Blame view

kernel/linux-imx6_3.14.28/drivers/scsi/aacraid/commctrl.c 23.6 KB
6b13f685e   김민수   BSP 최초 추가
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
  /*
   *	Adaptec AAC series RAID controller driver
   *	(c) Copyright 2001 Red Hat Inc.
   *
   * based on the old aacraid driver that is..
   * Adaptec aacraid device driver for Linux.
   *
   * Copyright (c) 2000-2010 Adaptec, Inc.
   *               2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
   *
   * This program is free software; you can redistribute it and/or modify
   * it under the terms of the GNU General Public License as published by
   * the Free Software Foundation; either version 2, or (at your option)
   * any later version.
   *
   * This program is distributed in the hope that it will be useful,
   * but WITHOUT ANY WARRANTY; without even the implied warranty of
   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   * GNU General Public License for more details.
   *
   * You should have received a copy of the GNU General Public License
   * along with this program; see the file COPYING.  If not, write to
   * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
   *
   * Module Name:
   *  commctrl.c
   *
   * Abstract: Contains all routines for control of the AFA comm layer
   *
   */
  
  #include <linux/kernel.h>
  #include <linux/init.h>
  #include <linux/types.h>
  #include <linux/pci.h>
  #include <linux/spinlock.h>
  #include <linux/slab.h>
  #include <linux/completion.h>
  #include <linux/dma-mapping.h>
  #include <linux/blkdev.h>
  #include <linux/delay.h> /* ssleep prototype */
  #include <linux/kthread.h>
  #include <linux/semaphore.h>
  #include <asm/uaccess.h>
  #include <scsi/scsi_host.h>
  
  #include "aacraid.h"
  
  /**
   *	ioctl_send_fib	-	send a FIB from userspace
   *	@dev:	adapter is being processed
   *	@arg:	arguments to the ioctl call
   *
   *	This routine sends a fib to the adapter on behalf of a user level
   *	program.
   */
  # define AAC_DEBUG_PREAMBLE	KERN_INFO
  # define AAC_DEBUG_POSTAMBLE
  
  static int ioctl_send_fib(struct aac_dev * dev, void __user *arg)
  {
  	struct hw_fib * kfib;
  	struct fib *fibptr;
  	struct hw_fib * hw_fib = (struct hw_fib *)0;
  	dma_addr_t hw_fib_pa = (dma_addr_t)0LL;
  	unsigned size;
  	int retval;
  
  	if (dev->in_reset) {
  		return -EBUSY;
  	}
  	fibptr = aac_fib_alloc(dev);
  	if(fibptr == NULL) {
  		return -ENOMEM;
  	}
  
  	kfib = fibptr->hw_fib_va;
  	/*
  	 *	First copy in the header so that we can check the size field.
  	 */
  	if (copy_from_user((void *)kfib, arg, sizeof(struct aac_fibhdr))) {
  		aac_fib_free(fibptr);
  		return -EFAULT;
  	}
  	/*
  	 *	Since we copy based on the fib header size, make sure that we
  	 *	will not overrun the buffer when we copy the memory. Return
  	 *	an error if we would.
  	 */
  	size = le16_to_cpu(kfib->header.Size) + sizeof(struct aac_fibhdr);
  	if (size < le16_to_cpu(kfib->header.SenderSize))
  		size = le16_to_cpu(kfib->header.SenderSize);
  	if (size > dev->max_fib_size) {
  		dma_addr_t daddr;
  
  		if (size > 2048) {
  			retval = -EINVAL;
  			goto cleanup;
  		}
  
  		kfib = pci_alloc_consistent(dev->pdev, size, &daddr);
  		if (!kfib) {
  			retval = -ENOMEM;
  			goto cleanup;
  		}
  
