dm-cache-policy-mq.c 30.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
/*
 * Copyright (C) 2012 Red Hat. All rights reserved.
 *
 * This file is released under the GPL.
 */

#include "dm-cache-policy.h"
#include "dm.h"

#include <linux/hash.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>

#define DM_MSG_PREFIX "cache-policy-mq"

static struct kmem_cache *mq_entry_cache;

/*----------------------------------------------------------------*/

static unsigned next_power(unsigned n, unsigned min)
{
	return roundup_pow_of_two(max(n, min));
}

/*----------------------------------------------------------------*/

/*
 * Large, sequential ios are probably better left on the origin device since
 * spindles tend to have good bandwidth.
 *
 * The io_tracker tries to spot when the io is in one of these sequential
 * modes.
 *
 * Two thresholds to switch between random and sequential io mode are defaulting
 * as follows and can be adjusted via the constructor and message interfaces.
 */
#define RANDOM_THRESHOLD_DEFAULT 4
#define SEQUENTIAL_THRESHOLD_DEFAULT 512

enum io_pattern {
	PATTERN_SEQUENTIAL,
	PATTERN_RANDOM
};

struct io_tracker {
	enum io_pattern pattern;

	unsigned nr_seq_samples;
	unsigned nr_rand_samples;
	unsigned thresholds[2];

	dm_oblock_t last_end_oblock;
};

static void iot_init(struct io_tracker *t,
		     int sequential_threshold, int random_threshold)
{
	t->pattern = PATTERN_RANDOM;
	t->nr_seq_samples = 0;
	t->nr_rand_samples = 0;
	t->last_end_oblock = 0;
	t->thresholds[PATTERN_RANDOM] = random_threshold;
	t->thresholds[PATTERN_SEQUENTIAL] = sequential_threshold;
}

static enum io_pattern iot_pattern(struct io_tracker *t)
{
	return t->pattern;
}

static void iot_update_stats(struct io_tracker *t, struct bio *bio)
{
	if (bio->bi_iter.bi_sector == from_oblock(t->last_end_oblock) + 1)
		t->nr_seq_samples++;
	else {
		/*
		 * Just one non-sequential IO is enough to reset the
		 * counters.
		 */
		if (t->nr_seq_samples) {
			t->nr_seq_samples = 0;
			t->nr_rand_samples = 0;
		}

		t->nr_rand_samples++;
	}

	t->last_end_oblock = to_oblock(bio_end_sector(bio) - 1);
}

static void iot_check_for_pattern_switch(struct io_tracker *t)
{
	switch (t->pattern) {
	case PATTERN_SEQUENTIAL:
		if (t->nr_rand_samples >= t->thresholds[PATTERN_RANDOM]) {
			t->pattern = PATTERN_RANDOM;
			t->nr_seq_samples = t->nr_rand_samples = 0;
		}
		break;

	case PATTERN_RANDOM:
		if (t->nr_seq_samples >= t->thresholds[PATTERN_SEQUENTIAL]) {
			t->pattern = PATTERN_SEQUENTIAL;
			t->nr_seq_samples = t->nr_rand_samples = 0;
		}
		break;
	}
}

static void iot_examine_bio(struct io_tracker *t, struct bio *bio)
{
	iot_update_stats(t, bio);
	iot_check_for_pattern_switch(t);
}

/*----------------------------------------------------------------*/


/*
 * This queue is divided up into different levels.  Allowing us to push
 * entries to the back of any of the levels.  Think of it as a partially
 * sorted queue.
 */
#define NR_QUEUE_LEVELS 16u

struct queue {
	struct list_head qs[NR_QUEUE_LEVELS];
};

static void queue_init(struct queue *q)
{
	unsigned i;

	for (i = 0; i < NR_QUEUE_LEVELS; i++)
		INIT_LIST_HEAD(q->qs + i);
}

/*
 * Checks to see if the queue is empty.
 * FIXME: reduce cpu usage.
 */
static bool queue_empty(struct queue *q)
{
	unsigned i;

	for (i = 0; i < NR_QUEUE_LEVELS; i++)
		if (!list_empty(q->qs + i))
			return false;

	return true;
}

/*
 * Insert an entry to the back of the given level.
 */
static void queue_push(struct queue *q, unsigned level, struct list_head *elt)
{
	list_add_tail(elt, q->qs + level);
}

static void queue_remove(struct list_head *elt)
{
	list_del(elt);
}

/*
 * Shifts all regions down one level.  This has no effect on the order of
 * the queue.
 */
static void queue_shift_down(struct queue *q)
{
	unsigned level;

	for (level = 1; level < NR_QUEUE_LEVELS; level++)
		list_splice_init(q->qs + level, q->qs + level - 1);
}

