Blame view

kernel/linux-rt-4.4.41/drivers/clocksource/arm_arch_timer.c 22 KB
5113f6f70   김현기   kernel add
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
  /*
   *  linux/drivers/clocksource/arm_arch_timer.c
   *
   *  Copyright (C) 2011 ARM Ltd.
   *  All Rights Reserved
   *
   * This program is free software; you can redistribute it and/or modify
   * it under the terms of the GNU General Public License version 2 as
   * published by the Free Software Foundation.
   */
  #include <linux/init.h>
  #include <linux/kernel.h>
  #include <linux/device.h>
  #include <linux/smp.h>
  #include <linux/cpu.h>
  #include <linux/cpu_pm.h>
  #include <linux/clockchips.h>
  #include <linux/clocksource.h>
  #include <linux/interrupt.h>
  #include <linux/of_irq.h>
  #include <linux/of_address.h>
  #include <linux/io.h>
  #include <linux/slab.h>
  #include <linux/sched_clock.h>
  #include <linux/acpi.h>
  
  #include <asm/arch_timer.h>
  #include <asm/virt.h>
  
  #include <clocksource/arm_arch_timer.h>
  
  #define CNTTIDR		0x08
  #define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
  
  #define CNTVCT_LO	0x08
  #define CNTVCT_HI	0x0c
  #define CNTFRQ		0x10
  #define CNTP_TVAL	0x28
  #define CNTP_CTL	0x2c
  #define CNTV_TVAL	0x38
  #define CNTV_CTL	0x3c
  
  #define ARCH_CP15_TIMER	BIT(0)
  #define ARCH_MEM_TIMER	BIT(1)
  static unsigned arch_timers_present __initdata;
  
  static void __iomem *arch_counter_base;
  
  struct arch_timer {
  	void __iomem *base;
  	struct clock_event_device evt;
  };
  
  #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
  
  static u32 arch_timer_rate;
  
  enum ppi_nr {
  	PHYS_SECURE_PPI,
  	PHYS_NONSECURE_PPI,
  	VIRT_PPI,
  	HYP_PPI,
  	MAX_TIMER_PPI
  };
  
  static int arch_timer_ppi[MAX_TIMER_PPI];
  
  static struct clock_event_device __percpu *arch_timer_evt;
  
  static bool arch_timer_use_virtual = true;
  static bool arch_timer_c3stop;
  static bool arch_timer_mem_use_virtual;
  
  /*
   * Architected system timer support.
   */
  
  static __always_inline
  void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
  			  struct clock_event_device *clk)
  {
  	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
  		struct arch_timer *timer = to_arch_timer(clk);
  		switch (reg) {
  		case ARCH_TIMER_REG_CTRL:
  			writel_relaxed(val, timer->base + CNTP_CTL);
  			break;
  		case ARCH_TIMER_REG_TVAL:
  			writel_relaxed(val, timer->base + CNTP_TVAL);
  			break;
  		}
  	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
  		struct arch_timer *timer = to_arch_timer(clk);
  		switch (reg) {
  		case ARCH_TIMER_REG_CTRL:
  			writel_relaxed(val, timer->base + CNTV_CTL);
  			break;
  		case ARCH_TIMER_REG_TVAL:
  			writel_relaxed(val, timer->base + CNTV_TVAL);
  			break;
  		}
  	} else {
  		arch_timer_reg_write_cp15(access, reg, val);
  	}
  }
  
  static __always_inline
  u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
  			struct clock_event_device *clk)
  {
  	u32 val;
  
  	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
  		struct arch_timer *timer = to_arch_timer(clk);
  		switch (reg) {
  		case ARCH_TIMER_REG_CTRL:
  			val = readl_relaxed(timer->base + CNTP_CTL);
  			break;
  		case ARCH_TIMER_REG_TVAL:
  			val = readl_relaxed(timer->base + CNTP_TVAL);
  			break;
  		}
  	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
  		struct arch_timer *timer = to_arch_timer(clk);
  		switch (reg) {
  		case ARCH_TIMER_REG_CTRL:
  			val = readl_relaxed(timer->base + CNTV_CTL);
  			break;
  		case ARCH_TIMER_REG_TVAL:
  			val = readl_relaxed(timer->base + CNTV_TVAL);
  			break;
  		}
  	} else {
  		val = arch_timer_reg_read_cp15(access, reg);
  	}
  
  	return val;
  }
  
  static __always_inline irqreturn_t timer_handler(const int access,
  					struct clock_event_device *evt)
  {
  	unsigned long ctrl;
  
