Blame view

kernel/linux-rt-4.4.41/lib/flex_proportions.c 6.87 KB
5113f6f70   김현기   kernel add
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
  /*
   *  Floating proportions with flexible aging period
   *
   *   Copyright (C) 2011, SUSE, Jan Kara <jack@suse.cz>
   *
   * The goal of this code is: Given different types of event, measure proportion
   * of each type of event over time. The proportions are measured with
   * exponentially decaying history to give smooth transitions. A formula
   * expressing proportion of event of type 'j' is:
   *
   *   p_{j} = (\Sum_{i>=0} x_{i,j}/2^{i+1})/(\Sum_{i>=0} x_i/2^{i+1})
   *
   * Where x_{i,j} is j's number of events in i-th last time period and x_i is
   * total number of events in i-th last time period.
   *
   * Note that p_{j}'s are normalised, i.e.
   *
   *   \Sum_{j} p_{j} = 1,
   *
   * This formula can be straightforwardly computed by maintaing denominator
   * (let's call it 'd') and for each event type its numerator (let's call it
   * 'n_j'). When an event of type 'j' happens, we simply need to do:
   *   n_j++; d++;
   *
   * When a new period is declared, we could do:
   *   d /= 2
   *   for each j
   *     n_j /= 2
   *
   * To avoid iteration over all event types, we instead shift numerator of event
   * j lazily when someone asks for a proportion of event j or when event j
   * occurs. This can bit trivially implemented by remembering last period in
   * which something happened with proportion of type j.
   */
  #include <linux/flex_proportions.h>
  
  int fprop_global_init(struct fprop_global *p, gfp_t gfp)
  {
  	int err;
  
  	p->period = 0;
  	/* Use 1 to avoid dealing with periods with 0 events... */
  	err = percpu_counter_init(&p->events, 1, gfp);
  	if (err)
  		return err;
  	seqcount_init(&p->sequence);
  	return 0;
  }
  
  void fprop_global_destroy(struct fprop_global *p)
  {
  	percpu_counter_destroy(&p->events);
  }
  
  /*
   * Declare @periods new periods. It is upto the caller to make sure period
   * transitions cannot happen in parallel.
   *
   * The function returns true if the proportions are still defined and false
   * if aging zeroed out all events. This can be used to detect whether declaring
   * further periods has any effect.
   */
  bool fprop_new_period(struct fprop_global *p, int periods)
  {
  	s64 events;
  	unsigned long flags;
  
  	local_irq_save(flags);
  	events = percpu_counter_sum(&p->events);
  	/*
  	 * Don't do anything if there are no events.
  	 */
  	if (events <= 1) {
  		local_irq_restore(flags);
  		return false;
  	}
  	write_seqcount_begin(&p->sequence);
  	if (periods < 64)
  		events -= events >> periods;
  	/* Use addition to avoid losing events happening between sum and set */
  	percpu_counter_add(&p->events, -events);
  	p->period += periods;
  	write_seqcount_end(&p->sequence);
  	local_irq_restore(flags);
  
  	return true;
  }
  
  /*
   * ---- SINGLE ----
   */
  
  int fprop_local_init_single(struct fprop_local_single *pl)
  {
  	pl->events = 0;
  	pl->period = 0;
  	raw_spin_lock_init(&pl->lock);
  	return 0;
  }
  
  void fprop_local_destroy_single(struct fprop_local_single *pl)
  {
  }
  
  static void fprop_reflect_period_single(struct fprop_global *p,
  					struct fprop_local_single *pl)
  {
  	unsigned int period = p->period;
  	unsigned long flags;
  
  	/* Fast path - period didn't change */
  	if (pl->period == period)
  		return;
  	raw_spin_lock_irqsave(&pl->lock, flags);
  	/* Someone updated pl->period while we were spinning? */
  	if (pl->period >= period) {
  		raw_spin_unlock_irqrestore(&pl->lock, flags);
  		return;
  	}
  	/* Aging zeroed our fraction? */
  	if (period - pl->period < BITS_PER_LONG)
  		pl->events >>= period - pl->period;
  	else
  		pl->events = 0;
  	pl->period = period;
  	raw_spin_unlock_irqrestore(&pl->lock, flags);
  }
  
  /* Event of type pl happened */
  void __fprop_inc_single(struct fprop_global *p, struct fprop_local_single *pl)
  {
  	fprop_reflect_period_single(p, pl);
  	pl->events++;
  	percpu_counter_add(&p->events, 1);
  }
  
