bset.h 17.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
#ifndef _BCACHE_BSET_H
#define _BCACHE_BSET_H

#include <linux/bcache.h>
#include <linux/kernel.h>
#include <linux/types.h>

#include "util.h" /* for time_stats */

/*
 * BKEYS:
 *
 * A bkey contains a key, a size field, a variable number of pointers, and some
 * ancillary flag bits.
 *
 * We use two different functions for validating bkeys, bch_ptr_invalid and
 * bch_ptr_bad().
 *
 * bch_ptr_invalid() primarily filters out keys and pointers that would be
 * invalid due to some sort of bug, whereas bch_ptr_bad() filters out keys and
 * pointer that occur in normal practice but don't point to real data.
 *
 * The one exception to the rule that ptr_invalid() filters out invalid keys is
 * that it also filters out keys of size 0 - these are keys that have been
 * completely overwritten. It'd be safe to delete these in memory while leaving
 * them on disk, just unnecessary work - so we filter them out when resorting
 * instead.
 *
 * We can't filter out stale keys when we're resorting, because garbage
 * collection needs to find them to ensure bucket gens don't wrap around -
 * unless we're rewriting the btree node those stale keys still exist on disk.
 *
 * We also implement functions here for removing some number of sectors from the
 * front or the back of a bkey - this is mainly used for fixing overlapping
 * extents, by removing the overlapping sectors from the older key.
 *
 * BSETS:
 *
 * A bset is an array of bkeys laid out contiguously in memory in sorted order,
 * along with a header. A btree node is made up of a number of these, written at
 * different times.
 *
 * There could be many of them on disk, but we never allow there to be more than
 * 4 in memory - we lazily resort as needed.
 *
 * We implement code here for creating and maintaining auxiliary search trees
 * (described below) for searching an individial bset, and on top of that we
 * implement a btree iterator.
 *
 * BTREE ITERATOR:
 *
 * Most of the code in bcache doesn't care about an individual bset - it needs
 * to search entire btree nodes and iterate over them in sorted order.
 *
 * The btree iterator code serves both functions; it iterates through the keys
 * in a btree node in sorted order, starting from either keys after a specific
 * point (if you pass it a search key) or the start of the btree node.
 *
 * AUXILIARY SEARCH TREES:
 *
 * Since keys are variable length, we can't use a binary search on a bset - we
 * wouldn't be able to find the start of the next key. But binary searches are
 * slow anyways, due to terrible cache behaviour; bcache originally used binary
 * searches and that code topped out at under 50k lookups/second.
 *
 * So we need to construct some sort of lookup table. Since we only insert keys
 * into the last (unwritten) set, most of the keys within a given btree node are
 * usually in sets that are mostly constant. We use two different types of
 * lookup tables to take advantage of this.
 *
 * Both lookup tables share in common that they don't index every key in the
 * set; they index one key every BSET_CACHELINE bytes, and then a linear search
 * is used for the rest.
 *
 * For sets that have been written to disk and are no longer being inserted
 * into, we construct a binary search tree in an array - traversing a binary
 * search tree in an array gives excellent locality of reference and is very
 * fast, since both children of any node are adjacent to each other in memory
 * (and their grandchildren, and great grandchildren...) - this means
 * prefetching can be used to great effect.
 *
 * It's quite useful performance wise to keep these nodes small - not just
 * because they're more likely to be in L2, but also because we can prefetch
 * more nodes on a single cacheline and thus prefetch more iterations in advance
 * when traversing this tree.
 *
 * Nodes in the auxiliary search tree must contain both a key to compare against
 * (we don't want to fetch the key from the set, that would defeat the purpose),
 * and a pointer to the key. We use a few tricks to compress both of these.
 *
 * To compress the pointer, we take advantage of the fact that one node in the
 * search tree corresponds to precisely BSET_CACHELINE bytes in the set. We have
 * a function (to_inorder()) that takes the index of a node in a binary tree and
 * returns what its index would be in an inorder traversal, so we only have to
 * store the low bits of the offset.
 *
 * The key is 84 bits (KEY_DEV + key->key, the offset on the device). To
 * compress that,  we take advantage of the fact that when we're traversing the
 * search tree at every iteration we know that both our search key and the key
 * we're looking for lie within some range - bounded by our previous
 * comparisons. (We special case the start of a search so that this is true even
 * at the root of the tree).
 *
 * So we know the key we're looking for is between a and b, and a and b don't
 * differ higher than bit 50, we don't need to check anything higher than bit
 * 50.
 *
 * We don't usually need the rest of the bits, either; we only need enough bits
 * to partition the key range we're currently checking.  Consider key n - the
 * key our auxiliary search tree node corresponds to, and key p, the key
 * immediately preceding n.  The lowest bit we need to store in the auxiliary
 * search tree is the highest bit that differs between n and p.
 *
 * Note that this could be bit 0 - we might sometimes need all 80 bits to do the
 * comparison. But we'd really like our nodes in the auxiliary search tree to be
 * of fixed size.
 *
 * The solution is to make them fixed size, and when we're constructing a node
 * check if p and n differed in the bits we needed them to. If they don't we
 * flag that node, and when doing lookups we fallback to comparing against the
 * real key. As long as this doesn't happen to often (and it seems to reliably
 * happen a bit less than 1% of the time), we win - even on failures, that key
 * is then more likely to be in cache than if we were doing binary searches all
 * the way, since we're touching so much less memory.
 *
 * The keys in the auxiliary search tree are stored in (software) floating
 * point, with an exponent and a mantissa. The exponent needs to be big enough
 * to address all the bits in the original key, but the number of bits in the
 * mantissa is somewhat arbitrary; more bits just gets us fewer failures.
 *
 * We need 7 bits for the exponent and 3 bits for the key's offset (since keys
 * are 8 byte aligned); using 22 bits for the mantissa means a node is 4 bytes.
 * We need one node per 128 bytes in the btree node, which means the auxiliary
 * search trees take up 3% as much memory as the btree itself.
 *
 * Constructing these auxiliary search trees is moderately expensive, and we
 * don't want to be constantly rebuilding the search tree for the last set
 * whenever we insert another key into it. For the unwritten set, we use a much
 * simpler lookup table - it's just a flat array, so index i in the lookup table
 * corresponds to the i range of BSET_CACHELINE bytes in the set. Indexing
 * within each byte range works the same as with the auxiliary search trees.
 *
 * These are much easier to keep up to date when we insert a key - we do it
 * somewhat lazily; when we shift a key up we usually just increment the pointer
 * to it, only when it would overflow do we go to the trouble of finding the
 * first key in that range of bytes again.
 */