/*
 * Gives us the oldest entry of the lowest popoulated level.  If the first
 * level is emptied then we shift down one level.
 */
static struct list_head *queue_pop(struct queue *q)
{
	unsigned level;
	struct list_head *r;

	for (level = 0; level < NR_QUEUE_LEVELS; level++)
		if (!list_empty(q->qs + level)) {
			r = q->qs[level].next;
			list_del(r);

			/* have we just emptied the bottom level? */
			if (level == 0 && list_empty(q->qs))
				queue_shift_down(q);

			return r;
		}

	return NULL;
}

static struct list_head *list_pop(struct list_head *lh)
{
	struct list_head *r = lh->next;

	BUG_ON(!r);
	list_del_init(r);

	return r;
}

/*----------------------------------------------------------------*/

/*
 * Describes a cache entry.  Used in both the cache and the pre_cache.
 */
struct entry {
	struct hlist_node hlist;
	struct list_head list;
	dm_oblock_t oblock;

	/*
	 * FIXME: pack these better
	 */
	bool dirty:1;
	unsigned hit_count;
	unsigned generation;
	unsigned tick;
};

/*
 * Rather than storing the cblock in an entry, we allocate all entries in
 * an array, and infer the cblock from the entry position.
 *
 * Free entries are linked together into a list.
 */
struct entry_pool {
	struct entry *entries, *entries_end;
	struct list_head free;
	unsigned nr_allocated;
};

static int epool_init(struct entry_pool *ep, unsigned nr_entries)
{
	unsigned i;

	ep->entries = vzalloc(sizeof(struct entry) * nr_entries);
	if (!ep->entries)
		return -ENOMEM;

	ep->entries_end = ep->entries + nr_entries;

	INIT_LIST_HEAD(&ep->free);
	for (i = 0; i < nr_entries; i++)
		list_add(&ep->entries[i].list, &ep->free);

	ep->nr_allocated = 0;

	return 0;
}

static void epool_exit(struct entry_pool *ep)
{
	vfree(ep->entries);
}

static struct entry *alloc_entry(struct entry_pool *ep)
{
	struct entry *e;

	if (list_empty(&ep->free))
		return NULL;

	e = list_entry(list_pop(&ep->free), struct entry, list);
	INIT_LIST_HEAD(&e->list);
	INIT_HLIST_NODE(&e->hlist);
	ep->nr_allocated++;

	return e;
}

/*
 * This assumes the cblock hasn't already been allocated.
 */
static struct entry *alloc_particular_entry(struct entry_pool *ep, dm_cblock_t cblock)
{
	struct entry *e = ep->entries + from_cblock(cblock);

	list_del_init(&e->list);
	INIT_HLIST_NODE(&e->hlist);
	ep->nr_allocated++;

	return e;
}

static void free_entry(struct entry_pool *ep, struct entry *e)
{
	BUG_ON(!ep->nr_allocated);
	ep->nr_allocated--;
	INIT_HLIST_NODE(&e->hlist);
	list_add(&e->list, &ep->free);
}

/*
 * Returns NULL if the entry is free.
 */
static struct entry *epool_find(struct entry_pool *ep, dm_cblock_t cblock)
{
	struct entry *e = ep->entries + from_cblock(cblock);
	return !hlist_unhashed(&e->hlist) ? e : NULL;
}

static bool epool_empty(struct entry_pool *ep)
{
	return list_empty(&ep->free);
}

static bool in_pool(struct entry_pool *ep, struct entry *e)
{
	return e >= ep->entries && e < ep->entries_end;
}

static dm_cblock_t infer_cblock(struct entry_pool *ep, struct entry *e)
{
	return to_cblock(e - ep->entries);
}

/*----------------------------------------------------------------*/

struct mq_policy {
	struct dm_cache_policy policy;

	/* protects everything */
	struct mutex lock;
	dm_cblock_t cache_size;
	struct io_tracker tracker;

	/*
	 * Entries come from two pools, one of pre-cache entries, and one
	 * for the cache proper.
	 */
	struct entry_pool pre_cache_pool;
	struct entry_pool cache_pool;

	/*
	 * We maintain three queues of entries.  The cache proper,
	 * consisting of a clean and dirty queue, contains the currently
	 * active mappings.  Whereas the pre_cache tracks blocks that
	 * are being hit frequently and potential candidates for promotion
	 * to the cache.
	 */
	struct queue pre_cache;
	struct queue cache_clean;
	struct queue cache_dirty;

	/*
	 * Keeps track of time, incremented by the core.  We use this to
	 * avoid attributing multiple hits within the same tick.
	 *
	 * Access to tick_protected should be done with the spin lock held.
	 * It's copied to tick at the start of the map function (within the
	 * mutex).
	 */
	spinlock_t tick_lock;
	unsigned tick_protected;
	unsigned tick;

