Blame view

kernel/linux-rt-4.4.41/drivers/clk/bcm/clk-kona.h 17.4 KB
5113f6f70   김현기   kernel add
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
  /*
   * Copyright (C) 2013 Broadcom Corporation
   * Copyright 2013 Linaro Limited
   *
   * This program is free software; you can redistribute it and/or
   * modify it under the terms of the GNU General Public License as
   * published by the Free Software Foundation version 2.
   *
   * This program is distributed "as is" WITHOUT ANY WARRANTY of any
   * kind, whether express or implied; without even the implied warranty
   * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   * GNU General Public License for more details.
   */
  
  #ifndef _CLK_KONA_H
  #define _CLK_KONA_H
  
  #include <linux/kernel.h>
  #include <linux/list.h>
  #include <linux/spinlock.h>
  #include <linux/slab.h>
  #include <linux/device.h>
  #include <linux/of.h>
  #include <linux/clk-provider.h>
  
  #define	BILLION		1000000000
  
  /* The common clock framework uses u8 to represent a parent index */
  #define PARENT_COUNT_MAX	((u32)U8_MAX)
  
  #define BAD_CLK_INDEX		U8_MAX	/* Can't ever be valid */
  #define BAD_CLK_NAME		((const char *)-1)
  
  #define BAD_SCALED_DIV_VALUE	U64_MAX
  
  /*
   * Utility macros for object flag management.  If possible, flags
   * should be defined such that 0 is the desired default value.
   */
  #define FLAG(type, flag)		BCM_CLK_ ## type ## _FLAGS_ ## flag
  #define FLAG_SET(obj, type, flag)	((obj)->flags |= FLAG(type, flag))
  #define FLAG_CLEAR(obj, type, flag)	((obj)->flags &= ~(FLAG(type, flag)))
  #define FLAG_FLIP(obj, type, flag)	((obj)->flags ^= FLAG(type, flag))
  #define FLAG_TEST(obj, type, flag)	(!!((obj)->flags & FLAG(type, flag)))
  
  /* CCU field state tests */
  
  #define ccu_policy_exists(ccu_policy)	((ccu_policy)->enable.offset != 0)
  
  /* Clock field state tests */
  
  #define policy_exists(policy)		((policy)->offset != 0)
  
  #define gate_exists(gate)		FLAG_TEST(gate, GATE, EXISTS)
  #define gate_is_enabled(gate)		FLAG_TEST(gate, GATE, ENABLED)
  #define gate_is_hw_controllable(gate)	FLAG_TEST(gate, GATE, HW)
  #define gate_is_sw_controllable(gate)	FLAG_TEST(gate, GATE, SW)
  #define gate_is_sw_managed(gate)	FLAG_TEST(gate, GATE, SW_MANAGED)
  #define gate_is_no_disable(gate)	FLAG_TEST(gate, GATE, NO_DISABLE)
  
  #define gate_flip_enabled(gate)		FLAG_FLIP(gate, GATE, ENABLED)
  
  #define hyst_exists(hyst)		((hyst)->offset != 0)
  
  #define divider_exists(div)		FLAG_TEST(div, DIV, EXISTS)
  #define divider_is_fixed(div)		FLAG_TEST(div, DIV, FIXED)
  #define divider_has_fraction(div)	(!divider_is_fixed(div) && \
  						(div)->u.s.frac_width > 0)
  
  #define selector_exists(sel)		((sel)->width != 0)
  #define trigger_exists(trig)		FLAG_TEST(trig, TRIG, EXISTS)
  
  #define policy_lvm_en_exists(enable)	((enable)->offset != 0)
  #define policy_ctl_exists(control)	((control)->offset != 0)
  
  /* Clock type, used to tell common block what it's part of */
  enum bcm_clk_type {
  	bcm_clk_none,		/* undefined clock type */
  	bcm_clk_bus,
  	bcm_clk_core,
  	bcm_clk_peri
  };
  
  /*
   * CCU policy control for clocks.  Clocks can be enabled or disabled
   * based on the CCU policy in effect.  One bit in each policy mask
   * register (one per CCU policy) represents whether the clock is
   * enabled when that policy is effect or not.  The CCU policy engine
   * must be stopped to update these bits, and must be restarted again
   * afterward.
   */
  struct bcm_clk_policy {
  	u32 offset;		/* first policy mask register offset */
  	u32 bit;		/* bit used in all mask registers */
  };
  
