Blame view

kernel/linux-rt-4.4.41/drivers/clk/mvebu/clk-cpu.c 6.44 KB
5113f6f70   김현기   kernel add
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
  /*
   * Marvell MVEBU CPU clock handling.
   *
   * Copyright (C) 2012 Marvell
   *
   * Gregory CLEMENT <gregory.clement@free-electrons.com>
   *
   * This file is licensed under the terms of the GNU General Public
   * License version 2.  This program is licensed "as is" without any
   * warranty of any kind, whether express or implied.
   */
  #include <linux/kernel.h>
  #include <linux/slab.h>
  #include <linux/clk.h>
  #include <linux/clk-provider.h>
  #include <linux/of_address.h>
  #include <linux/io.h>
  #include <linux/of.h>
  #include <linux/delay.h>
  #include <linux/mvebu-pmsu.h>
  #include <asm/smp_plat.h>
  
  #define SYS_CTRL_CLK_DIVIDER_CTRL_OFFSET               0x0
  #define   SYS_CTRL_CLK_DIVIDER_CTRL_RESET_ALL          0xff
  #define   SYS_CTRL_CLK_DIVIDER_CTRL_RESET_SHIFT        8
  #define SYS_CTRL_CLK_DIVIDER_CTRL2_OFFSET              0x8
  #define   SYS_CTRL_CLK_DIVIDER_CTRL2_NBCLK_RATIO_SHIFT 16
  #define SYS_CTRL_CLK_DIVIDER_VALUE_OFFSET              0xC
  #define SYS_CTRL_CLK_DIVIDER_MASK                      0x3F
  
  #define PMU_DFS_RATIO_SHIFT 16
  #define PMU_DFS_RATIO_MASK  0x3F
  
  #define MAX_CPU	    4
  struct cpu_clk {
  	struct clk_hw hw;
  	int cpu;
  	const char *clk_name;
  	const char *parent_name;
  	void __iomem *reg_base;
  	void __iomem *pmu_dfs;
  };
  
  static struct clk **clks;
  
  static struct clk_onecell_data clk_data;
  
  #define to_cpu_clk(p) container_of(p, struct cpu_clk, hw)
  
  static unsigned long clk_cpu_recalc_rate(struct clk_hw *hwclk,
  					 unsigned long parent_rate)
  {
  	struct cpu_clk *cpuclk = to_cpu_clk(hwclk);
  	u32 reg, div;
  
  	reg = readl(cpuclk->reg_base + SYS_CTRL_CLK_DIVIDER_VALUE_OFFSET);
  	div = (reg >> (cpuclk->cpu * 8)) & SYS_CTRL_CLK_DIVIDER_MASK;
  	return parent_rate / div;
  }
  
  static long clk_cpu_round_rate(struct clk_hw *hwclk, unsigned long rate,
  			       unsigned long *parent_rate)
  {
  	/* Valid ratio are 1:1, 1:2 and 1:3 */
  	u32 div;
  
  	div = *parent_rate / rate;
  	if (div == 0)
  		div = 1;
  	else if (div > 3)
  		div = 3;
  
  	return *parent_rate / div;
  }
  
  static int clk_cpu_off_set_rate(struct clk_hw *hwclk, unsigned long rate,
  				unsigned long parent_rate)
  
  {
  	struct cpu_clk *cpuclk = to_cpu_clk(hwclk);
  	u32 reg, div;
  	u32 reload_mask;
  
  	div = parent_rate / rate;
  	reg = (readl(cpuclk->reg_base + SYS_CTRL_CLK_DIVIDER_VALUE_OFFSET)
  		& (~(SYS_CTRL_CLK_DIVIDER_MASK << (cpuclk->cpu * 8))))
  		| (div << (cpuclk->cpu * 8));
  	writel(reg, cpuclk->reg_base + SYS_CTRL_CLK_DIVIDER_VALUE_OFFSET);
  	/* Set clock divider reload smooth bit mask */
  	reload_mask = 1 << (20 + cpuclk->cpu);
  
  	reg = readl(cpuclk->reg_base + SYS_CTRL_CLK_DIVIDER_CTRL_OFFSET)
  	    | reload_mask;
  	writel(reg, cpuclk->reg_base + SYS_CTRL_CLK_DIVIDER_CTRL_OFFSET);
  
  	/* Now trigger the clock update */
  	reg = readl(cpuclk->reg_base + SYS_CTRL_CLK_DIVIDER_CTRL_OFFSET)
  	    | 1 << 24;
  	writel(reg, cpuclk->reg_base + SYS_CTRL_CLK_DIVIDER_CTRL_OFFSET);
  
  	/* Wait for clocks to settle down then clear reload request */
  	udelay(1000);
  	reg &= ~(reload_mask | 1 << 24);
  	writel(reg, cpuclk->reg_base + SYS_CTRL_CLK_DIVIDER_CTRL_OFFSET);
  	udelay(1000);
  
  	return 0;
  }
  
  static int clk_cpu_on_set_rate(struct clk_hw *hwclk, unsigned long rate,
  			       unsigned long parent_rate)
  {
  	u32 reg;
  	unsigned long fabric_div, target_div, cur_rate;
  	struct cpu_clk *cpuclk = to_cpu_clk(hwclk);
  