  	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
  	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
  		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
  		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
  		evt->event_handler(evt);
  		return IRQ_HANDLED;
  	}
  
  	return IRQ_NONE;
  }
  
  static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
  {
  	struct clock_event_device *evt = dev_id;
  
  	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
  }
  
  static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
  {
  	struct clock_event_device *evt = dev_id;
  
  	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
  }
  
  static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
  {
  	struct clock_event_device *evt = dev_id;
  
  	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
  }
  
  static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
  {
  	struct clock_event_device *evt = dev_id;
  
  	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
  }
  
  static __always_inline int timer_shutdown(const int access,
  					  struct clock_event_device *clk)
  {
  	unsigned long ctrl;
  
  	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
  	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
  	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
  
  	return 0;
  }
  
  static int arch_timer_shutdown_virt(struct clock_event_device *clk)
  {
  	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
  }
  
  static int arch_timer_shutdown_phys(struct clock_event_device *clk)
  {
  	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
  }
  
  static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
  {
  	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
  }
  
  static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
  {
  	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
  }
  
  static __always_inline void set_next_event(const int access, unsigned long evt,
  					   struct clock_event_device *clk)
  {
  	unsigned long ctrl;
  	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
  	ctrl |= ARCH_TIMER_CTRL_ENABLE;
  	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
  	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
  	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
  }
  
  static int arch_timer_set_next_event_virt(unsigned long evt,
  					  struct clock_event_device *clk)
  {
  	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
  	return 0;
  }
  
  static int arch_timer_set_next_event_phys(unsigned long evt,
  					  struct clock_event_device *clk)
  {
  	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
  	return 0;
  }
  
  static int arch_timer_set_next_event_virt_mem(unsigned long evt,
  					      struct clock_event_device *clk)
  {
  	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
  	return 0;
  }
  
  static int arch_timer_set_next_event_phys_mem(unsigned long evt,
  					      struct clock_event_device *clk)
  {
  	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
  	return 0;
  }
  
  static void __arch_timer_setup(unsigned type,
  			       struct clock_event_device *clk)
  {
  	clk->features = CLOCK_EVT_FEAT_ONESHOT;
  
  	if (type == ARCH_CP15_TIMER) {
  		if (arch_timer_c3stop)
  			clk->features |= CLOCK_EVT_FEAT_C3STOP;
  		clk->name = "arch_sys_timer";
  		clk->rating = 450;
  		clk->cpumask = cpumask_of(smp_processor_id());
  		if (arch_timer_use_virtual) {
  			clk->irq = arch_timer_ppi[VIRT_PPI];
  			clk->set_state_shutdown = arch_timer_shutdown_virt;
  			clk->set_next_event = arch_timer_set_next_event_virt;
  		} else {
  			clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
  			clk->set_state_shutdown = arch_timer_shutdown_phys;
  			clk->set_next_event = arch_timer_set_next_event_phys;
  		}
  	} else {
  		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
  		clk->name = "arch_mem_timer";
  		clk->rating = 400;
  		clk->cpumask = cpu_all_mask;
  		if (arch_timer_mem_use_virtual) {
  			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
  			clk->set_next_event =
  				arch_timer_set_next_event_virt_mem;
  		} else {
  			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
  			clk->set_next_event =
  				arch_timer_set_next_event_phys_mem;
  		}
  	}
  
  	clk->set_state_shutdown(clk);
  
  	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
  }
  
  static void arch_timer_evtstrm_enable(int divider)
  {
  	u32 cntkctl = arch_timer_get_cntkctl();
  