  /* Policy initialization macro */
  
  #define POLICY(_offset, _bit)						\
  	{								\
  		.offset = (_offset),					\
  		.bit = (_bit),						\
  	}
  
  /*
   * Gating control and status is managed by a 32-bit gate register.
   *
   * There are several types of gating available:
   * - (no gate)
   *     A clock with no gate is assumed to be always enabled.
   * - hardware-only gating (auto-gating)
   *     Enabling or disabling clocks with this type of gate is
   *     managed automatically by the hardware.  Such clocks can be
   *     considered by the software to be enabled.  The current status
   *     of auto-gated clocks can be read from the gate status bit.
   * - software-only gating
   *     Auto-gating is not available for this type of clock.
   *     Instead, software manages whether it's enabled by setting or
   *     clearing the enable bit.  The current gate status of a gate
   *     under software control can be read from the gate status bit.
   *     To ensure a change to the gating status is complete, the
   *     status bit can be polled to verify that the gate has entered
   *     the desired state.
   * - selectable hardware or software gating
   *     Gating for this type of clock can be configured to be either
   *     under software or hardware control.  Which type is in use is
   *     determined by the hw_sw_sel bit of the gate register.
   */
  struct bcm_clk_gate {
  	u32 offset;		/* gate register offset */
  	u32 status_bit;		/* 0: gate is disabled; 0: gatge is enabled */
  	u32 en_bit;		/* 0: disable; 1: enable */
  	u32 hw_sw_sel_bit;	/* 0: hardware gating; 1: software gating */
  	u32 flags;		/* BCM_CLK_GATE_FLAGS_* below */
  };
  
  /*
   * Gate flags:
   *   HW         means this gate can be auto-gated
   *   SW         means the state of this gate can be software controlled
   *   NO_DISABLE means this gate is (only) enabled if under software control
   *   SW_MANAGED means the status of this gate is under software control
   *   ENABLED    means this software-managed gate is *supposed* to be enabled
   */
  #define BCM_CLK_GATE_FLAGS_EXISTS	((u32)1 << 0)	/* Gate is valid */
  #define BCM_CLK_GATE_FLAGS_HW		((u32)1 << 1)	/* Can auto-gate */
  #define BCM_CLK_GATE_FLAGS_SW		((u32)1 << 2)	/* Software control */
  #define BCM_CLK_GATE_FLAGS_NO_DISABLE	((u32)1 << 3)	/* HW or enabled */
  #define BCM_CLK_GATE_FLAGS_SW_MANAGED	((u32)1 << 4)	/* SW now in control */
  #define BCM_CLK_GATE_FLAGS_ENABLED	((u32)1 << 5)	/* If SW_MANAGED */
  
  /*
   * Gate initialization macros.
   *
   * Any gate initially under software control will be enabled.
   */
  
  /* A hardware/software gate initially under software control */
  #define HW_SW_GATE(_offset, _status_bit, _en_bit, _hw_sw_sel_bit)	\
  	{								\
  		.offset = (_offset),					\
  		.status_bit = (_status_bit),				\
  		.en_bit = (_en_bit),					\
  		.hw_sw_sel_bit = (_hw_sw_sel_bit),			\
  		.flags = FLAG(GATE, HW)|FLAG(GATE, SW)|			\
  			FLAG(GATE, SW_MANAGED)|FLAG(GATE, ENABLED)|	\
  			FLAG(GATE, EXISTS),				\
  	}
  
  /* A hardware/software gate initially under hardware control */
  #define HW_SW_GATE_AUTO(_offset, _status_bit, _en_bit, _hw_sw_sel_bit)	\
  	{								\
  		.offset = (_offset),					\
  		.status_bit = (_status_bit),				\
  		.en_bit = (_en_bit),					\
  		.hw_sw_sel_bit = (_hw_sw_sel_bit),			\
  		.flags = FLAG(GATE, HW)|FLAG(GATE, SW)|			\
  			FLAG(GATE, EXISTS),				\
  	}
  
  /* A hardware-or-enabled gate (enabled if not under hardware control) */
  #define HW_ENABLE_GATE(_offset, _status_bit, _en_bit, _hw_sw_sel_bit)	\
  	{								\
  		.offset = (_offset),					\
  		.status_bit = (_status_bit),				\
  		.en_bit = (_en_bit),					\
  		.hw_sw_sel_bit = (_hw_sw_sel_bit),			\
  		.flags = FLAG(GATE, HW)|FLAG(GATE, SW)|			\
  			FLAG(GATE, NO_DISABLE)|FLAG(GATE, EXISTS),	\
  	}
  