  		/* Highjack the hw_fib */
  		hw_fib = fibptr->hw_fib_va;
  		hw_fib_pa = fibptr->hw_fib_pa;
  		fibptr->hw_fib_va = kfib;
  		fibptr->hw_fib_pa = daddr;
  		memset(((char *)kfib) + dev->max_fib_size, 0, size - dev->max_fib_size);
  		memcpy(kfib, hw_fib, dev->max_fib_size);
  	}
  
  	if (copy_from_user(kfib, arg, size)) {
  		retval = -EFAULT;
  		goto cleanup;
  	}
  
  	if (kfib->header.Command == cpu_to_le16(TakeABreakPt)) {
  		aac_adapter_interrupt(dev);
  		/*
  		 * Since we didn't really send a fib, zero out the state to allow
  		 * cleanup code not to assert.
  		 */
  		kfib->header.XferState = 0;
  	} else {
  		retval = aac_fib_send(le16_to_cpu(kfib->header.Command), fibptr,
  				le16_to_cpu(kfib->header.Size) , FsaNormal,
  				1, 1, NULL, NULL);
  		if (retval) {
  			goto cleanup;
  		}
  		if (aac_fib_complete(fibptr) != 0) {
  			retval = -EINVAL;
  			goto cleanup;
  		}
  	}
  	/*
  	 *	Make sure that the size returned by the adapter (which includes
  	 *	the header) is less than or equal to the size of a fib, so we
  	 *	don't corrupt application data. Then copy that size to the user
  	 *	buffer. (Don't try to add the header information again, since it
  	 *	was already included by the adapter.)
  	 */
  
  	retval = 0;
  	if (copy_to_user(arg, (void *)kfib, size))
  		retval = -EFAULT;
  cleanup:
  	if (hw_fib) {
  		pci_free_consistent(dev->pdev, size, kfib, fibptr->hw_fib_pa);
  		fibptr->hw_fib_pa = hw_fib_pa;
  		fibptr->hw_fib_va = hw_fib;
  	}
  	if (retval != -ERESTARTSYS)
  		aac_fib_free(fibptr);
  	return retval;
  }
  
  /**
   *	open_getadapter_fib	-	Get the next fib
   *
   *	This routine will get the next Fib, if available, from the AdapterFibContext
   *	passed in from the user.
   */
  
  static int open_getadapter_fib(struct aac_dev * dev, void __user *arg)
  {
  	struct aac_fib_context * fibctx;
  	int status;
  
  	fibctx = kmalloc(sizeof(struct aac_fib_context), GFP_KERNEL);
  	if (fibctx == NULL) {
  		status = -ENOMEM;
  	} else {
  		unsigned long flags;
  		struct list_head * entry;
  		struct aac_fib_context * context;
  
  		fibctx->type = FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT;
  		fibctx->size = sizeof(struct aac_fib_context);
  		/*
  		 *	Yes yes, I know this could be an index, but we have a
  		 * better guarantee of uniqueness for the locked loop below.
  		 * Without the aid of a persistent history, this also helps
  		 * reduce the chance that the opaque context would be reused.
  		 */
  		fibctx->unique = (u32)((ulong)fibctx & 0xFFFFFFFF);
  		/*
  		 *	Initialize the mutex used to wait for the next AIF.
  		 */
  		sema_init(&fibctx->wait_sem, 0);
  		fibctx->wait = 0;
  		/*
  		 *	Initialize the fibs and set the count of fibs on
  		 *	the list to 0.
  		 */
  		fibctx->count = 0;
  		INIT_LIST_HEAD(&fibctx->fib_list);
  		fibctx->jiffies = jiffies/HZ;
  		/*
  		 *	Now add this context onto the adapter's
  		 *	AdapterFibContext list.
  		 */
  		spin_lock_irqsave(&dev->fib_lock, flags);
  		/* Ensure that we have a unique identifier */
  		entry = dev->fib_list.next;
  		while (entry != &dev->fib_list) {
  			context = list_entry(entry, struct aac_fib_context, next);
  			if (context->unique == fibctx->unique) {
  				/* Not unique (32 bits) */
  				fibctx->unique++;
  				entry = dev->fib_list.next;
  			} else {
  				entry = entry->next;
  			}
  		}
  		list_add_tail(&fibctx->next, &dev->fib_list);
  		spin_unlock_irqrestore(&dev->fib_lock, flags);
  		if (copy_to_user(arg, &fibctx->unique,
  						sizeof(fibctx->unique))) {
  			status = -EFAULT;
  		} else {
  			status = 0;
  		}
  	}
  	return status;
  }
  
