			adr = 0;
  			chipnum++;
  
  			if (chipnum >= cfi->numchips)
  				break;
  		}
  	}
  
  	return 0;
  }
  
  EXPORT_SYMBOL(cfi_varsize_frob);
  
  MODULE_LICENSE("GPL");