6b13f685e
김민수
BSP 최초 추가
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
|
The Linux NCR53C8XX/SYM53C8XX drivers README file
Written by Gerard Roudier <groudier@free.fr>
21 Rue Carnot
95170 DEUIL LA BARRE - FRANCE
29 May 1999
===============================================================================
1. Introduction
2. Supported chips and SCSI features
3. Advantages of the enhanced 896 driver
3.1 Optimized SCSI SCRIPTS
3.2 New features of the SYM53C896 (64 bit PCI dual LVD SCSI controller)
4. Memory mapped I/O versus normal I/O
5. Tagged command queueing
6. Parity checking
7. Profiling information
8. Control commands
8.1 Set minimum synchronous period
8.2 Set wide size
8.3 Set maximum number of concurrent tagged commands
8.4 Set order type for tagged command
8.5 Set debug mode
8.6 Clear profile counters
8.7 Set flag (no_disc)
8.8 Set verbose level
8.9 Reset all logical units of a target
8.10 Abort all tasks of all logical units of a target
9. Configuration parameters
10. Boot setup commands
10.1 Syntax
10.2 Available arguments
10.2.1 Master parity checking
10.2.2 Scsi parity checking
10.2.3 Scsi disconnections
10.2.4 Special features
10.2.5 Ultra SCSI support
10.2.6 Default number of tagged commands
10.2.7 Default synchronous period factor
10.2.8 Negotiate synchronous with all devices
10.2.9 Verbosity level
10.2.10 Debug mode
10.2.11 Burst max
10.2.12 LED support
10.2.13 Max wide
10.2.14 Differential mode
10.2.15 IRQ mode
10.2.16 Reverse probe
10.2.17 Fix up PCI configuration space
10.2.18 Serial NVRAM
10.2.19 Check SCSI BUS
10.2.20 Exclude a host from being attached
10.2.21 Suggest a default SCSI id for hosts
10.2.22 Enable use of IMMEDIATE ARBITRATION
10.3 Advised boot setup commands
10.4 PCI configuration fix-up boot option
10.5 Serial NVRAM support boot option
10.6 SCSI BUS checking boot option
10.7 IMMEDIATE ARBITRATION boot option
11. Some constants and flags of the ncr53c8xx.h header file
12. Installation
13. Architecture dependent features
14. Known problems
14.1 Tagged commands with Iomega Jaz device
14.2 Device names change when another controller is added
14.3 Using only 8 bit devices with a WIDE SCSI controller.
14.4 Possible data corruption during a Memory Write and Invalidate
14.5 IRQ sharing problems
15. SCSI problem troubleshooting
15.1 Problem tracking
15.2 Understanding hardware error reports
16. Synchronous transfer negotiation tables
16.1 Synchronous timings for 53C875 and 53C860 Ultra-SCSI controllers
16.2 Synchronous timings for fast SCSI-2 53C8XX controllers
17. Serial NVRAM support (by Richard Waltham)
17.1 Features
17.2 Symbios NVRAM layout
17.3 Tekram NVRAM layout
18. Support for Big Endian
18.1 Big Endian CPU
18.2 NCR chip in Big Endian mode of operations
===============================================================================
1. Introduction
The initial Linux ncr53c8xx driver has been a port of the ncr driver from
FreeBSD that has been achieved in November 1995 by:
Gerard Roudier <groudier@free.fr>
The original driver has been written for 386bsd and FreeBSD by:
Wolfgang Stanglmeier <wolf@cologne.de>
Stefan Esser <se@mi.Uni-Koeln.de>
It is now available as a bundle of 2 drivers:
- ncr53c8xx generic driver that supports all the SYM53C8XX family including
the earliest 810 rev. 1, the latest 896 (2 channel LVD SCSI controller) and
the new 895A (1 channel LVD SCSI controller).
- sym53c8xx enhanced driver (a.k.a. 896 drivers) that drops support of oldest
chips in order to gain advantage of new features, as LOAD/STORE instructions
available since the 810A and hardware phase mismatch available with the
896 and the 895A.
You can find technical information about the NCR 8xx family in the
PCI-HOWTO written by Michael Will and in the SCSI-HOWTO written by
Drew Eckhardt.