  	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
  	/* Set the divider and enable virtual event stream */
  	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
  			| ARCH_TIMER_VIRT_EVT_EN;
  	arch_timer_set_cntkctl(cntkctl);
  	elf_hwcap |= HWCAP_EVTSTRM;
  #ifdef CONFIG_COMPAT
  	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
  #endif
  }
  
  static void arch_timer_configure_evtstream(void)
  {
  	int evt_stream_div, pos;
  
  	/* Find the closest power of two to the divisor */
  	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
  	pos = fls(evt_stream_div);
  	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
  		pos--;
  	/* enable event stream */
  	arch_timer_evtstrm_enable(min(pos, 15));
  }
  
  static void arch_counter_set_user_access(void)
  {
  	u32 cntkctl = arch_timer_get_cntkctl();
  
  	/* Disable user access to the timers and the physical counter */
  	/* Also disable virtual event stream */
  	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
  			| ARCH_TIMER_USR_VT_ACCESS_EN
  			| ARCH_TIMER_VIRT_EVT_EN
  			| ARCH_TIMER_USR_PCT_ACCESS_EN);
  
  	/* Enable user access to the virtual counter */
  	cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
  
  	arch_timer_set_cntkctl(cntkctl);
  }
  
  static int arch_timer_setup(struct clock_event_device *clk)
  {
  	__arch_timer_setup(ARCH_CP15_TIMER, clk);
  
  	if (arch_timer_use_virtual)
  		enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
  	else {
  		enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
  		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
  			enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
  	}
  
  	arch_counter_set_user_access();
  	if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
  		arch_timer_configure_evtstream();
  
  	return 0;
  }
  
  static void
  arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
  {
  	/* Who has more than one independent system counter? */
  	if (arch_timer_rate)
  		return;
  
  	/*
  	 * Try to determine the frequency from the device tree or CNTFRQ,
  	 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
  	 */
  	if (!acpi_disabled ||
  	    of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
  		if (cntbase)
  			arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
  		else
  			arch_timer_rate = arch_timer_get_cntfrq();
  	}
  
  	/* Check the timer frequency. */
  	if (arch_timer_rate == 0)
  		pr_warn("Architected timer frequency not available
  ");
  }
  
  static void arch_timer_banner(unsigned type)
  {
  	pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).
  ",
  		     type & ARCH_CP15_TIMER ? "cp15" : "",
  		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
  		     type & ARCH_MEM_TIMER ? "mmio" : "",
  		     (unsigned long)arch_timer_rate / 1000000,
  		     (unsigned long)(arch_timer_rate / 10000) % 100,
  		     type & ARCH_CP15_TIMER ?
  			arch_timer_use_virtual ? "virt" : "phys" :
  			"",
  		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
  		     type & ARCH_MEM_TIMER ?
  			arch_timer_mem_use_virtual ? "virt" : "phys" :
  			"");
  }
  
  u32 arch_timer_get_rate(void)
  {
  	return arch_timer_rate;
  }
  
  static u64 arch_counter_get_cntvct_mem(void)
  {
  	u32 vct_lo, vct_hi, tmp_hi;
  
  	do {
  		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
  		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
  		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
  	} while (vct_hi != tmp_hi);
  
  	return ((u64) vct_hi << 32) | vct_lo;
  }
  
  /*
   * Default to cp15 based access because arm64 uses this function for
   * sched_clock() before DT is probed and the cp15 method is guaranteed
   * to exist on arm64. arm doesn't use this before DT is probed so even
   * if we don't have the cp15 accessors we won't have a problem.
   */
  u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
  
  static cycle_t arch_counter_read(struct clocksource *cs)
  {
  	return arch_timer_read_counter();
  }
  
  static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
  {
  	return arch_timer_read_counter();
  }
  
  static struct clocksource clocksource_counter = {
  	.name	= "arch_sys_counter",
  	.rating	= 400,
  	.read	= arch_counter_read,
  	.mask	= CLOCKSOURCE_MASK(56),
  	.flags	= CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
  };
  
  static struct cyclecounter cyclecounter = {
  	.read	= arch_counter_read_cc,
  	.mask	= CLOCKSOURCE_MASK(56),
  };
  
  static struct timecounter timecounter;
  
  struct timecounter *arch_timer_get_timecounter(void)
  {
  	return &timecounter;
  }
  
  static void __init arch_counter_register(unsigned type)
  {
  	u64 start_count;
  
