Blame view

kernel/linux-imx6_3.14.28/Documentation/driver-model/platform.txt 10.3 KB
6b13f685e   김민수   BSP 최초 추가
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
  Platform Devices and Drivers
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  See <linux/platform_device.h> for the driver model interface to the
  platform bus:  platform_device, and platform_driver.  This pseudo-bus
  is used to connect devices on busses with minimal infrastructure,
  like those used to integrate peripherals on many system-on-chip
  processors, or some "legacy" PC interconnects; as opposed to large
  formally specified ones like PCI or USB.
  
  
  Platform devices
  ~~~~~~~~~~~~~~~~
  Platform devices are devices that typically appear as autonomous
  entities in the system. This includes legacy port-based devices and
  host bridges to peripheral buses, and most controllers integrated
  into system-on-chip platforms.  What they usually have in common
  is direct addressing from a CPU bus.  Rarely, a platform_device will
  be connected through a segment of some other kind of bus; but its
  registers will still be directly addressable.
  
  Platform devices are given a name, used in driver binding, and a
  list of resources such as addresses and IRQs.
  
  struct platform_device {
  	const char	*name;
  	u32		id;
  	struct device	dev;
  	u32		num_resources;
  	struct resource	*resource;
  };
  
  
  Platform drivers
  ~~~~~~~~~~~~~~~~
  Platform drivers follow the standard driver model convention, where
  discovery/enumeration is handled outside the drivers, and drivers
  provide probe() and remove() methods.  They support power management
  and shutdown notifications using the standard conventions.
  
  struct platform_driver {
  	int (*probe)(struct platform_device *);
  	int (*remove)(struct platform_device *);
  	void (*shutdown)(struct platform_device *);
  	int (*suspend)(struct platform_device *, pm_message_t state);
  	int (*suspend_late)(struct platform_device *, pm_message_t state);
  	int (*resume_early)(struct platform_device *);
  	int (*resume)(struct platform_device *);
  	struct device_driver driver;
  };
  
  Note that probe() should in general verify that the specified device hardware
  actually exists; sometimes platform setup code can't be sure.  The probing
  can use device resources, including clocks, and device platform_data.
  
  Platform drivers register themselves the normal way:
  
  	int platform_driver_register(struct platform_driver *drv);
  
  Or, in common situations where the device is known not to be hot-pluggable,
  the probe() routine can live in an init section to reduce the driver's
  runtime memory footprint:
  
  	int platform_driver_probe(struct platform_driver *drv,
  			  int (*probe)(struct platform_device *))
  
