Blame view

kernel/linux-rt-4.4.41/arch/powerpc/sysdev/cpm2.c 8.55 KB
5113f6f70   김현기   kernel add
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
  /*
   * General Purpose functions for the global management of the
   * 8260 Communication Processor Module.
   * Copyright (c) 1999-2001 Dan Malek <dan@embeddedalley.com>
   * Copyright (c) 2000 MontaVista Software, Inc (source@mvista.com)
   *	2.3.99 Updates
   *
   * 2006 (c) MontaVista Software, Inc.
   * Vitaly Bordug <vbordug@ru.mvista.com>
   * 	Merged to arch/powerpc from arch/ppc/syslib/cpm2_common.c
   *
   * This file is licensed under the terms of the GNU General Public License
   * version 2. This program is licensed "as is" without any warranty of any
   * kind, whether express or implied.
   */
  
  /*
   *
   * In addition to the individual control of the communication
   * channels, there are a few functions that globally affect the
   * communication processor.
   *
   * Buffer descriptors must be allocated from the dual ported memory
   * space.  The allocator for that is here.  When the communication
   * process is reset, we reclaim the memory available.  There is
   * currently no deallocator for this memory.
   */
  #include <linux/errno.h>
  #include <linux/sched.h>
  #include <linux/kernel.h>
  #include <linux/param.h>
  #include <linux/string.h>
  #include <linux/mm.h>
  #include <linux/interrupt.h>
  #include <linux/module.h>
  #include <linux/of.h>
  
  #include <asm/io.h>
  #include <asm/irq.h>
  #include <asm/mpc8260.h>
  #include <asm/page.h>
  #include <asm/pgtable.h>
  #include <asm/cpm2.h>
  #include <asm/rheap.h>
  #include <asm/fs_pd.h>
  
  #include <sysdev/fsl_soc.h>
  
  cpm_cpm2_t __iomem *cpmp; /* Pointer to comm processor space */
  
  /* We allocate this here because it is used almost exclusively for
   * the communication processor devices.
   */
  cpm2_map_t __iomem *cpm2_immr;
  EXPORT_SYMBOL(cpm2_immr);
  
  #define CPM_MAP_SIZE	(0x40000)	/* 256k - the PQ3 reserve this amount
  					   of space for CPM as it is larger
  					   than on PQ2 */
  
  void __init cpm2_reset(void)
  {
  #ifdef CONFIG_PPC_85xx
  	cpm2_immr = ioremap(get_immrbase() + 0x80000, CPM_MAP_SIZE);
  #else
  	cpm2_immr = ioremap(get_immrbase(), CPM_MAP_SIZE);
  #endif
  
  	/* Reclaim the DP memory for our use.
  	 */
  	cpm_muram_init();
  
  	/* Tell everyone where the comm processor resides.
  	 */
  	cpmp = &cpm2_immr->im_cpm;
  
  #ifndef CONFIG_PPC_EARLY_DEBUG_CPM
  	/* Reset the CPM.
  	 */
  	cpm_command(CPM_CR_RST, 0);
  #endif
  }
  
  static DEFINE_SPINLOCK(cmd_lock);
  
  #define MAX_CR_CMD_LOOPS        10000
  
  int cpm_command(u32 command, u8 opcode)
  {
  	int i, ret;
  	unsigned long flags;
  
  	spin_lock_irqsave(&cmd_lock, flags);
  
  	ret = 0;
  	out_be32(&cpmp->cp_cpcr, command | opcode | CPM_CR_FLG);
  	for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
  		if ((in_be32(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
  			goto out;
  
  	printk(KERN_ERR "%s(): Not able to issue CPM command
  ", __func__);
  	ret = -EIO;
  out:
  	spin_unlock_irqrestore(&cmd_lock, flags);
  	return ret;
  }
  EXPORT_SYMBOL(cpm_command);
  
  /* Set a baud rate generator.  This needs lots of work.  There are
   * eight BRGs, which can be connected to the CPM channels or output
   * as clocks.  The BRGs are in two different block of internal
   * memory mapped space.
   * The baud rate clock is the system clock divided by something.
   * It was set up long ago during the initial boot phase and is
   * is given to us.
   * Baud rate clocks are zero-based in the driver code (as that maps
   * to port numbers).  Documentation uses 1-based numbering.
   */
  void __cpm2_setbrg(uint brg, uint rate, uint clk, int div16, int src)
  {
  	u32 __iomem *bp;
  	u32 val;
  