Information about new chips is available at LSILOGIC web server:
http://www.lsilogic.com/
SCSI standard documentations are available at SYMBIOS ftp server:
ftp://ftp.symbios.com/
Useful SCSI tools written by Eric Youngdale are available at tsx-11:
ftp://tsx-11.mit.edu/pub/linux/ALPHA/scsi/scsiinfo-X.Y.tar.gz
ftp://tsx-11.mit.edu/pub/linux/ALPHA/scsi/scsidev-X.Y.tar.gz
These tools are not ALPHA but quite clean and work quite well.
It is essential you have the 'scsiinfo' package.
This short documentation describes the features of the generic and enhanced
drivers, configuration parameters and control commands available through
the proc SCSI file system read / write operations.
This driver has been tested OK with linux/i386, Linux/Alpha and Linux/PPC.
Latest driver version and patches are available at:
ftp://ftp.tux.org/pub/people/gerard-roudier
or
ftp://ftp.symbios.com/mirror/ftp.tux.org/pub/tux/roudier/drivers
I am not a native speaker of English and there are probably lots of
mistakes in this README file. Any help will be welcome.
2. Supported chips and SCSI features
The following features are supported for all chips:
Synchronous negotiation
Disconnection
Tagged command queuing
SCSI parity checking
Master parity checking
"Wide negotiation" is supported for chips that allow it. The
following table shows some characteristics of NCR 8xx family chips
and what drivers support them.
Supported by Supported by
On board the generic the enhanced
Chip SDMS BIOS Wide SCSI std. Max. sync driver driver
---- --------- ---- --------- ---------- ------------ -------------
810 N N FAST10 10 MB/s Y N
810A N N FAST10 10 MB/s Y Y
815 Y N FAST10 10 MB/s Y N
825 Y Y FAST10 20 MB/s Y N
825A Y Y FAST10 20 MB/s Y Y
860 N N FAST20 20 MB/s Y Y
875 Y Y FAST20 40 MB/s Y Y
876 Y Y FAST20 40 MB/s Y Y
895 Y Y FAST40 80 MB/s Y Y
895A Y Y FAST40 80 MB/s Y Y
896 Y Y FAST40 80 MB/s Y Y
897 Y Y FAST40 80 MB/s Y Y
1510D Y Y FAST40 80 MB/s Y Y
1010 Y Y FAST80 160 MB/s N Y
1010_66* Y Y FAST80 160 MB/s N Y
* Chip supports 33MHz and 66MHz PCI buses.
Summary of other supported features:
Module: allow to load the driver
Memory mapped I/O: increases performance
Profiling information: read operations from the proc SCSI file system
Control commands: write operations to the proc SCSI file system
Debugging information: written to syslog (expert only)
Scatter / gather
Shared interrupt
Boot setup commands
Serial NVRAM: Symbios and Tekram formats
3. Advantages of the enhanced 896 driver
3.1 Optimized SCSI SCRIPTS.
The 810A, 825A, 875, 895, 896 and 895A support new SCSI SCRIPTS instructions
named LOAD and STORE that allow to move up to 1 DWORD from/to an IO register
to/from memory much faster that the MOVE MEMORY instruction that is supported
by the 53c7xx and 53c8xx family.
The LOAD/STORE instructions support absolute and DSA relative addressing
modes. The SCSI SCRIPTS had been entirely rewritten using LOAD/STORE instead
of MOVE MEMORY instructions.
3.2 New features of the SYM53C896 (64 bit PCI dual LVD SCSI controller)
The 896 and the 895A allows handling of the phase mismatch context from
SCRIPTS (avoids the phase mismatch interrupt that stops the SCSI processor
until the C code has saved the context of the transfer).
Implementing this without using LOAD/STORE instructions would be painful
and I didn't even want to try it.
The 896 chip supports 64 bit PCI transactions and addressing, while the
895A supports 32 bit PCI transactions and 64 bit addressing.
The SCRIPTS processor of these chips is not true 64 bit, but uses segment
registers for bit 32-63. Another interesting feature is that LOAD/STORE
instructions that address the on-chip RAM (8k) remain internal to the chip.
Due to the use of LOAD/STORE SCRIPTS instructions, this driver does not
support the following chips:
- SYM53C810 revision < 0x10 (16)
- SYM53C815 all revisions
- SYM53C825 revision < 0x10 (16)
4. Memory mapped I/O versus normal I/O
Memory mapped I/O has less latency than normal I/O. Since
linux-1.3.x, memory mapped I/O is used rather than normal I/O. Memory
mapped I/O seems to work fine on most hardware configurations, but
some poorly designed motherboards may break this feature.