	/*
	 * A count of the number of times the map function has been called
	 * and found an entry in the pre_cache or cache.  Currently used to
	 * calculate the generation.
	 */
	unsigned hit_count;

	/*
	 * A generation is a longish period that is used to trigger some
	 * book keeping effects.  eg, decrementing hit counts on entries.
	 * This is needed to allow the cache to evolve as io patterns
	 * change.
	 */
	unsigned generation;
	unsigned generation_period; /* in lookups (will probably change) */

	/*
	 * Entries in the pre_cache whose hit count passes the promotion
	 * threshold move to the cache proper.  Working out the correct
	 * value for the promotion_threshold is crucial to this policy.
	 */
	unsigned promote_threshold;

	unsigned discard_promote_adjustment;
	unsigned read_promote_adjustment;
	unsigned write_promote_adjustment;

	/*
	 * The hash table allows us to quickly find an entry by origin
	 * block.  Both pre_cache and cache entries are in here.
	 */
	unsigned nr_buckets;
	dm_block_t hash_bits;
	struct hlist_head *table;
};

#define DEFAULT_DISCARD_PROMOTE_ADJUSTMENT 1
#define DEFAULT_READ_PROMOTE_ADJUSTMENT 4
#define DEFAULT_WRITE_PROMOTE_ADJUSTMENT 8

/*----------------------------------------------------------------*/

/*
 * Simple hash table implementation.  Should replace with the standard hash
 * table that's making its way upstream.
 */
static void hash_insert(struct mq_policy *mq, struct entry *e)
{
	unsigned h = hash_64(from_oblock(e->oblock), mq->hash_bits);

	hlist_add_head(&e->hlist, mq->table + h);
}

static struct entry *hash_lookup(struct mq_policy *mq, dm_oblock_t oblock)
{
	unsigned h = hash_64(from_oblock(oblock), mq->hash_bits);
	struct hlist_head *bucket = mq->table + h;
	struct entry *e;

	hlist_for_each_entry(e, bucket, hlist)
		if (e->oblock == oblock) {
			hlist_del(&e->hlist);
			hlist_add_head(&e->hlist, bucket);
			return e;
		}

	return NULL;
}

static void hash_remove(struct entry *e)
{
	hlist_del(&e->hlist);
}

/*----------------------------------------------------------------*/

static bool any_free_cblocks(struct mq_policy *mq)
{
	return !epool_empty(&mq->cache_pool);
}

static bool any_clean_cblocks(struct mq_policy *mq)
{
	return !queue_empty(&mq->cache_clean);
}

/*----------------------------------------------------------------*/

/*
 * Now we get to the meat of the policy.  This section deals with deciding
 * when to to add entries to the pre_cache and cache, and move between
 * them.
 */

/*
 * The queue level is based on the log2 of the hit count.
 */
static unsigned queue_level(struct entry *e)
{
	return min((unsigned) ilog2(e->hit_count), NR_QUEUE_LEVELS - 1u);
}

static bool in_cache(struct mq_policy *mq, struct entry *e)
{
	return in_pool(&mq->cache_pool, e);
}

/*
 * Inserts the entry into the pre_cache or the cache.  Ensures the cache
 * block is marked as allocated if necc.  Inserts into the hash table.
 * Sets the tick which records when the entry was last moved about.
 */
static void push(struct mq_policy *mq, struct entry *e)
{
	e->tick = mq->tick;
	hash_insert(mq, e);

	if (in_cache(mq, e))
		queue_push(e->dirty ? &mq->cache_dirty : &mq->cache_clean,
			   queue_level(e), &e->list);
	else
		queue_push(&mq->pre_cache, queue_level(e), &e->list);
}

/*
 * Removes an entry from pre_cache or cache.  Removes from the hash table.
 */
static void del(struct mq_policy *mq, struct entry *e)
{
	queue_remove(&e->list);
	hash_remove(e);
}

/*
 * Like del, except it removes the first entry in the queue (ie. the least
 * recently used).
 */
static struct entry *pop(struct mq_policy *mq, struct queue *q)
{
	struct entry *e;
	struct list_head *h = queue_pop(q);

	if (!h)
		return NULL;

	e = container_of(h, struct entry, list);
	hash_remove(e);

	return e;
}

/*
 * Has this entry already been updated?
 */
static bool updated_this_tick(struct mq_policy *mq, struct entry *e)
{
	return mq->tick == e->tick;
}