  /* A software-only gate */
  #define SW_ONLY_GATE(_offset, _status_bit, _en_bit)			\
  	{								\
  		.offset = (_offset),					\
  		.status_bit = (_status_bit),				\
  		.en_bit = (_en_bit),					\
  		.flags = FLAG(GATE, SW)|FLAG(GATE, SW_MANAGED)|		\
  			FLAG(GATE, ENABLED)|FLAG(GATE, EXISTS),		\
  	}
  
  /* A hardware-only gate */
  #define HW_ONLY_GATE(_offset, _status_bit)				\
  	{								\
  		.offset = (_offset),					\
  		.status_bit = (_status_bit),				\
  		.flags = FLAG(GATE, HW)|FLAG(GATE, EXISTS),		\
  	}
  
  /* Gate hysteresis for clocks */
  struct bcm_clk_hyst {
  	u32 offset;		/* hyst register offset (normally CLKGATE) */
  	u32 en_bit;		/* bit used to enable hysteresis */
  	u32 val_bit;		/* if enabled: 0 = low delay; 1 = high delay */
  };
  
  /* Hysteresis initialization macro */
  
  #define HYST(_offset, _en_bit, _val_bit)				\
  	{								\
  		.offset = (_offset),					\
  		.en_bit = (_en_bit),					\
  		.val_bit = (_val_bit),					\
  	}
  
  /*
   * Each clock can have zero, one, or two dividers which change the
   * output rate of the clock.  Each divider can be either fixed or
   * variable.  If there are two dividers, they are the "pre-divider"
   * and the "regular" or "downstream" divider.  If there is only one,
   * there is no pre-divider.
   *
   * A fixed divider is any non-zero (positive) value, and it
   * indicates how the input rate is affected by the divider.
   *
   * The value of a variable divider is maintained in a sub-field of a
   * 32-bit divider register.  The position of the field in the
   * register is defined by its offset and width.  The value recorded
   * in this field is always 1 less than the value it represents.
   *
   * In addition, a variable divider can indicate that some subset
   * of its bits represent a "fractional" part of the divider.  Such
   * bits comprise the low-order portion of the divider field, and can
   * be viewed as representing the portion of the divider that lies to
   * the right of the decimal point.  Most variable dividers have zero
   * fractional bits.  Variable dividers with non-zero fraction width
   * still record a value 1 less than the value they represent; the
   * added 1 does *not* affect the low-order bit in this case, it
   * affects the bits above the fractional part only.  (Often in this
   * code a divider field value is distinguished from the value it
   * represents by referring to the latter as a "divisor".)
   *
   * In order to avoid dealing with fractions, divider arithmetic is
   * performed using "scaled" values.  A scaled value is one that's
   * been left-shifted by the fractional width of a divider.  Dividing
   * a scaled value by a scaled divisor produces the desired quotient
   * without loss of precision and without any other special handling
   * for fractions.
   *
   * The recorded value of a variable divider can be modified.  To
   * modify either divider (or both), a clock must be enabled (i.e.,
   * using its gate).  In addition, a trigger register (described
   * below) must be used to commit the change, and polled to verify
   * the change is complete.
   */
  struct bcm_clk_div {
  	union {
  		struct {	/* variable divider */
  			u32 offset;	/* divider register offset */
  			u32 shift;	/* field shift */
  			u32 width;	/* field width */
  			u32 frac_width;	/* field fraction width */
  
  			u64 scaled_div;	/* scaled divider value */
  		} s;
  		u32 fixed;	/* non-zero fixed divider value */
  	} u;
  	u32 flags;		/* BCM_CLK_DIV_FLAGS_* below */
  };
  
  /*
   * Divider flags:
   *   EXISTS means this divider exists
   *   FIXED means it is a fixed-rate divider
   */
  #define BCM_CLK_DIV_FLAGS_EXISTS	((u32)1 << 0)	/* Divider is valid */
  #define BCM_CLK_DIV_FLAGS_FIXED		((u32)1 << 1)	/* Fixed-value */
  
