Blame view

kernel/linux-rt-4.4.41/Documentation/networking/pktgen.txt 11.8 KB
5113f6f70   김현기   kernel add
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
  
  
                    HOWTO for the linux packet generator
                    ------------------------------------
  
  Enable CONFIG_NET_PKTGEN to compile and build pktgen either in-kernel
  or as a module.  A module is preferred; modprobe pktgen if needed.  Once
  running, pktgen creates a thread for each CPU with affinity to that CPU.
  Monitoring and controlling is done via /proc.  It is easiest to select a
  suitable sample script and configure that.
  
  On a dual CPU:
  
  ps aux | grep pkt
  root       129  0.3  0.0     0    0 ?        SW    2003 523:20 [pktgen/0]
  root       130  0.3  0.0     0    0 ?        SW    2003 509:50 [pktgen/1]
  
  
  For monitoring and control pktgen creates:
  	/proc/net/pktgen/pgctrl
  	/proc/net/pktgen/kpktgend_X
          /proc/net/pktgen/ethX
  
  
  Tuning NIC for max performance
  ==============================
  
  The default NIC settings are (likely) not tuned for pktgen's artificial
  overload type of benchmarking, as this could hurt the normal use-case.
  
  Specifically increasing the TX ring buffer in the NIC:
   # ethtool -G ethX tx 1024
  
  A larger TX ring can improve pktgen's performance, while it can hurt
  in the general case, 1) because the TX ring buffer might get larger
  than the CPU's L1/L2 cache, 2) because it allows more queueing in the
  NIC HW layer (which is bad for bufferbloat).
  
  One should hesitate to conclude that packets/descriptors in the HW
  TX ring cause delay.  Drivers usually delay cleaning up the
  ring-buffers for various performance reasons, and packets stalling
  the TX ring might just be waiting for cleanup.
  
  This cleanup issue is specifically the case for the driver ixgbe
  (Intel 82599 chip).  This driver (ixgbe) combines TX+RX ring cleanups,
  and the cleanup interval is affected by the ethtool --coalesce setting
  of parameter "rx-usecs".
  
  For ixgbe use e.g. "30" resulting in approx 33K interrupts/sec (1/30*10^6):
   # ethtool -C ethX rx-usecs 30
  
  
  Kernel threads
  ==============
  Pktgen creates a thread for each CPU with affinity to that CPU.
  Which is controlled through procfile /proc/net/pktgen/kpktgend_X.
  
  Example: /proc/net/pktgen/kpktgend_0
  
   Running:
   Stopped: eth4@0
   Result: OK: add_device=eth4@0
  
  Most important are the devices assigned to the thread.
  
  The two basic thread commands are:
   * add_device DEVICE@NAME -- adds a single device
   * rem_device_all         -- remove all associated devices
  
  When adding a device to a thread, a corrosponding procfile is created
  which is used for configuring this device. Thus, device names need to
  be unique.
  
  To support adding the same device to multiple threads, which is useful
  with multi queue NICs, a the device naming scheme is extended with "@":
   device@something
  
  The part after "@" can be anything, but it is custom to use the thread
  number.
  
  Viewing devices
  ===============
  
  The Params section holds configured information.  The Current section
  holds running statistics.  The Result is printed after a run or after
  interruption.  Example:
  
  /proc/net/pktgen/eth4@0
  
   Params: count 100000  min_pkt_size: 60  max_pkt_size: 60
       frags: 0  delay: 0  clone_skb: 64  ifname: eth4@0
       flows: 0 flowlen: 0
       queue_map_min: 0  queue_map_max: 0
       dst_min: 192.168.81.2  dst_max:
       src_min:   src_max:
       src_mac: 90:e2:ba:0a:56:b4 dst_mac: 00:1b:21:3c:9d:f8
       udp_src_min: 9  udp_src_max: 109  udp_dst_min: 9  udp_dst_max: 9
       src_mac_count: 0  dst_mac_count: 0
       Flags: UDPSRC_RND  NO_TIMESTAMP  QUEUE_MAP_CPU
   Current:
       pkts-sofar: 100000  errors: 0
       started: 623913381008us  stopped: 623913396439us idle: 25us
       seq_num: 100001  cur_dst_mac_offset: 0  cur_src_mac_offset: 0
       cur_saddr: 192.168.8.3  cur_daddr: 192.168.81.2
       cur_udp_dst: 9  cur_udp_src: 42
       cur_queue_map: 0
       flows: 0
   Result: OK: 15430(c15405+d25) usec, 100000 (60byte,0frags)
    6480562pps 3110Mb/sec (3110669760bps) errors: 0
  
  
  Configuring devices
  ===================
  This is done via the /proc interface, and most easily done via pgset
  as defined in the sample scripts.
  