/*
 * The promotion threshold is adjusted every generation.  As are the counts
 * of the entries.
 *
 * At the moment the threshold is taken by averaging the hit counts of some
 * of the entries in the cache (the first 20 entries across all levels in
 * ascending order, giving preference to the clean entries at each level).
 *
 * We can be much cleverer than this though.  For example, each promotion
 * could bump up the threshold helping to prevent churn.  Much more to do
 * here.
 */

#define MAX_TO_AVERAGE 20

static void check_generation(struct mq_policy *mq)
{
	unsigned total = 0, nr = 0, count = 0, level;
	struct list_head *head;
	struct entry *e;

	if ((mq->hit_count >= mq->generation_period) && (epool_empty(&mq->cache_pool))) {
		mq->hit_count = 0;
		mq->generation++;

		for (level = 0; level < NR_QUEUE_LEVELS && count < MAX_TO_AVERAGE; level++) {
			head = mq->cache_clean.qs + level;
			list_for_each_entry(e, head, list) {
				nr++;
				total += e->hit_count;

				if (++count >= MAX_TO_AVERAGE)
					break;
			}

			head = mq->cache_dirty.qs + level;
			list_for_each_entry(e, head, list) {
				nr++;
				total += e->hit_count;

				if (++count >= MAX_TO_AVERAGE)
					break;
			}
		}

		mq->promote_threshold = nr ? total / nr : 1;
		if (mq->promote_threshold * nr < total)
			mq->promote_threshold++;
	}
}

/*
 * Whenever we use an entry we bump up it's hit counter, and push it to the
 * back to it's current level.
 */
static void requeue_and_update_tick(struct mq_policy *mq, struct entry *e)
{
	if (updated_this_tick(mq, e))
		return;

	e->hit_count++;
	mq->hit_count++;
	check_generation(mq);

	/* generation adjustment, to stop the counts increasing forever. */
	/* FIXME: divide? */
	/* e->hit_count -= min(e->hit_count - 1, mq->generation - e->generation); */
	e->generation = mq->generation;

	del(mq, e);
	push(mq, e);
}

/*
 * Demote the least recently used entry from the cache to the pre_cache.
 * Returns the new cache entry to use, and the old origin block it was
 * mapped to.
 *
 * We drop the hit count on the demoted entry back to 1 to stop it bouncing
 * straight back into the cache if it's subsequently hit.  There are
 * various options here, and more experimentation would be good:
 *
 * - just forget about the demoted entry completely (ie. don't insert it
     into the pre_cache).
 * - divide the hit count rather that setting to some hard coded value.
 * - set the hit count to a hard coded value other than 1, eg, is it better
 *   if it goes in at level 2?
 */
static int demote_cblock(struct mq_policy *mq, dm_oblock_t *oblock)
{
	struct entry *demoted = pop(mq, &mq->cache_clean);

	if (!demoted)
		/*
		 * We could get a block from mq->cache_dirty, but that
		 * would add extra latency to the triggering bio as it
		 * waits for the writeback.  Better to not promote this
		 * time and hope there's a clean block next time this block
		 * is hit.
		 */
		return -ENOSPC;

	*oblock = demoted->oblock;
	free_entry(&mq->cache_pool, demoted);

	/*
	 * We used to put the demoted block into the pre-cache, but I think
	 * it's simpler to just let it work it's way up from zero again.
	 * Stops blocks flickering in and out of the cache.
	 */

	return 0;
}

/*
 * We modify the basic promotion_threshold depending on the specific io.
 *
 * If the origin block has been discarded then there's no cost to copy it
 * to the cache.
 *
 * We bias towards reads, since they can be demoted at no cost if they
 * haven't been dirtied.
 */
static unsigned adjusted_promote_threshold(struct mq_policy *mq,
					   bool discarded_oblock, int data_dir)
{
	if (data_dir == READ)
		return mq->promote_threshold + mq->read_promote_adjustment;

	if (discarded_oblock && (any_free_cblocks(mq) || any_clean_cblocks(mq))) {
		/*
		 * We don't need to do any copying at all, so give this a
		 * very low threshold.
		 */
		return mq->discard_promote_adjustment;
	}

	return mq->promote_threshold + mq->write_promote_adjustment;
}

static bool should_promote(struct mq_policy *mq, struct entry *e,
			   bool discarded_oblock, int data_dir)
{
	return e->hit_count >=
		adjusted_promote_threshold(mq, discarded_oblock, data_dir);
}

static int cache_entry_found(struct mq_policy *mq,
			     struct entry *e,
			     struct policy_result *result)
{
	requeue_and_update_tick(mq, e);

	if (in_cache(mq, e)) {
		result->op = POLICY_HIT;
		result->cblock = infer_cblock(&mq->cache_pool, e);
	}

	return 0;
}

/*
 * Moves an entry from the pre_cache to the cache.  The main work is
 * finding which cache block to use.
 */
static int pre_cache_to_cache(struct mq_policy *mq, struct entry *e,
			      struct policy_result *result)
{
	int r;
	struct entry *new_e;