  /* Divider initialization macros */
  
  /* A fixed (non-zero) divider */
  #define FIXED_DIVIDER(_value)						\
  	{								\
  		.u.fixed = (_value),					\
  		.flags = FLAG(DIV, EXISTS)|FLAG(DIV, FIXED),		\
  	}
  
  /* A divider with an integral divisor */
  #define DIVIDER(_offset, _shift, _width)				\
  	{								\
  		.u.s.offset = (_offset),				\
  		.u.s.shift = (_shift),					\
  		.u.s.width = (_width),					\
  		.u.s.scaled_div = BAD_SCALED_DIV_VALUE,			\
  		.flags = FLAG(DIV, EXISTS),				\
  	}
  
  /* A divider whose divisor has an integer and fractional part */
  #define FRAC_DIVIDER(_offset, _shift, _width, _frac_width)		\
  	{								\
  		.u.s.offset = (_offset),				\
  		.u.s.shift = (_shift),					\
  		.u.s.width = (_width),					\
  		.u.s.frac_width = (_frac_width),			\
  		.u.s.scaled_div = BAD_SCALED_DIV_VALUE,			\
  		.flags = FLAG(DIV, EXISTS),				\
  	}
  
  /*
   * Clocks may have multiple "parent" clocks.  If there is more than
   * one, a selector must be specified to define which of the parent
   * clocks is currently in use.  The selected clock is indicated in a
   * sub-field of a 32-bit selector register.  The range of
   * representable selector values typically exceeds the number of
   * available parent clocks.  Occasionally the reset value of a
   * selector field is explicitly set to a (specific) value that does
   * not correspond to a defined input clock.
   *
   * We register all known parent clocks with the common clock code
   * using a packed array (i.e., no empty slots) of (parent) clock
   * names, and refer to them later using indexes into that array.
   * We maintain an array of selector values indexed by common clock
   * index values in order to map between these common clock indexes
   * and the selector values used by the hardware.
   *
   * Like dividers, a selector can be modified, but to do so a clock
   * must be enabled, and a trigger must be used to commit the change.
   */
  struct bcm_clk_sel {
  	u32 offset;		/* selector register offset */
  	u32 shift;		/* field shift */
  	u32 width;		/* field width */
  
  	u32 parent_count;	/* number of entries in parent_sel[] */
  	u32 *parent_sel;	/* array of parent selector values */
  	u8 clk_index;		/* current selected index in parent_sel[] */
  };
  
  /* Selector initialization macro */
  #define SELECTOR(_offset, _shift, _width)				\
  	{								\
  		.offset = (_offset),					\
  		.shift = (_shift),					\
  		.width = (_width),					\
  		.clk_index = BAD_CLK_INDEX,				\
  	}
  
  /*
   * Making changes to a variable divider or a selector for a clock
   * requires the use of a trigger.  A trigger is defined by a single
   * bit within a register.  To signal a change, a 1 is written into
   * that bit.  To determine when the change has been completed, that
   * trigger bit is polled; the read value will be 1 while the change
   * is in progress, and 0 when it is complete.
   *
   * Occasionally a clock will have more than one trigger.  In this
   * case, the "pre-trigger" will be used when changing a clock's
   * selector and/or its pre-divider.
   */
  struct bcm_clk_trig {
  	u32 offset;		/* trigger register offset */
  	u32 bit;		/* trigger bit */
  	u32 flags;		/* BCM_CLK_TRIG_FLAGS_* below */
  };
  
  /*
   * Trigger flags:
   *   EXISTS means this trigger exists
   */
  #define BCM_CLK_TRIG_FLAGS_EXISTS	((u32)1 << 0)	/* Trigger is valid */
  
  /* Trigger initialization macro */
  #define TRIGGER(_offset, _bit)						\
  	{								\
  		.offset = (_offset),					\
  		.bit = (_bit),						\
  		.flags = FLAG(TRIG, EXISTS),				\
  	}
  
  struct peri_clk_data {
  	struct bcm_clk_policy policy;
  	struct bcm_clk_gate gate;
  	struct bcm_clk_hyst hyst;
  	struct bcm_clk_trig pre_trig;
  	struct bcm_clk_div pre_div;
  	struct bcm_clk_trig trig;
  	struct bcm_clk_div div;
  	struct bcm_clk_sel sel;
  	const char *clocks[];	/* must be last; use CLOCKS() to declare */
  };
  #define CLOCKS(...)	{ __VA_ARGS__, NULL, }
  #define NO_CLOCKS	{ NULL, }	/* Must use of no parent clocks */
  
  struct kona_clk {
  	struct clk_hw hw;
  	struct clk_init_data init_data;	/* includes name of this clock */
  	struct ccu_data *ccu;	/* ccu this clock is associated with */
  	enum bcm_clk_type type;
  	union {
  		void *data;
  		struct peri_clk_data *peri;
  	} u;
  };
  #define to_kona_clk(_hw) \
  	container_of(_hw, struct kona_clk, hw)
  