  /* Return fraction of events of type pl */
  void fprop_fraction_single(struct fprop_global *p,
  			   struct fprop_local_single *pl,
  			   unsigned long *numerator, unsigned long *denominator)
  {
  	unsigned int seq;
  	s64 num, den;
  
  	do {
  		seq = read_seqcount_begin(&p->sequence);
  		fprop_reflect_period_single(p, pl);
  		num = pl->events;
  		den = percpu_counter_read_positive(&p->events);
  	} while (read_seqcount_retry(&p->sequence, seq));
  
  	/*
  	 * Make fraction <= 1 and denominator > 0 even in presence of percpu
  	 * counter errors
  	 */
  	if (den <= num) {
  		if (num)
  			den = num;
  		else
  			den = 1;
  	}
  	*denominator = den;
  	*numerator = num;
  }
  
  /*
   * ---- PERCPU ----
   */
  #define PROP_BATCH (8*(1+ilog2(nr_cpu_ids)))
  
  int fprop_local_init_percpu(struct fprop_local_percpu *pl, gfp_t gfp)
  {
  	int err;
  
  	err = percpu_counter_init(&pl->events, 0, gfp);
  	if (err)
  		return err;
  	pl->period = 0;
  	raw_spin_lock_init(&pl->lock);
  	return 0;
  }
  
  void fprop_local_destroy_percpu(struct fprop_local_percpu *pl)
  {
  	percpu_counter_destroy(&pl->events);
  }
  
  static void fprop_reflect_period_percpu(struct fprop_global *p,
  					struct fprop_local_percpu *pl)
  {
  	unsigned int period = p->period;
  	unsigned long flags;
  
  	/* Fast path - period didn't change */
  	if (pl->period == period)
  		return;
  	raw_spin_lock_irqsave(&pl->lock, flags);
  	/* Someone updated pl->period while we were spinning? */
  	if (pl->period >= period) {
  		raw_spin_unlock_irqrestore(&pl->lock, flags);
  		return;
  	}
  	/* Aging zeroed our fraction? */
  	if (period - pl->period < BITS_PER_LONG) {
  		s64 val = percpu_counter_read(&pl->events);
  
  		if (val < (nr_cpu_ids * PROP_BATCH))
  			val = percpu_counter_sum(&pl->events);
  
  		__percpu_counter_add(&pl->events,
  			-val + (val >> (period-pl->period)), PROP_BATCH);
  	} else
  		percpu_counter_set(&pl->events, 0);
  	pl->period = period;
  	raw_spin_unlock_irqrestore(&pl->lock, flags);
  }
  
  /* Event of type pl happened */
  void __fprop_inc_percpu(struct fprop_global *p, struct fprop_local_percpu *pl)
  {
  	fprop_reflect_period_percpu(p, pl);
  	__percpu_counter_add(&pl->events, 1, PROP_BATCH);
  	percpu_counter_add(&p->events, 1);
  }
  
  void fprop_fraction_percpu(struct fprop_global *p,
  			   struct fprop_local_percpu *pl,
  			   unsigned long *numerator, unsigned long *denominator)
  {
  	unsigned int seq;
  	s64 num, den;
  
  	do {
  		seq = read_seqcount_begin(&p->sequence);
  		fprop_reflect_period_percpu(p, pl);
  		num = percpu_counter_read_positive(&pl->events);
  		den = percpu_counter_read_positive(&p->events);
  	} while (read_seqcount_retry(&p->sequence, seq));
  
  	/*
  	 * Make fraction <= 1 and denominator > 0 even in presence of percpu
  	 * counter errors
  	 */
  	if (den <= num) {
  		if (num)
  			den = num;
  		else
  			den = 1;
  	}
  	*denominator = den;
  	*numerator = num;
  }
  
  /*
   * Like __fprop_inc_percpu() except that event is counted only if the given
   * type has fraction smaller than @max_frac/FPROP_FRAC_BASE
   */
  void __fprop_inc_percpu_max(struct fprop_global *p,
  			    struct fprop_local_percpu *pl, int max_frac)
  {
  	if (unlikely(max_frac < FPROP_FRAC_BASE)) {
  		unsigned long numerator, denominator;
  
  		fprop_fraction_percpu(p, pl, &numerator, &denominator);
  		if (numerator >
  		    (((u64)denominator) * max_frac) >> FPROP_FRAC_SHIFT)
  			return;
  	} else
  		fprop_reflect_period_percpu(p, pl);
  	__percpu_counter_add(&pl->events, 1, PROP_BATCH);
  	percpu_counter_add(&p->events, 1);
  }