  	/* Register the CP15 based counter if we have one */
  	if (type & ARCH_CP15_TIMER) {
  		if (IS_ENABLED(CONFIG_ARM64) || arch_timer_use_virtual)
  			arch_timer_read_counter = arch_counter_get_cntvct;
  		else
  			arch_timer_read_counter = arch_counter_get_cntpct;
  	} else {
  		arch_timer_read_counter = arch_counter_get_cntvct_mem;
  
  		/* If the clocksource name is "arch_sys_counter" the
  		 * VDSO will attempt to read the CP15-based counter.
  		 * Ensure this does not happen when CP15-based
  		 * counter is not available.
  		 */
  		clocksource_counter.name = "arch_mem_counter";
  	}
  
  	start_count = arch_timer_read_counter();
  	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
  	cyclecounter.mult = clocksource_counter.mult;
  	cyclecounter.shift = clocksource_counter.shift;
  	timecounter_init(&timecounter, &cyclecounter, start_count);
  
  	/* 56 bits minimum, so we assume worst case rollover */
  	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
  }
  
  static void arch_timer_stop(struct clock_event_device *clk)
  {
  	pr_debug("arch_timer_teardown disable IRQ%d cpu #%d
  ",
  		 clk->irq, smp_processor_id());
  
  	if (arch_timer_use_virtual)
  		disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
  	else {
  		disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
  		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
  			disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
  	}
  
  	clk->set_state_shutdown(clk);
  }
  
  static int arch_timer_cpu_notify(struct notifier_block *self,
  					   unsigned long action, void *hcpu)
  {
  	/*
  	 * Grab cpu pointer in each case to avoid spurious
  	 * preemptible warnings
  	 */
  	switch (action & ~CPU_TASKS_FROZEN) {
  	case CPU_STARTING:
  		arch_timer_setup(this_cpu_ptr(arch_timer_evt));
  		break;
  	case CPU_DYING:
  		arch_timer_stop(this_cpu_ptr(arch_timer_evt));
  		break;
  	}
  
  	return NOTIFY_OK;
  }
  
  static struct notifier_block arch_timer_cpu_nb = {
  	.notifier_call = arch_timer_cpu_notify,
  };
  
  #ifdef CONFIG_CPU_PM
  static unsigned int saved_cntkctl;
  static int arch_timer_cpu_pm_notify(struct notifier_block *self,
  				    unsigned long action, void *hcpu)
  {
  	if (action == CPU_PM_ENTER)
  		saved_cntkctl = arch_timer_get_cntkctl();
  	else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
  		arch_timer_set_cntkctl(saved_cntkctl);
  	return NOTIFY_OK;
  }
  
  static struct notifier_block arch_timer_cpu_pm_notifier = {
  	.notifier_call = arch_timer_cpu_pm_notify,
  };
  
  static int __init arch_timer_cpu_pm_init(void)
  {
  	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
  }
  #else
  static int __init arch_timer_cpu_pm_init(void)
  {
  	return 0;
  }
  #endif
  
  static int __init arch_timer_register(void)
  {
  	int err;
  	int ppi;
  
  	arch_timer_evt = alloc_percpu(struct clock_event_device);
  	if (!arch_timer_evt) {
  		err = -ENOMEM;
  		goto out;
  	}
  
  	if (arch_timer_use_virtual) {
  		ppi = arch_timer_ppi[VIRT_PPI];
  		err = request_percpu_irq(ppi, arch_timer_handler_virt,
  					 "arch_timer", arch_timer_evt);
  	} else {
  		ppi = arch_timer_ppi[PHYS_SECURE_PPI];
  		err = request_percpu_irq(ppi, arch_timer_handler_phys,
  					 "arch_timer", arch_timer_evt);
  		if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
  			ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
  			err = request_percpu_irq(ppi, arch_timer_handler_phys,
  						 "arch_timer", arch_timer_evt);
  			if (err)
  				free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
  						arch_timer_evt);
  		}
  	}
  