struct btree_keys;
struct btree_iter;
struct btree_iter_set;
struct bkey_float;

#define MAX_BSETS		4U

struct bset_tree {
	/*
	 * We construct a binary tree in an array as if the array
	 * started at 1, so that things line up on the same cachelines
	 * better: see comments in bset.c at cacheline_to_bkey() for
	 * details
	 */

	/* size of the binary tree and prev array */
	unsigned		size;

	/* function of size - precalculated for to_inorder() */
	unsigned		extra;

	/* copy of the last key in the set */
	struct bkey		end;
	struct bkey_float	*tree;

	/*
	 * The nodes in the bset tree point to specific keys - this
	 * array holds the sizes of the previous key.
	 *
	 * Conceptually it's a member of struct bkey_float, but we want
	 * to keep bkey_float to 4 bytes and prev isn't used in the fast
	 * path.
	 */
	uint8_t			*prev;

	/* The actual btree node, with pointers to each sorted set */
	struct bset		*data;
};

struct btree_keys_ops {
	bool		(*sort_cmp)(struct btree_iter_set,
				    struct btree_iter_set);
	struct bkey	*(*sort_fixup)(struct btree_iter *, struct bkey *);
	bool		(*insert_fixup)(struct btree_keys *, struct bkey *,
					struct btree_iter *, struct bkey *);
	bool		(*key_invalid)(struct btree_keys *,
				       const struct bkey *);
	bool		(*key_bad)(struct btree_keys *, const struct bkey *);
	bool		(*key_merge)(struct btree_keys *,
				     struct bkey *, struct bkey *);
	void		(*key_to_text)(char *, size_t, const struct bkey *);
	void		(*key_dump)(struct btree_keys *, const struct bkey *);