  Examples:
  
   pgset "clone_skb 1"     sets the number of copies of the same packet
   pgset "clone_skb 0"     use single SKB for all transmits
   pgset "burst 8"         uses xmit_more API to queue 8 copies of the same
                           packet and update HW tx queue tail pointer once.
                           "burst 1" is the default
   pgset "pkt_size 9014"   sets packet size to 9014
   pgset "frags 5"         packet will consist of 5 fragments
   pgset "count 200000"    sets number of packets to send, set to zero
                           for continuous sends until explicitly stopped.
  
   pgset "delay 5000"      adds delay to hard_start_xmit(). nanoseconds
  
   pgset "dst 10.0.0.1"    sets IP destination address
                           (BEWARE! This generator is very aggressive!)
  
   pgset "dst_min 10.0.0.1"            Same as dst
   pgset "dst_max 10.0.0.254"          Set the maximum destination IP.
   pgset "src_min 10.0.0.1"            Set the minimum (or only) source IP.
   pgset "src_max 10.0.0.254"          Set the maximum source IP.
   pgset "dst6 fec0::1"     IPV6 destination address
   pgset "src6 fec0::2"     IPV6 source address
   pgset "dstmac 00:00:00:00:00:00"    sets MAC destination address
   pgset "srcmac 00:00:00:00:00:00"    sets MAC source address
  
   pgset "queue_map_min 0" Sets the min value of tx queue interval
   pgset "queue_map_max 7" Sets the max value of tx queue interval, for multiqueue devices
                           To select queue 1 of a given device,
                           use queue_map_min=1 and queue_map_max=1
  
   pgset "src_mac_count 1" Sets the number of MACs we'll range through.
                           The 'minimum' MAC is what you set with srcmac.
  
   pgset "dst_mac_count 1" Sets the number of MACs we'll range through.
                           The 'minimum' MAC is what you set with dstmac.
  
   pgset "flag [name]"     Set a flag to determine behaviour.  Current flags
                           are: IPSRC_RND # IP source is random (between min/max)
                                IPDST_RND # IP destination is random
                                UDPSRC_RND, UDPDST_RND,
                                MACSRC_RND, MACDST_RND
                                TXSIZE_RND, IPV6,
                                MPLS_RND, VID_RND, SVID_RND
                                FLOW_SEQ,
                                QUEUE_MAP_RND # queue map random
                                QUEUE_MAP_CPU # queue map mirrors smp_processor_id()
                                UDPCSUM,
                                IPSEC # IPsec encapsulation (needs CONFIG_XFRM)
                                NODE_ALLOC # node specific memory allocation
                                NO_TIMESTAMP # disable timestamping
  
   pgset spi SPI_VALUE     Set specific SA used to transform packet.
  
   pgset "udp_src_min 9"   set UDP source port min, If < udp_src_max, then
                           cycle through the port range.
  
   pgset "udp_src_max 9"   set UDP source port max.
   pgset "udp_dst_min 9"   set UDP destination port min, If < udp_dst_max, then
                           cycle through the port range.
   pgset "udp_dst_max 9"   set UDP destination port max.
  
   pgset "mpls 0001000a,0002000a,0000000a" set MPLS labels (in this example
                                           outer label=16,middle label=32,
  					 inner label=0 (IPv4 NULL)) Note that
  					 there must be no spaces between the
  					 arguments. Leading zeros are required.
  					 Do not set the bottom of stack bit,
  					 that's done automatically. If you do
  					 set the bottom of stack bit, that
  					 indicates that you want to randomly
  					 generate that address and the flag
  					 MPLS_RND will be turned on. You
  					 can have any mix of random and fixed
  					 labels in the label stack.
  
   pgset "mpls 0"		  turn off mpls (or any invalid argument works too!)
  
   pgset "vlan_id 77"       set VLAN ID 0-4095
   pgset "vlan_p 3"         set priority bit 0-7 (default 0)
   pgset "vlan_cfi 0"       set canonical format identifier 0-1 (default 0)
  
   pgset "svlan_id 22"      set SVLAN ID 0-4095
   pgset "svlan_p 3"        set priority bit 0-7 (default 0)
   pgset "svlan_cfi 0"      set canonical format identifier 0-1 (default 0)
  
   pgset "vlan_id 9999"     > 4095 remove vlan and svlan tags
   pgset "svlan 9999"       > 4095 remove svlan tag
  
  
   pgset "tos XX"           set former IPv4 TOS field (e.g. "tos 28" for AF11 no ECN, default 00)
   pgset "traffic_class XX" set former IPv6 TRAFFIC CLASS (e.g. "traffic_class B8" for EF no ECN, default 00)
  
   pgset stop    	          aborts injection. Also, ^C aborts generator.
  
   pgset "rate 300M"        set rate to 300 Mb/s
   pgset "ratep 1000000"    set rate to 1Mpps
  
   pgset "xmit_mode netif_receive"  RX inject into stack netif_receive_skb()
  				  Works with "burst" but not with "clone_skb".
  				  Default xmit_mode is "start_xmit".
  