  	if (err) {
  		pr_err("arch_timer: can't register interrupt %d (%d)
  ",
  		       ppi, err);
  		goto out_free;
  	}
  
  	err = register_cpu_notifier(&arch_timer_cpu_nb);
  	if (err)
  		goto out_free_irq;
  
  	err = arch_timer_cpu_pm_init();
  	if (err)
  		goto out_unreg_notify;
  
  	/* Immediately configure the timer on the boot CPU */
  	arch_timer_setup(this_cpu_ptr(arch_timer_evt));
  
  	return 0;
  
  out_unreg_notify:
  	unregister_cpu_notifier(&arch_timer_cpu_nb);
  out_free_irq:
  	if (arch_timer_use_virtual)
  		free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
  	else {
  		free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
  				arch_timer_evt);
  		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
  			free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
  					arch_timer_evt);
  	}
  
  out_free:
  	free_percpu(arch_timer_evt);
  out:
  	return err;
  }
  
  static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
  {
  	int ret;
  	irq_handler_t func;
  	struct arch_timer *t;
  
  	t = kzalloc(sizeof(*t), GFP_KERNEL);
  	if (!t)
  		return -ENOMEM;
  
  	t->base = base;
  	t->evt.irq = irq;
  	__arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
  
  	if (arch_timer_mem_use_virtual)
  		func = arch_timer_handler_virt_mem;
  	else
  		func = arch_timer_handler_phys_mem;
  
  	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
  	if (ret) {
  		pr_err("arch_timer: Failed to request mem timer irq
  ");
  		kfree(t);
  	}
  
  	return ret;
  }
  
  static const struct of_device_id arch_timer_of_match[] __initconst = {
  	{ .compatible   = "arm,armv7-timer",    },
  	{ .compatible   = "arm,armv8-timer",    },
  	{},
  };
  
  static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
  	{ .compatible   = "arm,armv7-timer-mem", },
  	{},
  };
  
  static bool __init
  arch_timer_needs_probing(int type, const struct of_device_id *matches)
  {
  	struct device_node *dn;
  	bool needs_probing = false;
  
  	dn = of_find_matching_node(NULL, matches);
  	if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
  		needs_probing = true;
  	of_node_put(dn);
  
  	return needs_probing;
  }
  
  static void __init arch_timer_common_init(void)
  {
  	unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
  
  	/* Wait until both nodes are probed if we have two timers */
  	if ((arch_timers_present & mask) != mask) {
  		if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
  			return;
  		if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
  			return;
  	}
  
  	arch_timer_banner(arch_timers_present);
  	arch_counter_register(arch_timers_present);
  	arch_timer_arch_init();
  }
  
  static void __init arch_timer_init(void)
  {
  	/*
  	 * If HYP mode is available, we know that the physical timer
  	 * has been configured to be accessible from PL1. Use it, so
  	 * that a guest can use the virtual timer instead.
  	 *
  	 * If no interrupt provided for virtual timer, we'll have to
  	 * stick to the physical timer. It'd better be accessible...
  	 */
  	if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
  		arch_timer_use_virtual = false;
  
  		if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
  		    !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
  			pr_warn("arch_timer: No interrupt available, giving up
  ");
  			return;
  		}
  	}
  
  	arch_timer_register();
  	arch_timer_common_init();
  }
  
  static void __init arch_timer_of_init(struct device_node *np)
  {
  	int i;
  
  	if (arch_timers_present & ARCH_CP15_TIMER) {
  		pr_warn("arch_timer: multiple nodes in dt, skipping
  ");
  		return;
  	}
  
  	arch_timers_present |= ARCH_CP15_TIMER;
  	for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
  		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
  
  	arch_timer_detect_rate(NULL, np);
  