	/*
	 * Only used for deciding whether to use START_KEY(k) or just the key
	 * itself in a couple places
	 */
	bool		is_extents;
};

struct btree_keys {
	const struct btree_keys_ops	*ops;
	uint8_t			page_order;
	uint8_t			nsets;
	unsigned		last_set_unwritten:1;
	bool			*expensive_debug_checks;

	/*
	 * Sets of sorted keys - the real btree node - plus a binary search tree
	 *
	 * set[0] is special; set[0]->tree, set[0]->prev and set[0]->data point
	 * to the memory we have allocated for this btree node. Additionally,
	 * set[0]->data points to the entire btree node as it exists on disk.
	 */
	struct bset_tree	set[MAX_BSETS];
};

static inline struct bset_tree *bset_tree_last(struct btree_keys *b)
{
	return b->set + b->nsets;
}

static inline bool bset_written(struct btree_keys *b, struct bset_tree *t)
{
	return t <= b->set + b->nsets - b->last_set_unwritten;
}

static inline bool bkey_written(struct btree_keys *b, struct bkey *k)
{
	return !b->last_set_unwritten || k < b->set[b->nsets].data->start;
}

static inline unsigned bset_byte_offset(struct btree_keys *b, struct bset *i)
{
	return ((size_t) i) - ((size_t) b->set->data);
}

static inline unsigned bset_sector_offset(struct btree_keys *b, struct bset *i)
{
	return bset_byte_offset(b, i) >> 9;
}

#define __set_bytes(i, k)	(sizeof(*(i)) + (k) * sizeof(uint64_t))
#define set_bytes(i)		__set_bytes(i, i->keys)

#define __set_blocks(i, k, block_bytes)				\
	DIV_ROUND_UP(__set_bytes(i, k), block_bytes)
#define set_blocks(i, block_bytes)				\
	__set_blocks(i, (i)->keys, block_bytes)

static inline size_t bch_btree_keys_u64s_remaining(struct btree_keys *b)
{
	struct bset_tree *t = bset_tree_last(b);

	BUG_ON((PAGE_SIZE << b->page_order) <
	       (bset_byte_offset(b, t->data) + set_bytes(t->data)));

	if (!b->last_set_unwritten)
		return 0;

	return ((PAGE_SIZE << b->page_order) -
		(bset_byte_offset(b, t->data) + set_bytes(t->data))) /
		sizeof(u64);
}

static inline struct bset *bset_next_set(struct btree_keys *b,
					 unsigned block_bytes)
{
	struct bset *i = bset_tree_last(b)->data;

	return ((void *) i) + roundup(set_bytes(i), block_bytes);
}

void bch_btree_keys_free(struct btree_keys *);
int bch_btree_keys_alloc(struct btree_keys *, unsigned, gfp_t);
void bch_btree_keys_init(struct btree_keys *, const struct btree_keys_ops *,
			 bool *);

void bch_bset_init_next(struct btree_keys *, struct bset *, uint64_t);
void bch_bset_build_written_tree(struct btree_keys *);
void bch_bset_fix_invalidated_key(struct btree_keys *, struct bkey *);
bool bch_bkey_try_merge(struct btree_keys *, struct bkey *, struct bkey *);
void bch_bset_insert(struct btree_keys *, struct bkey *, struct bkey *);
unsigned bch_btree_insert_key(struct btree_keys *, struct bkey *,
			      struct bkey *);

enum {
	BTREE_INSERT_STATUS_NO_INSERT = 0,
	BTREE_INSERT_STATUS_INSERT,
	BTREE_INSERT_STATUS_BACK_MERGE,
	BTREE_INSERT_STATUS_OVERWROTE,
	BTREE_INSERT_STATUS_FRONT_MERGE,
};