  	/*
  	 * PMU DFS registers are not mapped, Device Tree does not
  	 * describes them. We cannot change the frequency dynamically.
  	 */
  	if (!cpuclk->pmu_dfs)
  		return -ENODEV;
  
  	cur_rate = clk_hw_get_rate(hwclk);
  
  	reg = readl(cpuclk->reg_base + SYS_CTRL_CLK_DIVIDER_CTRL2_OFFSET);
  	fabric_div = (reg >> SYS_CTRL_CLK_DIVIDER_CTRL2_NBCLK_RATIO_SHIFT) &
  		SYS_CTRL_CLK_DIVIDER_MASK;
  
  	/* Frequency is going up */
  	if (rate == 2 * cur_rate)
  		target_div = fabric_div / 2;
  	/* Frequency is going down */
  	else
  		target_div = fabric_div;
  
  	if (target_div == 0)
  		target_div = 1;
  
  	reg = readl(cpuclk->pmu_dfs);
  	reg &= ~(PMU_DFS_RATIO_MASK << PMU_DFS_RATIO_SHIFT);
  	reg |= (target_div << PMU_DFS_RATIO_SHIFT);
  	writel(reg, cpuclk->pmu_dfs);
  
  	reg = readl(cpuclk->reg_base + SYS_CTRL_CLK_DIVIDER_CTRL_OFFSET);
  	reg |= (SYS_CTRL_CLK_DIVIDER_CTRL_RESET_ALL <<
  		SYS_CTRL_CLK_DIVIDER_CTRL_RESET_SHIFT);
  	writel(reg, cpuclk->reg_base + SYS_CTRL_CLK_DIVIDER_CTRL_OFFSET);
  
  	return mvebu_pmsu_dfs_request(cpuclk->cpu);
  }
  
  static int clk_cpu_set_rate(struct clk_hw *hwclk, unsigned long rate,
  			    unsigned long parent_rate)
  {
  	if (__clk_is_enabled(hwclk->clk))
  		return clk_cpu_on_set_rate(hwclk, rate, parent_rate);
  	else
  		return clk_cpu_off_set_rate(hwclk, rate, parent_rate);
  }
  
  static const struct clk_ops cpu_ops = {
  	.recalc_rate = clk_cpu_recalc_rate,
  	.round_rate = clk_cpu_round_rate,
  	.set_rate = clk_cpu_set_rate,
  };
  
  static void __init of_cpu_clk_setup(struct device_node *node)
  {
  	struct cpu_clk *cpuclk;
  	void __iomem *clock_complex_base = of_iomap(node, 0);
  	void __iomem *pmu_dfs_base = of_iomap(node, 1);
  	int ncpus = 0;
  	struct device_node *dn;
  
  	if (clock_complex_base == NULL) {
  		pr_err("%s: clock-complex base register not set
  ",
  			__func__);
  		return;
  	}
  
  	if (pmu_dfs_base == NULL)
  		pr_warn("%s: pmu-dfs base register not set, dynamic frequency scaling not available
  ",
  			__func__);
  
  	for_each_node_by_type(dn, "cpu")
  		ncpus++;
  
  	cpuclk = kzalloc(ncpus * sizeof(*cpuclk), GFP_KERNEL);
  	if (WARN_ON(!cpuclk))
  		goto cpuclk_out;
  
  	clks = kzalloc(ncpus * sizeof(*clks), GFP_KERNEL);
  	if (WARN_ON(!clks))
  		goto clks_out;
  
  	for_each_node_by_type(dn, "cpu") {
  		struct clk_init_data init;
  		struct clk *clk;
  		char *clk_name = kzalloc(5, GFP_KERNEL);
  		int cpu, err;
  
  		if (WARN_ON(!clk_name))
  			goto bail_out;
  
  		err = of_property_read_u32(dn, "reg", &cpu);
  		if (WARN_ON(err))
  			goto bail_out;
  
  		sprintf(clk_name, "cpu%d", cpu);
  
  		cpuclk[cpu].parent_name = of_clk_get_parent_name(node, 0);
  		cpuclk[cpu].clk_name = clk_name;
  		cpuclk[cpu].cpu = cpu;
  		cpuclk[cpu].reg_base = clock_complex_base;
  		if (pmu_dfs_base)
  			cpuclk[cpu].pmu_dfs = pmu_dfs_base + 4 * cpu;
  		cpuclk[cpu].hw.init = &init;
  
  		init.name = cpuclk[cpu].clk_name;
  		init.ops = &cpu_ops;
  		init.flags = 0;
  		init.parent_names = &cpuclk[cpu].parent_name;
  		init.num_parents = 1;
  
  		clk = clk_register(NULL, &cpuclk[cpu].hw);
  		if (WARN_ON(IS_ERR(clk)))
  			goto bail_out;
  		clks[cpu] = clk;
  	}
  	clk_data.clk_num = MAX_CPU;
  	clk_data.clks = clks;
  	of_clk_add_provider(node, of_clk_src_onecell_get, &clk_data);
  
  	return;
  bail_out:
  	kfree(clks);
  	while(ncpus--)
  		kfree(cpuclk[ncpus].clk_name);
  clks_out:
  	kfree(cpuclk);
  cpuclk_out:
  	iounmap(clock_complex_base);
  }
  
  CLK_OF_DECLARE(armada_xp_cpu_clock, "marvell,armada-xp-cpu-clock",
  					 of_cpu_clk_setup);