  /**
   *	next_getadapter_fib	-	get the next fib
   *	@dev: adapter to use
   *	@arg: ioctl argument
   *
   *	This routine will get the next Fib, if available, from the AdapterFibContext
   *	passed in from the user.
   */
  
  static int next_getadapter_fib(struct aac_dev * dev, void __user *arg)
  {
  	struct fib_ioctl f;
  	struct fib *fib;
  	struct aac_fib_context *fibctx;
  	int status;
  	struct list_head * entry;
  	unsigned long flags;
  
  	if(copy_from_user((void *)&f, arg, sizeof(struct fib_ioctl)))
  		return -EFAULT;
  	/*
  	 *	Verify that the HANDLE passed in was a valid AdapterFibContext
  	 *
  	 *	Search the list of AdapterFibContext addresses on the adapter
  	 *	to be sure this is a valid address
  	 */
  	spin_lock_irqsave(&dev->fib_lock, flags);
  	entry = dev->fib_list.next;
  	fibctx = NULL;
  
  	while (entry != &dev->fib_list) {
  		fibctx = list_entry(entry, struct aac_fib_context, next);
  		/*
  		 *	Extract the AdapterFibContext from the Input parameters.
  		 */
  		if (fibctx->unique == f.fibctx) { /* We found a winner */
  			break;
  		}
  		entry = entry->next;
  		fibctx = NULL;
  	}
  	if (!fibctx) {
  		spin_unlock_irqrestore(&dev->fib_lock, flags);
  		dprintk ((KERN_INFO "Fib Context not found
  "));
  		return -EINVAL;
  	}
  
  	if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) ||
  		 (fibctx->size != sizeof(struct aac_fib_context))) {
  		spin_unlock_irqrestore(&dev->fib_lock, flags);
  		dprintk ((KERN_INFO "Fib Context corrupt?
  "));
  		return -EINVAL;
  	}
  	status = 0;
  	/*
  	 *	If there are no fibs to send back, then either wait or return
  	 *	-EAGAIN
  	 */
  return_fib:
  	if (!list_empty(&fibctx->fib_list)) {
  		/*
  		 *	Pull the next fib from the fibs
  		 */
  		entry = fibctx->fib_list.next;
  		list_del(entry);
  
  		fib = list_entry(entry, struct fib, fiblink);
  		fibctx->count--;
  		spin_unlock_irqrestore(&dev->fib_lock, flags);
  		if (copy_to_user(f.fib, fib->hw_fib_va, sizeof(struct hw_fib))) {
  			kfree(fib->hw_fib_va);
  			kfree(fib);
  			return -EFAULT;
  		}
  		/*
  		 *	Free the space occupied by this copy of the fib.
  		 */
  		kfree(fib->hw_fib_va);
  		kfree(fib);
  		status = 0;
  	} else {
  		spin_unlock_irqrestore(&dev->fib_lock, flags);
  		/* If someone killed the AIF aacraid thread, restart it */
  		status = !dev->aif_thread;
  		if (status && !dev->in_reset && dev->queues && dev->fsa_dev) {
  			/* Be paranoid, be very paranoid! */
  			kthread_stop(dev->thread);
  			ssleep(1);
  			dev->aif_thread = 0;
  			dev->thread = kthread_run(aac_command_thread, dev,
  						  "%s", dev->name);
  			ssleep(1);
  		}
  		if (f.wait) {
  			if(down_interruptible(&fibctx->wait_sem) < 0) {
  				status = -ERESTARTSYS;
  			} else {
  				/* Lock again and retry */
  				spin_lock_irqsave(&dev->fib_lock, flags);
  				goto return_fib;
  			}
  		} else {
  			status = -EAGAIN;
  		}
  	}
  	fibctx->jiffies = jiffies/HZ;
  	return status;
  }
  
  int aac_close_fib_context(struct aac_dev * dev, struct aac_fib_context * fibctx)
  {
  	struct fib *fib;
  