  Sample scripts
  ==============
  
  A collection of tutorial scripts and helpers for pktgen is in the
  samples/pktgen directory. The helper parameters.sh file support easy
  and consistant parameter parsing across the sample scripts.
  
  Usage example and help:
   ./pktgen_sample01_simple.sh -i eth4 -m 00:1B:21:3C:9D:F8 -d 192.168.8.2
  
  Usage: ./pktgen_sample01_simple.sh [-vx] -i ethX
    -i : ($DEV)       output interface/device (required)
    -s : ($PKT_SIZE)  packet size
    -d : ($DEST_IP)   destination IP
    -m : ($DST_MAC)   destination MAC-addr
    -t : ($THREADS)   threads to start
    -c : ($SKB_CLONE) SKB clones send before alloc new SKB
    -b : ($BURST)     HW level bursting of SKBs
    -v : ($VERBOSE)   verbose
    -x : ($DEBUG)     debug
  
  The global variables being set are also listed.  E.g. the required
  interface/device parameter "-i" sets variable $DEV.  Copy the
  pktgen_sampleXX scripts and modify them to fit your own needs.
  
  The old scripts:
  
  pktgen.conf-1-2                  # 1 CPU 2 dev
  pktgen.conf-1-1-rdos             # 1 CPU 1 dev w. route DoS 
  pktgen.conf-1-1-ip6              # 1 CPU 1 dev ipv6
  pktgen.conf-1-1-ip6-rdos         # 1 CPU 1 dev ipv6  w. route DoS
  pktgen.conf-1-1-flows            # 1 CPU 1 dev multiple flows.
  
  
  Interrupt affinity
  ===================
  Note that when adding devices to a specific CPU it is a good idea to
  also assign /proc/irq/XX/smp_affinity so that the TX interrupts are bound
  to the same CPU.  This reduces cache bouncing when freeing skbs.
  
  Plus using the device flag QUEUE_MAP_CPU, which maps the SKBs TX queue
  to the running threads CPU (directly from smp_processor_id()).
  
  Enable IPsec
  ============
  Default IPsec transformation with ESP encapsulation plus transport mode
  can be enabled by simply setting:
  
  pgset "flag IPSEC"
  pgset "flows 1"
  
  To avoid breaking existing testbed scripts for using AH type and tunnel mode,
  you can use "pgset spi SPI_VALUE" to specify which transformation mode
  to employ.
  
  
  Current commands and configuration options
  ==========================================
  
  ** Pgcontrol commands:
  
  start
  stop
  reset
  
  ** Thread commands:
  
  add_device
  rem_device_all
  
  
  ** Device commands:
  
  count
  clone_skb
  burst
  debug
  
  frags
  delay
  
  src_mac_count
  dst_mac_count
  
  pkt_size
  min_pkt_size
  max_pkt_size
  
  queue_map_min
  queue_map_max
  skb_priority
  
  tos           (ipv4)
  traffic_class (ipv6)
  
  mpls
  
  udp_src_min
  udp_src_max
  
  udp_dst_min
  udp_dst_max
  
  node
  
  flag
    IPSRC_RND
    IPDST_RND
    UDPSRC_RND
    UDPDST_RND
    MACSRC_RND
    MACDST_RND
    TXSIZE_RND
    IPV6
    MPLS_RND
    VID_RND
    SVID_RND
    FLOW_SEQ
    QUEUE_MAP_RND
    QUEUE_MAP_CPU
    UDPCSUM
    IPSEC
    NODE_ALLOC
    NO_TIMESTAMP
  
  spi (ipsec)
  
  dst_min
  dst_max
  
  src_min
  src_max
  
  dst_mac
  src_mac
  
  clear_counters
  
  src6
  dst6
  dst6_max
  dst6_min
  
  flows
  flowlen
  
  rate
  ratep
  
  xmit_mode <start_xmit|netif_receive>
  
  vlan_cfi
  vlan_id
  vlan_p
  
  svlan_cfi
  svlan_id
  svlan_p
  
  
  References:
  ftp://robur.slu.se/pub/Linux/net-development/pktgen-testing/
  ftp://robur.slu.se/pub/Linux/net-development/pktgen-testing/examples/
  
  Paper from Linux-Kongress in Erlangen 2004.
  ftp://robur.slu.se/pub/Linux/net-development/pktgen-testing/pktgen_paper.pdf
  
  Thanks to:
  Grant Grundler for testing on IA-64 and parisc, Harald Welte,  Lennert Buytenhek
  Stephen Hemminger, Andi Kleen, Dave Miller and many others.
  
  
  Good luck with the linux net-development.