  	/* This is good enough to get SMCs running.....
  	*/
  	if (brg < 4) {
  		bp = cpm2_map_size(im_brgc1, 16);
  	} else {
  		bp = cpm2_map_size(im_brgc5, 16);
  		brg -= 4;
  	}
  	bp += brg;
  	/* Round the clock divider to the nearest integer. */
  	val = (((clk * 2 / rate) - 1) & ~1) | CPM_BRG_EN | src;
  	if (div16)
  		val |= CPM_BRG_DIV16;
  
  	out_be32(bp, val);
  	cpm2_unmap(bp);
  }
  EXPORT_SYMBOL(__cpm2_setbrg);
  
  int cpm2_clk_setup(enum cpm_clk_target target, int clock, int mode)
  {
  	int ret = 0;
  	int shift;
  	int i, bits = 0;
  	cpmux_t __iomem *im_cpmux;
  	u32 __iomem *reg;
  	u32 mask = 7;
  
  	u8 clk_map[][3] = {
  		{CPM_CLK_FCC1, CPM_BRG5, 0},
  		{CPM_CLK_FCC1, CPM_BRG6, 1},
  		{CPM_CLK_FCC1, CPM_BRG7, 2},
  		{CPM_CLK_FCC1, CPM_BRG8, 3},
  		{CPM_CLK_FCC1, CPM_CLK9, 4},
  		{CPM_CLK_FCC1, CPM_CLK10, 5},
  		{CPM_CLK_FCC1, CPM_CLK11, 6},
  		{CPM_CLK_FCC1, CPM_CLK12, 7},
  		{CPM_CLK_FCC2, CPM_BRG5, 0},
  		{CPM_CLK_FCC2, CPM_BRG6, 1},
  		{CPM_CLK_FCC2, CPM_BRG7, 2},
  		{CPM_CLK_FCC2, CPM_BRG8, 3},
  		{CPM_CLK_FCC2, CPM_CLK13, 4},
  		{CPM_CLK_FCC2, CPM_CLK14, 5},
  		{CPM_CLK_FCC2, CPM_CLK15, 6},
  		{CPM_CLK_FCC2, CPM_CLK16, 7},
  		{CPM_CLK_FCC3, CPM_BRG5, 0},
  		{CPM_CLK_FCC3, CPM_BRG6, 1},
  		{CPM_CLK_FCC3, CPM_BRG7, 2},
  		{CPM_CLK_FCC3, CPM_BRG8, 3},
  		{CPM_CLK_FCC3, CPM_CLK13, 4},
  		{CPM_CLK_FCC3, CPM_CLK14, 5},
  		{CPM_CLK_FCC3, CPM_CLK15, 6},
  		{CPM_CLK_FCC3, CPM_CLK16, 7},
  		{CPM_CLK_SCC1, CPM_BRG1, 0},
  		{CPM_CLK_SCC1, CPM_BRG2, 1},
  		{CPM_CLK_SCC1, CPM_BRG3, 2},
  		{CPM_CLK_SCC1, CPM_BRG4, 3},
  		{CPM_CLK_SCC1, CPM_CLK11, 4},
  		{CPM_CLK_SCC1, CPM_CLK12, 5},
  		{CPM_CLK_SCC1, CPM_CLK3, 6},
  		{CPM_CLK_SCC1, CPM_CLK4, 7},
  		{CPM_CLK_SCC2, CPM_BRG1, 0},
  		{CPM_CLK_SCC2, CPM_BRG2, 1},
  		{CPM_CLK_SCC2, CPM_BRG3, 2},
  		{CPM_CLK_SCC2, CPM_BRG4, 3},
  		{CPM_CLK_SCC2, CPM_CLK11, 4},
  		{CPM_CLK_SCC2, CPM_CLK12, 5},
  		{CPM_CLK_SCC2, CPM_CLK3, 6},
  		{CPM_CLK_SCC2, CPM_CLK4, 7},
  		{CPM_CLK_SCC3, CPM_BRG1, 0},
  		{CPM_CLK_SCC3, CPM_BRG2, 1},
  		{CPM_CLK_SCC3, CPM_BRG3, 2},
  		{CPM_CLK_SCC3, CPM_BRG4, 3},
  		{CPM_CLK_SCC3, CPM_CLK5, 4},
  		{CPM_CLK_SCC3, CPM_CLK6, 5},
  		{CPM_CLK_SCC3, CPM_CLK7, 6},
  		{CPM_CLK_SCC3, CPM_CLK8, 7},
  		{CPM_CLK_SCC4, CPM_BRG1, 0},
  		{CPM_CLK_SCC4, CPM_BRG2, 1},
  		{CPM_CLK_SCC4, CPM_BRG3, 2},
  		{CPM_CLK_SCC4, CPM_BRG4, 3},
  		{CPM_CLK_SCC4, CPM_CLK5, 4},
  		{CPM_CLK_SCC4, CPM_CLK6, 5},
  		{CPM_CLK_SCC4, CPM_CLK7, 6},
  		{CPM_CLK_SCC4, CPM_CLK8, 7},
  	};
  
  	im_cpmux = cpm2_map(im_cpmux);
  