  	/*
  	 *	First free any FIBs that have not been consumed.
  	 */
  	while (!list_empty(&fibctx->fib_list)) {
  		struct list_head * entry;
  		/*
  		 *	Pull the next fib from the fibs
  		 */
  		entry = fibctx->fib_list.next;
  		list_del(entry);
  		fib = list_entry(entry, struct fib, fiblink);
  		fibctx->count--;
  		/*
  		 *	Free the space occupied by this copy of the fib.
  		 */
  		kfree(fib->hw_fib_va);
  		kfree(fib);
  	}
  	/*
  	 *	Remove the Context from the AdapterFibContext List
  	 */
  	list_del(&fibctx->next);
  	/*
  	 *	Invalidate context
  	 */
  	fibctx->type = 0;
  	/*
  	 *	Free the space occupied by the Context
  	 */
  	kfree(fibctx);
  	return 0;
  }
  
  /**
   *	close_getadapter_fib	-	close down user fib context
   *	@dev: adapter
   *	@arg: ioctl arguments
   *
   *	This routine will close down the fibctx passed in from the user.
   */
  
  static int close_getadapter_fib(struct aac_dev * dev, void __user *arg)
  {
  	struct aac_fib_context *fibctx;
  	int status;
  	unsigned long flags;
  	struct list_head * entry;
  
  	/*
  	 *	Verify that the HANDLE passed in was a valid AdapterFibContext
  	 *
  	 *	Search the list of AdapterFibContext addresses on the adapter
  	 *	to be sure this is a valid address
  	 */
  
  	entry = dev->fib_list.next;
  	fibctx = NULL;
  
  	while(entry != &dev->fib_list) {
  		fibctx = list_entry(entry, struct aac_fib_context, next);
  		/*
  		 *	Extract the fibctx from the input parameters
  		 */
  		if (fibctx->unique == (u32)(uintptr_t)arg) /* We found a winner */
  			break;
  		entry = entry->next;
  		fibctx = NULL;
  	}
  
  	if (!fibctx)
  		return 0; /* Already gone */
  
  	if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) ||
  		 (fibctx->size != sizeof(struct aac_fib_context)))
  		return -EINVAL;
  	spin_lock_irqsave(&dev->fib_lock, flags);
  	status = aac_close_fib_context(dev, fibctx);
  	spin_unlock_irqrestore(&dev->fib_lock, flags);
  	return status;
  }
  
  /**
   *	check_revision	-	close down user fib context
   *	@dev: adapter
   *	@arg: ioctl arguments
   *
   *	This routine returns the driver version.
   *	Under Linux, there have been no version incompatibilities, so this is
   *	simple!
   */
  
  static int check_revision(struct aac_dev *dev, void __user *arg)
  {
  	struct revision response;
  	char *driver_version = aac_driver_version;
  	u32 version;
  
  	response.compat = 1;
  	version = (simple_strtol(driver_version,
  				&driver_version, 10) << 24) | 0x00000400;
  	version += simple_strtol(driver_version + 1, &driver_version, 10) << 16;
  	version += simple_strtol(driver_version + 1, NULL, 10);
  	response.version = cpu_to_le32(version);
  #	ifdef AAC_DRIVER_BUILD
  		response.build = cpu_to_le32(AAC_DRIVER_BUILD);
  #	else
  		response.build = cpu_to_le32(9999);
  #	endif
  
  	if (copy_to_user(arg, &response, sizeof(response)))
  		return -EFAULT;
  	return 0;
  }
  
  
  /**
   *
   * aac_send_raw_scb
   *
   */
  
  static int aac_send_raw_srb(struct aac_dev* dev, void __user * arg)
  {
  	struct fib* srbfib;
  	int status;
  	struct aac_srb *srbcmd = NULL;
  	struct user_aac_srb *user_srbcmd = NULL;
  	struct user_aac_srb __user *user_srb = arg;
  	struct aac_srb_reply __user *user_reply;
  	struct aac_srb_reply* reply;
  	u32 fibsize = 0;
  	u32 flags = 0;
  	s32 rcode = 0;
  	u32 data_dir;
  	void __user *sg_user[32];
  	void *sg_list[32];
  	u32 sg_indx = 0;
  	u32 byte_count = 0;
  	u32 actual_fibsize64, actual_fibsize = 0;
  	int i;
  