The configuration option CONFIG_SCSI_NCR53C8XX_IOMAPPED forces the
driver to use normal I/O in all cases.
5. Tagged command queueing
Queuing more than 1 command at a time to a device allows it to perform
optimizations based on actual head positions and its mechanical
characteristics. This feature may also reduce average command latency.
In order to really gain advantage of this feature, devices must have
a reasonable cache size (No miracle is to be expected for a low-end
hard disk with 128 KB or less).
Some known SCSI devices do not properly support tagged command queuing.
Generally, firmware revisions that fix this kind of problems are available
at respective vendor web/ftp sites.
All I can say is that the hard disks I use on my machines behave well with
this driver with tagged command queuing enabled:
- IBM S12 0662
- Conner 1080S
- Quantum Atlas I
- Quantum Atlas II
If your controller has NVRAM, you can configure this feature per target
from the user setup tool. The Tekram Setup program allows to tune the
maximum number of queued commands up to 32. The Symbios Setup only allows
to enable or disable this feature.
The maximum number of simultaneous tagged commands queued to a device
is currently set to 8 by default. This value is suitable for most SCSI
disks. With large SCSI disks (>= 2GB, cache >= 512KB, average seek time
<= 10 ms), using a larger value may give better performances.
The sym53c8xx driver supports up to 255 commands per device, and the
generic ncr53c8xx driver supports up to 64, but using more than 32 is
generally not worth-while, unless you are using a very large disk or disk
array. It is noticeable that most of recent hard disks seem not to accept
more than 64 simultaneous commands. So, using more than 64 queued commands
is probably just resource wasting.
If your controller does not have NVRAM or if it is managed by the SDMS
BIOS/SETUP, you can configure tagged queueing feature and device queue
depths from the boot command-line. For example:
ncr53c8xx=tags:4/t2t3q15-t4q7/t1u0q32
will set tagged commands queue depths as follow:
- target 2 all luns on controller 0 --> 15
- target 3 all luns on controller 0 --> 15
- target 4 all luns on controller 0 --> 7
- target 1 lun 0 on controller 1 --> 32
- all other target/lun --> 4
In some special conditions, some SCSI disk firmwares may return a
QUEUE FULL status for a SCSI command. This behaviour is managed by the
driver using the following heuristic:
- Each time a QUEUE FULL status is returned, tagged queue depth is reduced
to the actual number of disconnected commands.
- Every 1000 successfully completed SCSI commands, if allowed by the
current limit, the maximum number of queueable commands is incremented.
Since QUEUE FULL status reception and handling is resource wasting, the
driver notifies by default this problem to user by indicating the actual
number of commands used and their status, as well as its decision on the
device queue depth change.
The heuristic used by the driver in handling QUEUE FULL ensures that the
impact on performances is not too bad. You can get rid of the messages by
setting verbose level to zero, as follow:
1st method: boot your system using 'ncr53c8xx=verb:0' option.
2nd method: apply "setverbose 0" control command to the proc fs entry
corresponding to your controller after boot-up.
6. Parity checking
The driver supports SCSI parity checking and PCI bus master parity
checking. These features must be enabled in order to ensure safe data
transfers. However, some flawed devices or mother boards will have
problems with parity. You can disable either PCI parity or SCSI parity
checking by entering appropriate options from the boot command line.
(See 10: Boot setup commands).
7. Profiling information
Profiling information is available through the proc SCSI file system.
Since gathering profiling information may impact performances, this
feature is disabled by default and requires a compilation configuration
option to be set to Y.
The device associated with a host has the following pathname:
/proc/scsi/ncr53c8xx/N (N=0,1,2 ....)
Generally, only 1 board is used on hardware configuration, and that device is:
/proc/scsi/ncr53c8xx/0
However, if the driver has been made as module, the number of the
hosts is incremented each time the driver is loaded.