	/* Ensure there's a free cblock in the cache */
	if (epool_empty(&mq->cache_pool)) {
		result->op = POLICY_REPLACE;
		r = demote_cblock(mq, &result->old_oblock);
		if (r) {
			result->op = POLICY_MISS;
			return 0;
		}
	} else
		result->op = POLICY_NEW;

	new_e = alloc_entry(&mq->cache_pool);
	BUG_ON(!new_e);

	new_e->oblock = e->oblock;
	new_e->dirty = false;
	new_e->hit_count = e->hit_count;
	new_e->generation = e->generation;
	new_e->tick = e->tick;

	del(mq, e);
	free_entry(&mq->pre_cache_pool, e);
	push(mq, new_e);

	result->cblock = infer_cblock(&mq->cache_pool, new_e);

	return 0;
}

static int pre_cache_entry_found(struct mq_policy *mq, struct entry *e,
				 bool can_migrate, bool discarded_oblock,
				 int data_dir, struct policy_result *result)
{
	int r = 0;
	bool updated = updated_this_tick(mq, e);

	if ((!discarded_oblock && updated) ||
	    !should_promote(mq, e, discarded_oblock, data_dir)) {
		requeue_and_update_tick(mq, e);
		result->op = POLICY_MISS;

	} else if (!can_migrate)
		r = -EWOULDBLOCK;

	else {
		requeue_and_update_tick(mq, e);
		r = pre_cache_to_cache(mq, e, result);
	}

	return r;
}

static void insert_in_pre_cache(struct mq_policy *mq,
				dm_oblock_t oblock)
{
	struct entry *e = alloc_entry(&mq->pre_cache_pool);

	if (!e)
		/*
		 * There's no spare entry structure, so we grab the least
		 * used one from the pre_cache.
		 */
		e = pop(mq, &mq->pre_cache);

	if (unlikely(!e)) {
		DMWARN("couldn't pop from pre cache");
		return;
	}

	e->dirty = false;
	e->oblock = oblock;
	e->hit_count = 1;
	e->generation = mq->generation;
	push(mq, e);
}

static void insert_in_cache(struct mq_policy *mq, dm_oblock_t oblock,
			    struct policy_result *result)
{
	int r;
	struct entry *e;

	if (epool_empty(&mq->cache_pool)) {
		result->op = POLICY_REPLACE;
		r = demote_cblock(mq, &result->old_oblock);
		if (unlikely(r)) {
			result->op = POLICY_MISS;
			insert_in_pre_cache(mq, oblock);
			return;
		}

		/*
		 * This will always succeed, since we've just demoted.
		 */
		e = alloc_entry(&mq->cache_pool);
		BUG_ON(!e);

	} else {
		e = alloc_entry(&mq->cache_pool);
		result->op = POLICY_NEW;
	}

	e->oblock = oblock;
	e->dirty = false;
	e->hit_count = 1;
	e->generation = mq->generation;
	push(mq, e);

	result->cblock = infer_cblock(&mq->cache_pool, e);
}

static int no_entry_found(struct mq_policy *mq, dm_oblock_t oblock,
			  bool can_migrate, bool discarded_oblock,
			  int data_dir, struct policy_result *result)
{
	if (adjusted_promote_threshold(mq, discarded_oblock, data_dir) <= 1) {
		if (can_migrate)
			insert_in_cache(mq, oblock, result);
		else
			return -EWOULDBLOCK;
	} else {
		insert_in_pre_cache(mq, oblock);
		result->op = POLICY_MISS;
	}

	return 0;
}

/*
 * Looks the oblock up in the hash table, then decides whether to put in
 * pre_cache, or cache etc.
 */
static int map(struct mq_policy *mq, dm_oblock_t oblock,
	       bool can_migrate, bool discarded_oblock,
	       int data_dir, struct policy_result *result)
{
	int r = 0;
	struct entry *e = hash_lookup(mq, oblock);

	if (e && in_cache(mq, e))
		r = cache_entry_found(mq, e, result);

	else if (iot_pattern(&mq->tracker) == PATTERN_SEQUENTIAL)
		result->op = POLICY_MISS;

	else if (e)
		r = pre_cache_entry_found(mq, e, can_migrate, discarded_oblock,
					  data_dir, result);

	else
		r = no_entry_found(mq, oblock, can_migrate, discarded_oblock,
				   data_dir, result);

	if (r == -EWOULDBLOCK)
		result->op = POLICY_MISS;

	return r;
}

/*----------------------------------------------------------------*/

/*
 * Public interface, via the policy struct.  See dm-cache-policy.h for a
 * description of these.
 */