  
  	if (dev->in_reset) {
  		dprintk((KERN_DEBUG"aacraid: send raw srb -EBUSY
  "));
  		return -EBUSY;
  	}
  	if (!capable(CAP_SYS_ADMIN)){
  		dprintk((KERN_DEBUG"aacraid: No permission to send raw srb
  "));
  		return -EPERM;
  	}
  	/*
  	 *	Allocate and initialize a Fib then setup a SRB command
  	 */
  	if (!(srbfib = aac_fib_alloc(dev))) {
  		return -ENOMEM;
  	}
  	aac_fib_init(srbfib);
  	/* raw_srb FIB is not FastResponseCapable */
  	srbfib->hw_fib_va->header.XferState &= ~cpu_to_le32(FastResponseCapable);
  
  	srbcmd = (struct aac_srb*) fib_data(srbfib);
  
  	memset(sg_list, 0, sizeof(sg_list)); /* cleanup may take issue */
  	if(copy_from_user(&fibsize, &user_srb->count,sizeof(u32))){
  		dprintk((KERN_DEBUG"aacraid: Could not copy data size from user
  "));
  		rcode = -EFAULT;
  		goto cleanup;
  	}
  
  	if ((fibsize < (sizeof(struct user_aac_srb) - sizeof(struct user_sgentry))) ||
  	    (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr)))) {
  		rcode = -EINVAL;
  		goto cleanup;
  	}
  
  	user_srbcmd = kmalloc(fibsize, GFP_KERNEL);
  	if (!user_srbcmd) {
  		dprintk((KERN_DEBUG"aacraid: Could not make a copy of the srb
  "));
  		rcode = -ENOMEM;
  		goto cleanup;
  	}
  	if(copy_from_user(user_srbcmd, user_srb,fibsize)){
  		dprintk((KERN_DEBUG"aacraid: Could not copy srb from user
  "));
  		rcode = -EFAULT;
  		goto cleanup;
  	}
  
  	user_reply = arg+fibsize;
  
  	flags = user_srbcmd->flags; /* from user in cpu order */
  	// Fix up srb for endian and force some values
  
  	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);	// Force this
  	srbcmd->channel	 = cpu_to_le32(user_srbcmd->channel);
  	srbcmd->id	 = cpu_to_le32(user_srbcmd->id);
  	srbcmd->lun	 = cpu_to_le32(user_srbcmd->lun);
  	srbcmd->timeout	 = cpu_to_le32(user_srbcmd->timeout);
  	srbcmd->flags	 = cpu_to_le32(flags);
  	srbcmd->retry_limit = 0; // Obsolete parameter
  	srbcmd->cdb_size = cpu_to_le32(user_srbcmd->cdb_size);
  	memcpy(srbcmd->cdb, user_srbcmd->cdb, sizeof(srbcmd->cdb));
  
  	switch (flags & (SRB_DataIn | SRB_DataOut)) {
  	case SRB_DataOut:
  		data_dir = DMA_TO_DEVICE;
  		break;
  	case (SRB_DataIn | SRB_DataOut):
  		data_dir = DMA_BIDIRECTIONAL;
  		break;
  	case SRB_DataIn:
  		data_dir = DMA_FROM_DEVICE;
  		break;
  	default:
  		data_dir = DMA_NONE;
  	}
  	if (user_srbcmd->sg.count > ARRAY_SIZE(sg_list)) {
  		dprintk((KERN_DEBUG"aacraid: too many sg entries %d
  ",
  		  le32_to_cpu(srbcmd->sg.count)));
  		rcode = -EINVAL;
  		goto cleanup;
  	}
  	actual_fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) +
  		((user_srbcmd->sg.count & 0xff) * sizeof(struct sgentry));
  	actual_fibsize64 = actual_fibsize + (user_srbcmd->sg.count & 0xff) *
  	  (sizeof(struct sgentry64) - sizeof(struct sgentry));
  	/* User made a mistake - should not continue */
  	if ((actual_fibsize != fibsize) && (actual_fibsize64 != fibsize)) {
  		dprintk((KERN_DEBUG"aacraid: Bad Size specified in "
  		  "Raw SRB command calculated fibsize=%lu;%lu "
  		  "user_srbcmd->sg.count=%d aac_srb=%lu sgentry=%lu;%lu "
  		  "issued fibsize=%d
  ",
  		  actual_fibsize, actual_fibsize64, user_srbcmd->sg.count,
  		  sizeof(struct aac_srb), sizeof(struct sgentry),
  		  sizeof(struct sgentry64), fibsize));
  		rcode = -EINVAL;
  		goto cleanup;
  	}
  	if ((data_dir == DMA_NONE) && user_srbcmd->sg.count) {
  		dprintk((KERN_DEBUG"aacraid: SG with no direction specified in Raw SRB command
  "));
  		rcode = -EINVAL;
  		goto cleanup;
  	}
  	byte_count = 0;
  	if (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64) {
  		struct user_sgmap64* upsg = (struct user_sgmap64*)&user_srbcmd->sg;
  		struct sgmap64* psg = (struct sgmap64*)&srbcmd->sg;
  