In order to display profiling information, just enter:
cat /proc/scsi/ncr53c8xx/0
and you will get something like the following text:
-------------------------------------------------------
General information:
Chip NCR53C810, device id 0x1, revision id 0x2
IO port address 0x6000, IRQ number 10
Using memory mapped IO at virtual address 0x282c000
Synchronous transfer period 25, max commands per lun 4
Profiling information:
num_trans = 18014
num_kbytes = 671314
num_disc = 25763
num_break = 1673
num_int = 1685
num_fly = 18038
ms_setup = 4940
ms_data = 369940
ms_disc = 183090
ms_post = 1320
-------------------------------------------------------
General information is easy to understand. The device ID and the
revision ID identify the SCSI chip as follows:
Chip Device id Revision Id
---- --------- -----------
810 0x1 < 0x10
810A 0x1 >= 0x10
815 0x4
825 0x3 < 0x10
860 0x6
825A 0x3 >= 0x10
875 0xf
895 0xc
The profiling information is updated upon completion of SCSI commands.
A data structure is allocated and zeroed when the host adapter is
attached. So, if the driver is a module, the profile counters are
cleared each time the driver is loaded. The "clearprof" command
allows you to clear these counters at any time.
The following counters are available:
("num" prefix means "number of",
"ms" means milli-seconds)
num_trans
Number of completed commands
Example above: 18014 completed commands
num_kbytes
Number of kbytes transferred
Example above: 671 MB transferred
num_disc
Number of SCSI disconnections
Example above: 25763 SCSI disconnections
num_break
number of script interruptions (phase mismatch)
Example above: 1673 script interruptions
num_int
Number of interrupts other than "on the fly"
Example above: 1685 interruptions not "on the fly"
num_fly
Number of interrupts "on the fly"
Example above: 18038 interruptions "on the fly"
ms_setup
Elapsed time for SCSI commands setups
Example above: 4.94 seconds
ms_data
Elapsed time for data transfers
Example above: 369.94 seconds spent for data transfer
ms_disc
Elapsed time for SCSI disconnections
Example above: 183.09 seconds spent disconnected
ms_post
Elapsed time for command post processing
(time from SCSI status get to command completion call)
Example above: 1.32 seconds spent for post processing
Due to the 1/100 second tick of the system clock, "ms_post" time may
be wrong.
In the example above, we got 18038 interrupts "on the fly" and only
1673 script breaks generally due to disconnections inside a segment
of the scatter list.
8. Control commands
Control commands can be sent to the driver with write operations to
the proc SCSI file system. The generic command syntax is the
following:
echo "<verb> <parameters>" >/proc/scsi/ncr53c8xx/0
(assumes controller number is 0)
Using "all" for "<target>" parameter with the commands below will
apply to all targets of the SCSI chain (except the controller).
Available commands:
8.1 Set minimum synchronous period factor
setsync <target> <period factor>
target: target number
period: minimum synchronous period.
Maximum speed = 1000/(4*period factor) except for special
cases below.
Specify a period of 255, to force asynchronous transfer mode.
10 means 25 nano-seconds synchronous period
11 means 30 nano-seconds synchronous period
12 means 50 nano-seconds synchronous period
8.2 Set wide size
setwide <target> <size>
target: target number
size: 0=8 bits, 1=16bits
8.3 Set maximum number of concurrent tagged commands
settags <target> <tags>
target: target number
tags: number of concurrent tagged commands
must not be greater than SCSI_NCR_MAX_TAGS (default: 8)
8.4 Set order type for tagged command
setorder <order>
order: 3 possible values:
simple: use SIMPLE TAG for all operations (read and write)
ordered: use ORDERED TAG for all operations
default: use default tag type,
SIMPLE TAG for read operations
ORDERED TAG for write operations
8.5 Set debug mode
setdebug <list of debug flags>
Available debug flags:
alloc: print info about memory allocations (ccb, lcb)
queue: print info about insertions into the command start queue
result: print sense data on CHECK CONDITION status
scatter: print info about the scatter process
scripts: print info about the script binding process
tiny: print minimal debugging information
timing: print timing information of the NCR chip
nego: print information about SCSI negotiations
phase: print information on script interruptions
Use "setdebug" with no argument to reset debug flags.
8.6 Clear profile counters
clearprof
The profile counters are automatically cleared when the amount of
data transferred reaches 1000 GB in order to avoid overflow.
The "clearprof" command allows you to clear these counters at any time.
8.7 Set flag (no_disc)
setflag <target> <flag>
target: target number
For the moment, only one flag is available:
no_disc: not allow target to disconnect.