  
  Device Enumeration
  ~~~~~~~~~~~~~~~~~~
  As a rule, platform specific (and often board-specific) setup code will
  register platform devices:
  
  	int platform_device_register(struct platform_device *pdev);
  
  	int platform_add_devices(struct platform_device **pdevs, int ndev);
  
  The general rule is to register only those devices that actually exist,
  but in some cases extra devices might be registered.  For example, a kernel
  might be configured to work with an external network adapter that might not
  be populated on all boards, or likewise to work with an integrated controller
  that some boards might not hook up to any peripherals.
  
  In some cases, boot firmware will export tables describing the devices
  that are populated on a given board.   Without such tables, often the
  only way for system setup code to set up the correct devices is to build
  a kernel for a specific target board.  Such board-specific kernels are
  common with embedded and custom systems development.
  
  In many cases, the memory and IRQ resources associated with the platform
  device are not enough to let the device's driver work.  Board setup code
  will often provide additional information using the device's platform_data
  field to hold additional information.
  
  Embedded systems frequently need one or more clocks for platform devices,
  which are normally kept off until they're actively needed (to save power).
  System setup also associates those clocks with the device, so that that
  calls to clk_get(&pdev->dev, clock_name) return them as needed.
  
  
  Legacy Drivers:  Device Probing
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  Some drivers are not fully converted to the driver model, because they take
  on a non-driver role:  the driver registers its platform device, rather than
  leaving that for system infrastructure.  Such drivers can't be hotplugged
  or coldplugged, since those mechanisms require device creation to be in a
  different system component than the driver.
  
  The only "good" reason for this is to handle older system designs which, like
  original IBM PCs, rely on error-prone "probe-the-hardware" models for hardware
  configuration.  Newer systems have largely abandoned that model, in favor of
  bus-level support for dynamic configuration (PCI, USB), or device tables
  provided by the boot firmware (e.g. PNPACPI on x86).  There are too many
  conflicting options about what might be where, and even educated guesses by
  an operating system will be wrong often enough to make trouble.
  
  This style of driver is discouraged.  If you're updating such a driver,
  please try to move the device enumeration to a more appropriate location,
  outside the driver.  This will usually be cleanup, since such drivers
  tend to already have "normal" modes, such as ones using device nodes that
  were created by PNP or by platform device setup.
  
  None the less, there are some APIs to support such legacy drivers.  Avoid
  using these calls except with such hotplug-deficient drivers.
  
  	struct platform_device *platform_device_alloc(
  			const char *name, int id);
  
  You can use platform_device_alloc() to dynamically allocate a device, which
  you will then initialize with resources and platform_device_register().
  A better solution is usually:
  
  	struct platform_device *platform_device_register_simple(
  			const char *name, int id,
  			struct resource *res, unsigned int nres);
  
  You can use platform_device_register_simple() as a one-step call to allocate
  and register a device.
  
  
  Device Naming and Driver Binding
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  The platform_device.dev.bus_id is the canonical name for the devices.
  It's built from two components:
  
      * platform_device.name ... which is also used to for driver matching.
  
      * platform_device.id ... the device instance number, or else "-1"
        to indicate there's only one.
  
  These are concatenated, so name/id "serial"/0 indicates bus_id "serial.0", and
  "serial/3" indicates bus_id "serial.3"; both would use the platform_driver
  named "serial".  While "my_rtc"/-1 would be bus_id "my_rtc" (no instance id)
  and use the platform_driver called "my_rtc".
  
  Driver binding is performed automatically by the driver core, invoking
  driver probe() after finding a match between device and driver.  If the
  probe() succeeds, the driver and device are bound as usual.  There are
  three different ways to find such a match:
  
      - Whenever a device is registered, the drivers for that bus are
        checked for matches.  Platform devices should be registered very
        early during system boot.
  
      - When a driver is registered using platform_driver_register(), all
        unbound devices on that bus are checked for matches.  Drivers
        usually register later during booting, or by module loading.
  
      - Registering a driver using platform_driver_probe() works just like
        using platform_driver_register(), except that the driver won't
        be probed later if another device registers.  (Which is OK, since
        this interface is only for use with non-hotpluggable devices.)
  
  
  Early Platform Devices and Drivers
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  The early platform interfaces provide platform data to platform device
  drivers early on during the system boot. The code is built on top of the
  early_param() command line parsing and can be executed very early on.
  
  Example: "earlyprintk" class early serial console in 6 steps
  
  1. Registering early platform device data
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  The architecture code registers platform device data using the function
  early_platform_add_devices(). In the case of early serial console this
  should be hardware configuration for the serial port. Devices registered
  at this point will later on be matched against early platform drivers.
  
  2. Parsing kernel command line
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  The architecture code calls parse_early_param() to parse the kernel
  command line. This will execute all matching early_param() callbacks.
  User specified early platform devices will be registered at this point.
  For the early serial console case the user can specify port on the
  kernel command line as "earlyprintk=serial.0" where "earlyprintk" is
  the class string, "serial" is the name of the platform driver and
  0 is the platform device id. If the id is -1 then the dot and the
  id can be omitted.
  
  3. Installing early platform drivers belonging to a certain class
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  The architecture code may optionally force registration of all early
  platform drivers belonging to a certain class using the function
  early_platform_driver_register_all(). User specified devices from
  step 2 have priority over these. This step is omitted by the serial
  driver example since the early serial driver code should be disabled
  unless the user has specified port on the kernel command line.
  
  4. Early platform driver registration
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  Compiled-in platform drivers making use of early_platform_init() are
  automatically registered during step 2 or 3. The serial driver example
  should use early_platform_init("earlyprintk", &platform_driver).
  
  5. Probing of early platform drivers belonging to a certain class
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  The architecture code calls early_platform_driver_probe() to match
  registered early platform devices associated with a certain class with
  registered early platform drivers. Matched devices will get probed().
  This step can be executed at any point during the early boot. As soon
  as possible may be good for the serial port case.
  
  6. Inside the early platform driver probe()
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  The driver code needs to take special care during early boot, especially
  when it comes to memory allocation and interrupt registration. The code
  in the probe() function can use is_early_platform_device() to check if
  it is called at early platform device or at the regular platform device
  time. The early serial driver performs register_console() at this point.
  
  For further information, see <linux/platform_device.h>.