/* Btree key iteration */

struct btree_iter {
	size_t size, used;
#ifdef CONFIG_BCACHE_DEBUG
	struct btree_keys *b;
#endif
	struct btree_iter_set {
		struct bkey *k, *end;
	} data[MAX_BSETS];
};

typedef bool (*ptr_filter_fn)(struct btree_keys *, const struct bkey *);

struct bkey *bch_btree_iter_next(struct btree_iter *);
struct bkey *bch_btree_iter_next_filter(struct btree_iter *,
					struct btree_keys *, ptr_filter_fn);

void bch_btree_iter_push(struct btree_iter *, struct bkey *, struct bkey *);
struct bkey *bch_btree_iter_init(struct btree_keys *, struct btree_iter *,
				 struct bkey *);

struct bkey *__bch_bset_search(struct btree_keys *, struct bset_tree *,
			       const struct bkey *);

/*
 * Returns the first key that is strictly greater than search
 */
static inline struct bkey *bch_bset_search(struct btree_keys *b,
					   struct bset_tree *t,
					   const struct bkey *search)
{
	return search ? __bch_bset_search(b, t, search) : t->data->start;
}

#define for_each_key_filter(b, k, iter, filter)				\
	for (bch_btree_iter_init((b), (iter), NULL);			\
	     ((k) = bch_btree_iter_next_filter((iter), (b), filter));)

#define for_each_key(b, k, iter)					\
	for (bch_btree_iter_init((b), (iter), NULL);			\
	     ((k) = bch_btree_iter_next(iter));)

/* Sorting */

struct bset_sort_state {
	mempool_t		*pool;

	unsigned		page_order;
	unsigned		crit_factor;

	struct time_stats	time;
};

void bch_bset_sort_state_free(struct bset_sort_state *);
int bch_bset_sort_state_init(struct bset_sort_state *, unsigned);
void bch_btree_sort_lazy(struct btree_keys *, struct bset_sort_state *);
void bch_btree_sort_into(struct btree_keys *, struct btree_keys *,
			 struct bset_sort_state *);
void bch_btree_sort_and_fix_extents(struct btree_keys *, struct btree_iter *,
				    struct bset_sort_state *);
void bch_btree_sort_partial(struct btree_keys *, unsigned,
			    struct bset_sort_state *);

static inline void bch_btree_sort(struct btree_keys *b,
				  struct bset_sort_state *state)
{
	bch_btree_sort_partial(b, 0, state);
}

struct bset_stats {
	size_t sets_written, sets_unwritten;
	size_t bytes_written, bytes_unwritten;
	size_t floats, failed;
};

void bch_btree_keys_stats(struct btree_keys *, struct bset_stats *);

/* Bkey utility code */

#define bset_bkey_last(i)	bkey_idx((struct bkey *) (i)->d, (i)->keys)

static inline struct bkey *bset_bkey_idx(struct bset *i, unsigned idx)
{
	return bkey_idx(i->start, idx);
}

static inline void bkey_init(struct bkey *k)
{
	*k = ZERO_KEY;
}

static __always_inline int64_t bkey_cmp(const struct bkey *l,
					const struct bkey *r)
{
	return unlikely(KEY_INODE(l) != KEY_INODE(r))
		? (int64_t) KEY_INODE(l) - (int64_t) KEY_INODE(r)
		: (int64_t) KEY_OFFSET(l) - (int64_t) KEY_OFFSET(r);
}

void bch_bkey_copy_single_ptr(struct bkey *, const struct bkey *,
			      unsigned);
bool __bch_cut_front(const struct bkey *, struct bkey *);
bool __bch_cut_back(const struct bkey *, struct bkey *);

static inline bool bch_cut_front(const struct bkey *where, struct bkey *k)
{
	BUG_ON(bkey_cmp(where, k) > 0);
	return __bch_cut_front(where, k);
}

static inline bool bch_cut_back(const struct bkey *where, struct bkey *k)
{
	BUG_ON(bkey_cmp(where, &START_KEY(k)) < 0);
	return __bch_cut_back(where, k);
}