Do not specify any flag in order to reset the flag. For example:
- setflag 4
will reset no_disc flag for target 4, so will allow it disconnections.
- setflag all
will allow disconnection for all devices on the SCSI bus.
8.8 Set verbose level
setverbose #level
The driver default verbose level is 1. This command allows to change
th driver verbose level after boot-up.
8.9 Reset all logical units of a target
resetdev <target>
target: target number
The driver will try to send a BUS DEVICE RESET message to the target.
(Only supported by the SYM53C8XX driver and provided for test purpose)
8.10 Abort all tasks of all logical units of a target
cleardev <target>
target: target number
The driver will try to send a ABORT message to all the logical units
of the target.
(Only supported by the SYM53C8XX driver and provided for test purpose)
9. Configuration parameters
If the firmware of all your devices is perfect enough, all the
features supported by the driver can be enabled at start-up. However,
if only one has a flaw for some SCSI feature, you can disable the
support by the driver of this feature at linux start-up and enable
this feature after boot-up only for devices that support it safely.
CONFIG_SCSI_NCR53C8XX_IOMAPPED (default answer: n)
Answer "y" if you suspect your mother board to not allow memory mapped I/O.
May slow down performance a little. This option is required by
Linux/PPC and is used no matter what you select here. Linux/PPC
suffers no performance loss with this option since all IO is memory
mapped anyway.
CONFIG_SCSI_NCR53C8XX_DEFAULT_TAGS (default answer: 8)
Default tagged command queue depth.
CONFIG_SCSI_NCR53C8XX_MAX_TAGS (default answer: 8)
This option allows you to specify the maximum number of tagged commands
that can be queued to a device. The maximum supported value is 32.
CONFIG_SCSI_NCR53C8XX_SYNC (default answer: 5)
This option allows you to specify the frequency in MHz the driver
will use at boot time for synchronous data transfer negotiations.
This frequency can be changed later with the "setsync" control command.
0 means "asynchronous data transfers".
CONFIG_SCSI_NCR53C8XX_FORCE_SYNC_NEGO (default answer: n)
Force synchronous negotiation for all SCSI-2 devices.
Some SCSI-2 devices do not report this feature in byte 7 of inquiry
response but do support it properly (TAMARACK scanners for example).
CONFIG_SCSI_NCR53C8XX_NO_DISCONNECT (default and only reasonable answer: n)
If you suspect a device of yours does not properly support disconnections,
you can answer "y". Then, all SCSI devices will never disconnect the bus
even while performing long SCSI operations.
CONFIG_SCSI_NCR53C8XX_SYMBIOS_COMPAT
Genuine SYMBIOS boards use GPIO0 in output for controller LED and GPIO3
bit as a flag indicating singled-ended/differential interface.
If all the boards of your system are genuine SYMBIOS boards or use
BIOS and drivers from SYMBIOS, you would want to enable this option.
This option must NOT be enabled if your system has at least one 53C8XX
based scsi board with a vendor-specific BIOS.
For example, Tekram DC-390/U, DC-390/W and DC-390/F scsi controllers
use a vendor-specific BIOS and are known to not use SYMBIOS compatible
GPIO wiring. So, this option must not be enabled if your system has
such a board installed.
CONFIG_SCSI_NCR53C8XX_NVRAM_DETECT
Enable support for reading the serial NVRAM data on Symbios and
some Symbios compatible cards, and Tekram DC390W/U/F cards. Useful for
systems with more than one Symbios compatible controller where at least
one has a serial NVRAM, or for a system with a mixture of Symbios and
Tekram cards. Enables setting the boot order of host adaptors
to something other than the default order or "reverse probe" order.
Also enables Symbios and Tekram cards to be distinguished so
CONFIG_SCSI_NCR53C8XX_SYMBIOS_COMPAT may be set in a system with a
mixture of Symbios and Tekram cards so the Symbios cards can make use of
the full range of Symbios features, differential, led pin, without
causing problems for the Tekram card(s).
10. Boot setup commands
10.1 Syntax
Setup commands can be passed to the driver either at boot time or as a
string variable using 'insmod'.