static struct mq_policy *to_mq_policy(struct dm_cache_policy *p)
{
	return container_of(p, struct mq_policy, policy);
}

static void mq_destroy(struct dm_cache_policy *p)
{
	struct mq_policy *mq = to_mq_policy(p);

	vfree(mq->table);
	epool_exit(&mq->cache_pool);
	epool_exit(&mq->pre_cache_pool);
	kfree(mq);
}

static void copy_tick(struct mq_policy *mq)
{
	unsigned long flags;

	spin_lock_irqsave(&mq->tick_lock, flags);
	mq->tick = mq->tick_protected;
	spin_unlock_irqrestore(&mq->tick_lock, flags);
}

static int mq_map(struct dm_cache_policy *p, dm_oblock_t oblock,
		  bool can_block, bool can_migrate, bool discarded_oblock,
		  struct bio *bio, struct policy_result *result)
{
	int r;
	struct mq_policy *mq = to_mq_policy(p);

	result->op = POLICY_MISS;

	if (can_block)
		mutex_lock(&mq->lock);
	else if (!mutex_trylock(&mq->lock))
		return -EWOULDBLOCK;

	copy_tick(mq);

	iot_examine_bio(&mq->tracker, bio);
	r = map(mq, oblock, can_migrate, discarded_oblock,
		bio_data_dir(bio), result);

	mutex_unlock(&mq->lock);

	return r;
}

static int mq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock)
{
	int r;
	struct mq_policy *mq = to_mq_policy(p);
	struct entry *e;

	if (!mutex_trylock(&mq->lock))
		return -EWOULDBLOCK;

	e = hash_lookup(mq, oblock);
	if (e && in_cache(mq, e)) {
		*cblock = infer_cblock(&mq->cache_pool, e);
		r = 0;
	} else
		r = -ENOENT;

	mutex_unlock(&mq->lock);

	return r;
}

static void __mq_set_clear_dirty(struct mq_policy *mq, dm_oblock_t oblock, bool set)
{
	struct entry *e;

	e = hash_lookup(mq, oblock);
	BUG_ON(!e || !in_cache(mq, e));

	del(mq, e);
	e->dirty = set;
	push(mq, e);
}

static void mq_set_dirty(struct dm_cache_policy *p, dm_oblock_t oblock)
{
	struct mq_policy *mq = to_mq_policy(p);

	mutex_lock(&mq->lock);
	__mq_set_clear_dirty(mq, oblock, true);
	mutex_unlock(&mq->lock);
}

static void mq_clear_dirty(struct dm_cache_policy *p, dm_oblock_t oblock)
{
	struct mq_policy *mq = to_mq_policy(p);

	mutex_lock(&mq->lock);
	__mq_set_clear_dirty(mq, oblock, false);
	mutex_unlock(&mq->lock);
}

static int mq_load_mapping(struct dm_cache_policy *p,
			   dm_oblock_t oblock, dm_cblock_t cblock,
			   uint32_t hint, bool hint_valid)
{
	struct mq_policy *mq = to_mq_policy(p);
	struct entry *e;

	e = alloc_particular_entry(&mq->cache_pool, cblock);
	e->oblock = oblock;
	e->dirty = false;	/* this gets corrected in a minute */
	e->hit_count = hint_valid ? hint : 1;
	e->generation = mq->generation;
	push(mq, e);

	return 0;
}

static int mq_save_hints(struct mq_policy *mq, struct queue *q,
			 policy_walk_fn fn, void *context)
{
	int r;
	unsigned level;
	struct entry *e;

	for (level = 0; level < NR_QUEUE_LEVELS; level++)
		list_for_each_entry(e, q->qs + level, list) {
			r = fn(context, infer_cblock(&mq->cache_pool, e),
			       e->oblock, e->hit_count);
			if (r)
				return r;
		}

	return 0;
}

static int mq_walk_mappings(struct dm_cache_policy *p, policy_walk_fn fn,
			    void *context)
{
	struct mq_policy *mq = to_mq_policy(p);
	int r = 0;

	mutex_lock(&mq->lock);

	r = mq_save_hints(mq, &mq->cache_clean, fn, context);
	if (!r)
		r = mq_save_hints(mq, &mq->cache_dirty, fn, context);

	mutex_unlock(&mq->lock);

	return r;
}

static void __remove_mapping(struct mq_policy *mq, dm_oblock_t oblock)
{
	struct entry *e;

	e = hash_lookup(mq, oblock);
	BUG_ON(!e || !in_cache(mq, e));

	del(mq, e);
	free_entry(&mq->cache_pool, e);
}

static void mq_remove_mapping(struct dm_cache_policy *p, dm_oblock_t oblock)
{
	struct mq_policy *mq = to_mq_policy(p);