  		/*
  		 * This should also catch if user used the 32 bit sgmap
  		 */
  		if (actual_fibsize64 == fibsize) {
  			actual_fibsize = actual_fibsize64;
  			for (i = 0; i < upsg->count; i++) {
  				u64 addr;
  				void* p;
  				if (upsg->sg[i].count >
  				    ((dev->adapter_info.options &
  				     AAC_OPT_NEW_COMM) ?
  				      (dev->scsi_host_ptr->max_sectors << 9) :
  				      65536)) {
  					rcode = -EINVAL;
  					goto cleanup;
  				}
  				/* Does this really need to be GFP_DMA? */
  				p = kmalloc(upsg->sg[i].count,GFP_KERNEL|__GFP_DMA);
  				if(!p) {
  					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d
  ",
  					  upsg->sg[i].count,i,upsg->count));
  					rcode = -ENOMEM;
  					goto cleanup;
  				}
  				addr = (u64)upsg->sg[i].addr[0];
  				addr += ((u64)upsg->sg[i].addr[1]) << 32;
  				sg_user[i] = (void __user *)(uintptr_t)addr;
  				sg_list[i] = p; // save so we can clean up later
  				sg_indx = i;
  
  				if (flags & SRB_DataOut) {
  					if(copy_from_user(p,sg_user[i],upsg->sg[i].count)){
  						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user
  "));
  						rcode = -EFAULT;
  						goto cleanup;
  					}
  				}
  				addr = pci_map_single(dev->pdev, p, upsg->sg[i].count, data_dir);
  
  				psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
  				psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
  				byte_count += upsg->sg[i].count;
  				psg->sg[i].count = cpu_to_le32(upsg->sg[i].count);
  			}
  		} else {
  			struct user_sgmap* usg;
  			usg = kmalloc(actual_fibsize - sizeof(struct aac_srb)
  			  + sizeof(struct sgmap), GFP_KERNEL);
  			if (!usg) {
  				dprintk((KERN_DEBUG"aacraid: Allocation error in Raw SRB command
  "));
  				rcode = -ENOMEM;
  				goto cleanup;
  			}
  			memcpy (usg, upsg, actual_fibsize - sizeof(struct aac_srb)
  			  + sizeof(struct sgmap));
  			actual_fibsize = actual_fibsize64;
  
  			for (i = 0; i < usg->count; i++) {
  				u64 addr;
  				void* p;
  				if (usg->sg[i].count >
  				    ((dev->adapter_info.options &
  				     AAC_OPT_NEW_COMM) ?
  				      (dev->scsi_host_ptr->max_sectors << 9) :
  				      65536)) {
  					kfree(usg);
  					rcode = -EINVAL;
  					goto cleanup;
  				}
  				/* Does this really need to be GFP_DMA? */
  				p = kmalloc(usg->sg[i].count,GFP_KERNEL|__GFP_DMA);
  				if(!p) {
  					dprintk((KERN_DEBUG "aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d
  ",
  					  usg->sg[i].count,i,usg->count));
  					kfree(usg);
  					rcode = -ENOMEM;
  					goto cleanup;
  				}
  				sg_user[i] = (void __user *)(uintptr_t)usg->sg[i].addr;
  				sg_list[i] = p; // save so we can clean up later
  				sg_indx = i;
  