A boot setup command for the ncr53c8xx (sym53c8xx) driver begins with the
driver name "ncr53c8xx="(sym53c8xx). The kernel syntax parser then expects
an optional list of integers separated with comma followed by an optional
list of comma-separated strings. Example of boot setup command under lilo
prompt:
lilo: linux root=/dev/hda2 ncr53c8xx=tags:4,sync:10,debug:0x200
- enable tagged commands, up to 4 tagged commands queued.
- set synchronous negotiation speed to 10 Mega-transfers / second.
- set DEBUG_NEGO flag.
Since comma seems not to be allowed when defining a string variable using
'insmod', the driver also accepts <space> as option separator.
The following command will install driver module with the same options as
above.
insmod ncr53c8xx.o ncr53c8xx="tags:4 sync:10 debug:0x200"
For the moment, the integer list of arguments is discarded by the driver.
It will be used in the future in order to allow a per controller setup.
Each string argument must be specified as "keyword:value". Only lower-case
characters and digits are allowed.
In a system that contains multiple 53C8xx adapters insmod will install the
specified driver on each adapter. To exclude a chip use the 'excl' keyword.
The sequence of commands,
insmod sym53c8xx sym53c8xx=excl:0x1400
insmod ncr53c8xx
installs the sym53c8xx driver on all adapters except the one at IO port
address 0x1400 and then installs the ncr53c8xx driver to the adapter at IO
port address 0x1400.
10.2 Available arguments
10.2.1 Master parity checking
mpar:y enabled
mpar:n disabled
10.2.2 Scsi parity checking
spar:y enabled
spar:n disabled
10.2.3 Scsi disconnections
disc:y enabled
disc:n disabled
10.2.4 Special features
Only apply to 810A, 825A, 860, 875 and 895 controllers.
Have no effect with other ones.
specf:y (or 1) enabled
specf:n (or 0) disabled
specf:3 enabled except Memory Write And Invalidate
The default driver setup is 'specf:3'. As a consequence, option 'specf:y'
must be specified in the boot setup command to enable Memory Write And
Invalidate.
10.2.5 Ultra SCSI support
Only apply to 860, 875, 895, 895a, 896, 1010 and 1010_66 controllers.
Have no effect with other ones.
ultra:n All ultra speeds enabled
ultra:2 Ultra2 enabled
ultra:1 Ultra enabled
ultra:0 Ultra speeds disabled
10.2.6 Default number of tagged commands
tags:0 (or tags:1 ) tagged command queuing disabled
tags:#tags (#tags > 1) tagged command queuing enabled
#tags will be truncated to the max queued commands configuration parameter.
This option also allows to specify a command queue depth for each device
that support tagged command queueing.
Example:
ncr53c8xx=tags:10/t2t3q16-t5q24/t1u2q32
will set devices queue depth as follow:
- controller #0 target #2 and target #3 -> 16 commands,
- controller #0 target #5 -> 24 commands,
- controller #1 target #1 logical unit #2 -> 32 commands,
- all other logical units (all targets, all controllers) -> 10 commands.
10.2.7 Default synchronous period factor
sync:255 disabled (asynchronous transfer mode)
sync:#factor
#factor = 10 Ultra-2 SCSI 40 Mega-transfers / second
#factor = 11 Ultra-2 SCSI 33 Mega-transfers / second
#factor < 25 Ultra SCSI 20 Mega-transfers / second
#factor < 50 Fast SCSI-2
In all cases, the driver will use the minimum transfer period supported by
controllers according to NCR53C8XX chip type.
10.2.8 Negotiate synchronous with all devices
(force sync nego)
fsn:y enabled
fsn:n disabled
10.2.9 Verbosity level
verb:0 minimal
verb:1 normal
verb:2 too much
10.2.10 Debug mode
debug:0 clear debug flags
debug:#x set debug flags
#x is an integer value combining the following power-of-2 values:
DEBUG_ALLOC 0x1
DEBUG_PHASE 0x2
DEBUG_POLL 0x4
DEBUG_QUEUE 0x8
DEBUG_RESULT 0x10
DEBUG_SCATTER 0x20
DEBUG_SCRIPT 0x40
DEBUG_TINY 0x80
DEBUG_TIMING 0x100
DEBUG_NEGO 0x200
DEBUG_TAGS 0x400
DEBUG_FREEZE 0x800
DEBUG_RESTART 0x1000
You can play safely with DEBUG_NEGO. However, some of these flags may
generate bunches of syslog messages.