	mutex_lock(&mq->lock);
	__remove_mapping(mq, oblock);
	mutex_unlock(&mq->lock);
}

static int __remove_cblock(struct mq_policy *mq, dm_cblock_t cblock)
{
	struct entry *e = epool_find(&mq->cache_pool, cblock);

	if (!e)
		return -ENODATA;

	del(mq, e);
	free_entry(&mq->cache_pool, e);

	return 0;
}

static int mq_remove_cblock(struct dm_cache_policy *p, dm_cblock_t cblock)
{
	int r;
	struct mq_policy *mq = to_mq_policy(p);

	mutex_lock(&mq->lock);
	r = __remove_cblock(mq, cblock);
	mutex_unlock(&mq->lock);

	return r;
}

static int __mq_writeback_work(struct mq_policy *mq, dm_oblock_t *oblock,
			      dm_cblock_t *cblock)
{
	struct entry *e = pop(mq, &mq->cache_dirty);

	if (!e)
		return -ENODATA;

	*oblock = e->oblock;
	*cblock = infer_cblock(&mq->cache_pool, e);
	e->dirty = false;
	push(mq, e);

	return 0;
}

static int mq_writeback_work(struct dm_cache_policy *p, dm_oblock_t *oblock,
			     dm_cblock_t *cblock)
{
	int r;
	struct mq_policy *mq = to_mq_policy(p);

	mutex_lock(&mq->lock);
	r = __mq_writeback_work(mq, oblock, cblock);
	mutex_unlock(&mq->lock);

	return r;
}

static void __force_mapping(struct mq_policy *mq,
			    dm_oblock_t current_oblock, dm_oblock_t new_oblock)
{
	struct entry *e = hash_lookup(mq, current_oblock);

	if (e && in_cache(mq, e)) {
		del(mq, e);
		e->oblock = new_oblock;
		e->dirty = true;
		push(mq, e);
	}
}

static void mq_force_mapping(struct dm_cache_policy *p,
			     dm_oblock_t current_oblock, dm_oblock_t new_oblock)
{
	struct mq_policy *mq = to_mq_policy(p);

	mutex_lock(&mq->lock);
	__force_mapping(mq, current_oblock, new_oblock);
	mutex_unlock(&mq->lock);
}

static dm_cblock_t mq_residency(struct dm_cache_policy *p)
{
	dm_cblock_t r;
	struct mq_policy *mq = to_mq_policy(p);

	mutex_lock(&mq->lock);
	r = to_cblock(mq->cache_pool.nr_allocated);
	mutex_unlock(&mq->lock);

	return r;
}

static void mq_tick(struct dm_cache_policy *p)
{
	struct mq_policy *mq = to_mq_policy(p);
	unsigned long flags;

	spin_lock_irqsave(&mq->tick_lock, flags);
	mq->tick_protected++;
	spin_unlock_irqrestore(&mq->tick_lock, flags);
}

static int mq_set_config_value(struct dm_cache_policy *p,
			       const char *key, const char *value)
{
	struct mq_policy *mq = to_mq_policy(p);
	unsigned long tmp;

	if (kstrtoul(value, 10, &tmp))
		return -EINVAL;

	if (!strcasecmp(key, "random_threshold")) {
		mq->tracker.thresholds[PATTERN_RANDOM] = tmp;

	} else if (!strcasecmp(key, "sequential_threshold")) {
		mq->tracker.thresholds[PATTERN_SEQUENTIAL] = tmp;

	} else if (!strcasecmp(key, "discard_promote_adjustment"))
		mq->discard_promote_adjustment = tmp;

	else if (!strcasecmp(key, "read_promote_adjustment"))
		mq->read_promote_adjustment = tmp;

	else if (!strcasecmp(key, "write_promote_adjustment"))
		mq->write_promote_adjustment = tmp;

	else
		return -EINVAL;

	return 0;
}

static int mq_emit_config_values(struct dm_cache_policy *p, char *result, unsigned maxlen)
{
	ssize_t sz = 0;
	struct mq_policy *mq = to_mq_policy(p);