  /* Initialization macro for an entry in a CCU's kona_clks[] array. */
  #define KONA_CLK(_ccu_name, _clk_name, _type)				\
  	{								\
  		.init_data	= {					\
  			.name = #_clk_name,				\
  			.ops = &kona_ ## _type ## _clk_ops,		\
  		},							\
  		.ccu		= &_ccu_name ## _ccu_data,		\
  		.type		= bcm_clk_ ## _type,			\
  		.u.data		= &_clk_name ## _data,			\
  	}
  #define LAST_KONA_CLK	{ .type = bcm_clk_none }
  
  /*
   * CCU policy control.  To enable software update of the policy
   * tables the CCU policy engine must be stopped by setting the
   * software update enable bit (LVM_EN).  After an update the engine
   * is restarted using the GO bit and either the GO_ATL or GO_AC bit.
   */
  struct bcm_lvm_en {
  	u32 offset;		/* LVM_EN register offset */
  	u32 bit;		/* POLICY_CONFIG_EN bit in register */
  };
  
  /* Policy enable initialization macro */
  #define CCU_LVM_EN(_offset, _bit)					\
  	{								\
  		.offset = (_offset),					\
  		.bit = (_bit),						\
  	}
  
  struct bcm_policy_ctl {
  	u32 offset;		/* POLICY_CTL register offset */
  	u32 go_bit;
  	u32 atl_bit;		/* GO, GO_ATL, and GO_AC bits */
  	u32 ac_bit;
  };
  
  /* Policy control initialization macro */
  #define CCU_POLICY_CTL(_offset, _go_bit, _ac_bit, _atl_bit)		\
  	{								\
  		.offset = (_offset),					\
  		.go_bit = (_go_bit),					\
  		.ac_bit = (_ac_bit),					\
  		.atl_bit = (_atl_bit),					\
  	}
  
  struct ccu_policy {
  	struct bcm_lvm_en enable;
  	struct bcm_policy_ctl control;
  };
  
  /*
   * Each CCU defines a mapped area of memory containing registers
   * used to manage clocks implemented by the CCU.  Access to memory
   * within the CCU's space is serialized by a spinlock.  Before any
   * (other) address can be written, a special access "password" value
   * must be written to its WR_ACCESS register (located at the base
   * address of the range).  We keep track of the name of each CCU as
   * it is set up, and maintain them in a list.
   */
  struct ccu_data {
  	void __iomem *base;	/* base of mapped address space */
  	spinlock_t lock;	/* serialization lock */
  	bool write_enabled;	/* write access is currently enabled */
  	struct ccu_policy policy;
  	struct device_node *node;
  	struct clk_onecell_data clk_data;
  	const char *name;
  	u32 range;		/* byte range of address space */
  	struct kona_clk kona_clks[];	/* must be last */
  };
  
  /* Initialization for common fields in a Kona ccu_data structure */
  #define KONA_CCU_COMMON(_prefix, _name, _ccuname)			    \
  	.name		= #_name "_ccu",				    \
  	.lock		= __SPIN_LOCK_UNLOCKED(_name ## _ccu_data.lock),    \
  	.clk_data	= {						    \
  		.clk_num = _prefix ## _ ## _ccuname ## _CCU_CLOCK_COUNT,    \
  	}
  
  /* Exported globals */
  
  extern struct clk_ops kona_peri_clk_ops;
  
  /* Externally visible functions */
  
  extern u64 scaled_div_max(struct bcm_clk_div *div);
  extern u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value,
  				u32 billionths);
  
  extern struct clk *kona_clk_setup(struct kona_clk *bcm_clk);
  extern void __init kona_dt_ccu_setup(struct ccu_data *ccu,
  				struct device_node *node);
  extern bool __init kona_ccu_init(struct ccu_data *ccu);
  
  #endif /* _CLK_KONA_H */