  	switch (target) {
  	case CPM_CLK_SCC1:
  		reg = &im_cpmux->cmx_scr;
  		shift = 24;
  		break;
  	case CPM_CLK_SCC2:
  		reg = &im_cpmux->cmx_scr;
  		shift = 16;
  		break;
  	case CPM_CLK_SCC3:
  		reg = &im_cpmux->cmx_scr;
  		shift = 8;
  		break;
  	case CPM_CLK_SCC4:
  		reg = &im_cpmux->cmx_scr;
  		shift = 0;
  		break;
  	case CPM_CLK_FCC1:
  		reg = &im_cpmux->cmx_fcr;
  		shift = 24;
  		break;
  	case CPM_CLK_FCC2:
  		reg = &im_cpmux->cmx_fcr;
  		shift = 16;
  		break;
  	case CPM_CLK_FCC3:
  		reg = &im_cpmux->cmx_fcr;
  		shift = 8;
  		break;
  	default:
  		printk(KERN_ERR "cpm2_clock_setup: invalid clock target
  ");
  		return -EINVAL;
  	}
  
  	for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
  		if (clk_map[i][0] == target && clk_map[i][1] == clock) {
  			bits = clk_map[i][2];
  			break;
  		}
  	}
  	if (i == ARRAY_SIZE(clk_map))
  	    ret = -EINVAL;
  
  	bits <<= shift;
  	mask <<= shift;
  
  	if (mode == CPM_CLK_RTX) {
  		bits |= bits << 3;
  		mask |= mask << 3;
  	} else if (mode == CPM_CLK_RX) {
  		bits <<= 3;
  		mask <<= 3;
  	}
  
  	out_be32(reg, (in_be32(reg) & ~mask) | bits);
  
  	cpm2_unmap(im_cpmux);
  	return ret;
  }
  
  int cpm2_smc_clk_setup(enum cpm_clk_target target, int clock)
  {
  	int ret = 0;
  	int shift;
  	int i, bits = 0;
  	cpmux_t __iomem *im_cpmux;
  	u8 __iomem *reg;
  	u8 mask = 3;
  
  	u8 clk_map[][3] = {
  		{CPM_CLK_SMC1, CPM_BRG1, 0},
  		{CPM_CLK_SMC1, CPM_BRG7, 1},
  		{CPM_CLK_SMC1, CPM_CLK7, 2},
  		{CPM_CLK_SMC1, CPM_CLK9, 3},
  		{CPM_CLK_SMC2, CPM_BRG2, 0},
  		{CPM_CLK_SMC2, CPM_BRG8, 1},
  		{CPM_CLK_SMC2, CPM_CLK4, 2},
  		{CPM_CLK_SMC2, CPM_CLK15, 3},
  	};
  
  	im_cpmux = cpm2_map(im_cpmux);
  
  	switch (target) {
  	case CPM_CLK_SMC1:
  		reg = &im_cpmux->cmx_smr;
  		mask = 3;
  		shift = 4;
  		break;
  	case CPM_CLK_SMC2:
  		reg = &im_cpmux->cmx_smr;
  		mask = 3;
  		shift = 0;
  		break;
  	default:
  		printk(KERN_ERR "cpm2_smc_clock_setup: invalid clock target
  ");
  		return -EINVAL;
  	}
  
  	for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
  		if (clk_map[i][0] == target && clk_map[i][1] == clock) {
  			bits = clk_map[i][2];
  			break;
  		}
  	}
  	if (i == ARRAY_SIZE(clk_map))
  	    ret = -EINVAL;
  
  	bits <<= shift;
  	mask <<= shift;
  
  	out_8(reg, (in_8(reg) & ~mask) | bits);
  
  	cpm2_unmap(im_cpmux);
  	return ret;
  }
  
  struct cpm2_ioports {
  	u32 dir, par, sor, odr, dat;
  	u32 res[3];
  };
  
  void cpm2_set_pin(int port, int pin, int flags)
  {
  	struct cpm2_ioports __iomem *iop =
  		(struct cpm2_ioports __iomem *)&cpm2_immr->im_ioport;
  
  	pin = 1 << (31 - pin);
  
  	if (flags & CPM_PIN_OUTPUT)
  		setbits32(&iop[port].dir, pin);
  	else
  		clrbits32(&iop[port].dir, pin);
  
  	if (!(flags & CPM_PIN_GPIO))
  		setbits32(&iop[port].par, pin);
  	else
  		clrbits32(&iop[port].par, pin);
  
  	if (flags & CPM_PIN_SECONDARY)
  		setbits32(&iop[port].sor, pin);
  	else
  		clrbits32(&iop[port].sor, pin);
  
  	if (flags & CPM_PIN_OPENDRAIN)
  		setbits32(&iop[port].odr, pin);
  	else
  		clrbits32(&iop[port].odr, pin);
  }
  
  static int cpm_init_par_io(void)
  {
  	struct device_node *np;
  
  	for_each_compatible_node(np, NULL, "fsl,cpm2-pario-bank")
  		cpm2_gpiochip_add32(np);
  	return 0;
  }
  arch_initcall(cpm_init_par_io);