  	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
  
  	/*
  	 * If we cannot rely on firmware initializing the timer registers then
  	 * we should use the physical timers instead.
  	 */
  	if (IS_ENABLED(CONFIG_ARM) &&
  	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
  			arch_timer_use_virtual = false;
  
  	arch_timer_init();
  }
  CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
  CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
  
  static void __init arch_timer_mem_init(struct device_node *np)
  {
  	struct device_node *frame, *best_frame = NULL;
  	void __iomem *cntctlbase, *base;
  	unsigned int irq;
  	u32 cnttidr;
  
  	arch_timers_present |= ARCH_MEM_TIMER;
  	cntctlbase = of_iomap(np, 0);
  	if (!cntctlbase) {
  		pr_err("arch_timer: Can't find CNTCTLBase
  ");
  		return;
  	}
  
  	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
  	iounmap(cntctlbase);
  
  	/*
  	 * Try to find a virtual capable frame. Otherwise fall back to a
  	 * physical capable frame.
  	 */
  	for_each_available_child_of_node(np, frame) {
  		int n;
  
  		if (of_property_read_u32(frame, "frame-number", &n)) {
  			pr_err("arch_timer: Missing frame-number
  ");
  			of_node_put(best_frame);
  			of_node_put(frame);
  			return;
  		}
  
  		if (cnttidr & CNTTIDR_VIRT(n)) {
  			of_node_put(best_frame);
  			best_frame = frame;
  			arch_timer_mem_use_virtual = true;
  			break;
  		}
  		of_node_put(best_frame);
  		best_frame = of_node_get(frame);
  	}
  
  	base = arch_counter_base = of_iomap(best_frame, 0);
  	if (!base) {
  		pr_err("arch_timer: Can't map frame's registers
  ");
  		of_node_put(best_frame);
  		return;
  	}
  
  	if (arch_timer_mem_use_virtual)
  		irq = irq_of_parse_and_map(best_frame, 1);
  	else
  		irq = irq_of_parse_and_map(best_frame, 0);
  	of_node_put(best_frame);
  	if (!irq) {
  		pr_err("arch_timer: Frame missing %s irq",
  		       arch_timer_mem_use_virtual ? "virt" : "phys");
  		return;
  	}
  
  	arch_timer_detect_rate(base, np);
  	arch_timer_mem_register(base, irq);
  	arch_timer_common_init();
  }
  CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
  		       arch_timer_mem_init);
  
  #ifdef CONFIG_ACPI
  static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
  {
  	int trigger, polarity;
  
  	if (!interrupt)
  		return 0;
  
  	trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
  			: ACPI_LEVEL_SENSITIVE;
  
  	polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
  			: ACPI_ACTIVE_HIGH;
  
  	return acpi_register_gsi(NULL, interrupt, trigger, polarity);
  }
  
  /* Initialize per-processor generic timer */
  static int __init arch_timer_acpi_init(struct acpi_table_header *table)
  {
  	struct acpi_table_gtdt *gtdt;
  
  	if (arch_timers_present & ARCH_CP15_TIMER) {
  		pr_warn("arch_timer: already initialized, skipping
  ");
  		return -EINVAL;
  	}
  
  	gtdt = container_of(table, struct acpi_table_gtdt, header);
  
  	arch_timers_present |= ARCH_CP15_TIMER;
  
  	arch_timer_ppi[PHYS_SECURE_PPI] =
  		map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
  		gtdt->secure_el1_flags);
  
  	arch_timer_ppi[PHYS_NONSECURE_PPI] =
  		map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
  		gtdt->non_secure_el1_flags);
  
  	arch_timer_ppi[VIRT_PPI] =
  		map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
  		gtdt->virtual_timer_flags);
  
  	arch_timer_ppi[HYP_PPI] =
  		map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
  		gtdt->non_secure_el2_flags);
  
  	/* Get the frequency from CNTFRQ */
  	arch_timer_detect_rate(NULL, NULL);
  
  	/* Always-on capability */
  	arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
  
  	arch_timer_init();
  	return 0;
  }
  CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
  #endif