  				if (flags & SRB_DataOut) {
  					if(copy_from_user(p,sg_user[i],upsg->sg[i].count)){
  						kfree (usg);
  						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user
  "));
  						rcode = -EFAULT;
  						goto cleanup;
  					}
  				}
  				addr = pci_map_single(dev->pdev, p, usg->sg[i].count, data_dir);
  
  				psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
  				psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
  				byte_count += usg->sg[i].count;
  				psg->sg[i].count = cpu_to_le32(usg->sg[i].count);
  			}
  			kfree (usg);
  		}
  		srbcmd->count = cpu_to_le32(byte_count);
  		psg->count = cpu_to_le32(sg_indx+1);
  		status = aac_fib_send(ScsiPortCommand64, srbfib, actual_fibsize, FsaNormal, 1, 1,NULL,NULL);
  	} else {
  		struct user_sgmap* upsg = &user_srbcmd->sg;
  		struct sgmap* psg = &srbcmd->sg;
  
  		if (actual_fibsize64 == fibsize) {
  			struct user_sgmap64* usg = (struct user_sgmap64 *)upsg;
  			for (i = 0; i < upsg->count; i++) {
  				uintptr_t addr;
  				void* p;
  				if (usg->sg[i].count >
  				    ((dev->adapter_info.options &
  				     AAC_OPT_NEW_COMM) ?
  				      (dev->scsi_host_ptr->max_sectors << 9) :
  				      65536)) {
  					rcode = -EINVAL;
  					goto cleanup;
  				}
  				/* Does this really need to be GFP_DMA? */
  				p = kmalloc(usg->sg[i].count,GFP_KERNEL|__GFP_DMA);
  				if(!p) {
  					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d
  ",
  					  usg->sg[i].count,i,usg->count));
  					rcode = -ENOMEM;
  					goto cleanup;
  				}
  				addr = (u64)usg->sg[i].addr[0];
  				addr += ((u64)usg->sg[i].addr[1]) << 32;
  				sg_user[i] = (void __user *)addr;
  				sg_list[i] = p; // save so we can clean up later
  				sg_indx = i;
  
  				if (flags & SRB_DataOut) {
  					if(copy_from_user(p,sg_user[i],usg->sg[i].count)){
  						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user
  "));
  						rcode = -EFAULT;
  						goto cleanup;
  					}
  				}
  				addr = pci_map_single(dev->pdev, p, usg->sg[i].count, data_dir);
  
  				psg->sg[i].addr = cpu_to_le32(addr & 0xffffffff);
  				byte_count += usg->sg[i].count;
  				psg->sg[i].count = cpu_to_le32(usg->sg[i].count);
  			}
  		} else {
  			for (i = 0; i < upsg->count; i++) {
  				dma_addr_t addr;
  				void* p;
  				if (upsg->sg[i].count >
  				    ((dev->adapter_info.options &
  				     AAC_OPT_NEW_COMM) ?
  				      (dev->scsi_host_ptr->max_sectors << 9) :
  				      65536)) {
  					rcode = -EINVAL;
  					goto cleanup;
  				}
  				p = kmalloc(upsg->sg[i].count, GFP_KERNEL);
  				if (!p) {
  					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d
  ",
  					  upsg->sg[i].count, i, upsg->count));
  					rcode = -ENOMEM;
  					goto cleanup;
  				}
  				sg_user[i] = (void __user *)(uintptr_t)upsg->sg[i].addr;
  				sg_list[i] = p; // save so we can clean up later
  				sg_indx = i;
  
  				if (flags & SRB_DataOut) {
  					if(copy_from_user(p, sg_user[i],
  							upsg->sg[i].count)) {
  						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user
  "));
  						rcode = -EFAULT;
  						goto cleanup;
  					}
  				}
  				addr = pci_map_single(dev->pdev, p,
  					upsg->sg[i].count, data_dir);
  