	DMEMIT("10 random_threshold %u "
	       "sequential_threshold %u "
	       "discard_promote_adjustment %u "
	       "read_promote_adjustment %u "
	       "write_promote_adjustment %u",
	       mq->tracker.thresholds[PATTERN_RANDOM],
	       mq->tracker.thresholds[PATTERN_SEQUENTIAL],
	       mq->discard_promote_adjustment,
	       mq->read_promote_adjustment,
	       mq->write_promote_adjustment);

	return 0;
}

/* Init the policy plugin interface function pointers. */
static void init_policy_functions(struct mq_policy *mq)
{
	mq->policy.destroy = mq_destroy;
	mq->policy.map = mq_map;
	mq->policy.lookup = mq_lookup;
	mq->policy.set_dirty = mq_set_dirty;
	mq->policy.clear_dirty = mq_clear_dirty;
	mq->policy.load_mapping = mq_load_mapping;
	mq->policy.walk_mappings = mq_walk_mappings;
	mq->policy.remove_mapping = mq_remove_mapping;
	mq->policy.remove_cblock = mq_remove_cblock;
	mq->policy.writeback_work = mq_writeback_work;
	mq->policy.force_mapping = mq_force_mapping;
	mq->policy.residency = mq_residency;
	mq->policy.tick = mq_tick;
	mq->policy.emit_config_values = mq_emit_config_values;
	mq->policy.set_config_value = mq_set_config_value;
}

static struct dm_cache_policy *mq_create(dm_cblock_t cache_size,
					 sector_t origin_size,
					 sector_t cache_block_size)
{
	struct mq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL);

	if (!mq)
		return NULL;

	init_policy_functions(mq);
	iot_init(&mq->tracker, SEQUENTIAL_THRESHOLD_DEFAULT, RANDOM_THRESHOLD_DEFAULT);
	mq->cache_size = cache_size;

	if (epool_init(&mq->pre_cache_pool, from_cblock(cache_size))) {
		DMERR("couldn't initialize pool of pre-cache entries");
		goto bad_pre_cache_init;
	}

	if (epool_init(&mq->cache_pool, from_cblock(cache_size))) {
		DMERR("couldn't initialize pool of cache entries");
		goto bad_cache_init;
	}

	mq->tick_protected = 0;
	mq->tick = 0;
	mq->hit_count = 0;
	mq->generation = 0;
	mq->promote_threshold = 0;
	mq->discard_promote_adjustment = DEFAULT_DISCARD_PROMOTE_ADJUSTMENT;
	mq->read_promote_adjustment = DEFAULT_READ_PROMOTE_ADJUSTMENT;
	mq->write_promote_adjustment = DEFAULT_WRITE_PROMOTE_ADJUSTMENT;
	mutex_init(&mq->lock);
	spin_lock_init(&mq->tick_lock);

	queue_init(&mq->pre_cache);
	queue_init(&mq->cache_clean);
	queue_init(&mq->cache_dirty);

	mq->generation_period = max((unsigned) from_cblock(cache_size), 1024U);

	mq->nr_buckets = next_power(from_cblock(cache_size) / 2, 16);
	mq->hash_bits = ffs(mq->nr_buckets) - 1;
	mq->table = vzalloc(sizeof(*mq->table) * mq->nr_buckets);
	if (!mq->table)
		goto bad_alloc_table;

	return &mq->policy;

bad_alloc_table:
	epool_exit(&mq->cache_pool);
bad_cache_init:
	epool_exit(&mq->pre_cache_pool);
bad_pre_cache_init:
	kfree(mq);

	return NULL;
}

/*----------------------------------------------------------------*/

static struct dm_cache_policy_type mq_policy_type = {
	.name = "mq",
	.version = {1, 2, 0},
	.hint_size = 4,
	.owner = THIS_MODULE,
	.create = mq_create
};

static struct dm_cache_policy_type default_policy_type = {
	.name = "default",
	.version = {1, 2, 0},
	.hint_size = 4,
	.owner = THIS_MODULE,
	.create = mq_create,
	.real = &mq_policy_type
};

static int __init mq_init(void)
{
	int r;

	mq_entry_cache = kmem_cache_create("dm_mq_policy_cache_entry",
					   sizeof(struct entry),
					   __alignof__(struct entry),
					   0, NULL);
	if (!mq_entry_cache)
		goto bad;

	r = dm_cache_policy_register(&mq_policy_type);
	if (r) {
		DMERR("register failed %d", r);
		goto bad_register_mq;
	}

	r = dm_cache_policy_register(&default_policy_type);
	if (!r) {
		DMINFO("version %u.%u.%u loaded",
		       mq_policy_type.version[0],
		       mq_policy_type.version[1],
		       mq_policy_type.version[2]);
		return 0;
	}

	DMERR("register failed (as default) %d", r);

	dm_cache_policy_unregister(&mq_policy_type);
bad_register_mq:
	kmem_cache_destroy(mq_entry_cache);
bad:
	return -ENOMEM;
}

static void __exit mq_exit(void)
{
	dm_cache_policy_unregister(&mq_policy_type);
	dm_cache_policy_unregister(&default_policy_type);

	kmem_cache_destroy(mq_entry_cache);
}

module_init(mq_init);
module_exit(mq_exit);

MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("mq cache policy");

MODULE_ALIAS("dm-cache-default");