#define PRECEDING_KEY(_k)					\
({								\
	struct bkey *_ret = NULL;				\
								\
	if (KEY_INODE(_k) || KEY_OFFSET(_k)) {			\
		_ret = &KEY(KEY_INODE(_k), KEY_OFFSET(_k), 0);	\
								\
		if (!_ret->low)					\
			_ret->high--;				\
		_ret->low--;					\
	}							\
								\
	_ret;							\
})

static inline bool bch_ptr_invalid(struct btree_keys *b, const struct bkey *k)
{
	return b->ops->key_invalid(b, k);
}

static inline bool bch_ptr_bad(struct btree_keys *b, const struct bkey *k)
{
	return b->ops->key_bad(b, k);
}

static inline void bch_bkey_to_text(struct btree_keys *b, char *buf,
				    size_t size, const struct bkey *k)
{
	return b->ops->key_to_text(buf, size, k);
}

static inline bool bch_bkey_equal_header(const struct bkey *l,
					 const struct bkey *r)
{
	return (KEY_DIRTY(l) == KEY_DIRTY(r) &&
		KEY_PTRS(l) == KEY_PTRS(r) &&
		KEY_CSUM(l) == KEY_CSUM(l));
}

/* Keylists */

struct keylist {
	union {
		struct bkey		*keys;
		uint64_t		*keys_p;
	};
	union {
		struct bkey		*top;
		uint64_t		*top_p;
	};

	/* Enough room for btree_split's keys without realloc */
#define KEYLIST_INLINE		16
	uint64_t		inline_keys[KEYLIST_INLINE];
};

static inline void bch_keylist_init(struct keylist *l)
{
	l->top_p = l->keys_p = l->inline_keys;
}

static inline void bch_keylist_push(struct keylist *l)
{
	l->top = bkey_next(l->top);
}

static inline void bch_keylist_add(struct keylist *l, struct bkey *k)
{
	bkey_copy(l->top, k);
	bch_keylist_push(l);
}

static inline bool bch_keylist_empty(struct keylist *l)
{
	return l->top == l->keys;
}

static inline void bch_keylist_reset(struct keylist *l)
{
	l->top = l->keys;
}

static inline void bch_keylist_free(struct keylist *l)
{
	if (l->keys_p != l->inline_keys)
		kfree(l->keys_p);
}

static inline size_t bch_keylist_nkeys(struct keylist *l)
{
	return l->top_p - l->keys_p;
}

static inline size_t bch_keylist_bytes(struct keylist *l)
{
	return bch_keylist_nkeys(l) * sizeof(uint64_t);
}

struct bkey *bch_keylist_pop(struct keylist *);
void bch_keylist_pop_front(struct keylist *);
int __bch_keylist_realloc(struct keylist *, unsigned);

/* Debug stuff */

#ifdef CONFIG_BCACHE_DEBUG

int __bch_count_data(struct btree_keys *);
void __bch_check_keys(struct btree_keys *, const char *, ...);
void bch_dump_bset(struct btree_keys *, struct bset *, unsigned);
void bch_dump_bucket(struct btree_keys *);

#else

static inline int __bch_count_data(struct btree_keys *b) { return -1; }
static inline void __bch_check_keys(struct btree_keys *b, const char *fmt, ...) {}
static inline void bch_dump_bucket(struct btree_keys *b) {}
void bch_dump_bset(struct btree_keys *, struct bset *, unsigned);

#endif

static inline bool btree_keys_expensive_checks(struct btree_keys *b)
{
#ifdef CONFIG_BCACHE_DEBUG
	return *b->expensive_debug_checks;
#else
	return false;
#endif
}

static inline int bch_count_data(struct btree_keys *b)
{
	return btree_keys_expensive_checks(b) ? __bch_count_data(b) : -1;
}

#define bch_check_keys(b, ...)						\
do {									\
	if (btree_keys_expensive_checks(b))				\
		__bch_check_keys(b, __VA_ARGS__);			\
} while (0)

#endif