  				psg->sg[i].addr = cpu_to_le32(addr);
  				byte_count += upsg->sg[i].count;
  				psg->sg[i].count = cpu_to_le32(upsg->sg[i].count);
  			}
  		}
  		srbcmd->count = cpu_to_le32(byte_count);
  		psg->count = cpu_to_le32(sg_indx+1);
  		status = aac_fib_send(ScsiPortCommand, srbfib, actual_fibsize, FsaNormal, 1, 1, NULL, NULL);
  	}
  	if (status == -ERESTARTSYS) {
  		rcode = -ERESTARTSYS;
  		goto cleanup;
  	}
  
  	if (status != 0){
  		dprintk((KERN_DEBUG"aacraid: Could not send raw srb fib to hba
  "));
  		rcode = -ENXIO;
  		goto cleanup;
  	}
  
  	if (flags & SRB_DataIn) {
  		for(i = 0 ; i <= sg_indx; i++){
  			byte_count = le32_to_cpu(
  			  (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)
  			      ? ((struct sgmap64*)&srbcmd->sg)->sg[i].count
  			      : srbcmd->sg.sg[i].count);
  			if(copy_to_user(sg_user[i], sg_list[i], byte_count)){
  				dprintk((KERN_DEBUG"aacraid: Could not copy sg data to user
  "));
  				rcode = -EFAULT;
  				goto cleanup;
  
  			}
  		}
  	}
  
  	reply = (struct aac_srb_reply *) fib_data(srbfib);
  	if(copy_to_user(user_reply,reply,sizeof(struct aac_srb_reply))){
  		dprintk((KERN_DEBUG"aacraid: Could not copy reply to user
  "));
  		rcode = -EFAULT;
  		goto cleanup;
  	}
  
  cleanup:
  	kfree(user_srbcmd);
  	for(i=0; i <= sg_indx; i++){
  		kfree(sg_list[i]);
  	}
  	if (rcode != -ERESTARTSYS) {
  		aac_fib_complete(srbfib);
  		aac_fib_free(srbfib);
  	}
  
  	return rcode;
  }
  
  struct aac_pci_info {
  	u32 bus;
  	u32 slot;
  };
  
  
  static int aac_get_pci_info(struct aac_dev* dev, void __user *arg)
  {
  	struct aac_pci_info pci_info;
  
  	pci_info.bus = dev->pdev->bus->number;
  	pci_info.slot = PCI_SLOT(dev->pdev->devfn);
  
  	if (copy_to_user(arg, &pci_info, sizeof(struct aac_pci_info))) {
  		dprintk((KERN_DEBUG "aacraid: Could not copy pci info
  "));
  		return -EFAULT;
  	}
  	return 0;
  }
  
  
  int aac_do_ioctl(struct aac_dev * dev, int cmd, void __user *arg)
  {
  	int status;
  
  	/*
  	 *	HBA gets first crack
  	 */
  
  	status = aac_dev_ioctl(dev, cmd, arg);
  	if (status != -ENOTTY)
  		return status;
  
  	switch (cmd) {
  	case FSACTL_MINIPORT_REV_CHECK:
  		status = check_revision(dev, arg);
  		break;
  	case FSACTL_SEND_LARGE_FIB:
  	case FSACTL_SENDFIB:
  		status = ioctl_send_fib(dev, arg);
  		break;
  	case FSACTL_OPEN_GET_ADAPTER_FIB:
  		status = open_getadapter_fib(dev, arg);
  		break;
  	case FSACTL_GET_NEXT_ADAPTER_FIB:
  		status = next_getadapter_fib(dev, arg);
  		break;
  	case FSACTL_CLOSE_GET_ADAPTER_FIB:
  		status = close_getadapter_fib(dev, arg);
  		break;
  	case FSACTL_SEND_RAW_SRB:
  		status = aac_send_raw_srb(dev,arg);
  		break;
  	case FSACTL_GET_PCI_INFO:
  		status = aac_get_pci_info(dev,arg);
  		break;
  	default:
  		status = -ENOTTY;
  		break;
  	}
  	return status;
  }