10.2.11 Burst max
burst:0 burst disabled
burst:255 get burst length from initial IO register settings.
burst:#x burst enabled (1<<#x burst transfers max)
#x is an integer value which is log base 2 of the burst transfers max.
The NCR53C875 and NCR53C825A support up to 128 burst transfers (#x = 7).
Other chips only support up to 16 (#x = 4).
This is a maximum value. The driver set the burst length according to chip
and revision ids. By default the driver uses the maximum value supported
by the chip.
10.2.12 LED support
led:1 enable LED support
led:0 disable LED support
Donnot enable LED support if your scsi board does not use SDMS BIOS.
(See 'Configuration parameters')
10.2.13 Max wide
wide:1 wide scsi enabled
wide:0 wide scsi disabled
Some scsi boards use a 875 (ultra wide) and only supply narrow connectors.
If you have connected a wide device with a 50 pins to 68 pins cable
converter, any accepted wide negotiation will break further data transfers.
In such a case, using "wide:0" in the bootup command will be helpful.
10.2.14 Differential mode
diff:0 never set up diff mode
diff:1 set up diff mode if BIOS set it
diff:2 always set up diff mode
diff:3 set diff mode if GPIO3 is not set
10.2.15 IRQ mode
irqm:0 always open drain
irqm:1 same as initial settings (assumed BIOS settings)
irqm:2 always totem pole
irqm:0x10 driver will not use IRQF_SHARED flag when requesting irq
irqm:0x20 driver will not use IRQF_DISABLED flag when requesting irq
(Bits 0x10 and 0x20 can be combined with hardware irq mode option)
10.2.16 Reverse probe
revprob:n probe chip ids from the PCI configuration in this order:
810, 815, 820, 860, 875, 885, 895, 896
revprob:y probe chip ids in the reverse order.
10.2.17 Fix up PCI configuration space
pcifix:<option bits>
Available option bits:
0x0: No attempt to fix PCI configuration space registers values.
0x1: Set PCI cache-line size register if not set.
0x2: Set write and invalidate bit in PCI command register.
0x4: Increase if necessary PCI latency timer according to burst max.
Use 'pcifix:7' in order to allow the driver to fix up all PCI features.
10.2.18 Serial NVRAM
nvram:n do not look for serial NVRAM
nvram:y test controllers for onboard serial NVRAM
(alternate binary form)
mvram=<bits options>
0x01 look for NVRAM (equivalent to nvram=y)
0x02 ignore NVRAM "Synchronous negotiation" parameters for all devices
0x04 ignore NVRAM "Wide negotiation" parameter for all devices
0x08 ignore NVRAM "Scan at boot time" parameter for all devices
0x80 also attach controllers set to OFF in the NVRAM (sym53c8xx only)
10.2.19 Check SCSI BUS
buschk:<option bits>
Available option bits:
0x0: No check.
0x1: Check and do not attach the controller on error.
0x2: Check and just warn on error.
0x4: Disable SCSI bus integrity checking.
10.2.20 Exclude a host from being attached
excl=<io_address>
Prevent host at a given io address from being attached.
For example 'ncr53c8xx=excl:0xb400,excl:0xc000' indicate to the
ncr53c8xx driver not to attach hosts at address 0xb400 and 0xc000.
10.2.21 Suggest a default SCSI id for hosts
hostid:255 no id suggested.
hostid:#x (0 < x < 7) x suggested for hosts SCSI id.
If a host SCSI id is available from the NVRAM, the driver will ignore
any value suggested as boot option. Otherwise, if a suggested value
different from 255 has been supplied, it will use it. Otherwise, it will
try to deduce the value previously set in the hardware and use value
7 if the hardware value is zero.
10.2.22 Enable use of IMMEDIATE ARBITRATION
(only supported by the sym53c8xx driver. See 10.7 for more details)
iarb:0 do not use this feature.
iarb:#x use this feature according to bit fields as follow:
bit 0 (1) : enable IARB each time the initiator has been reselected
when it arbitrated for the SCSI BUS.
(#x >> 4) : maximum number of successive settings of IARB if the initiator
win arbitration and it has other commands to send to a device.
Boot fail safe
safe:y load the following assumed fail safe initial setup
master parity disabled mpar:n
scsi parity enabled spar:y
disconnections not allowed disc:n
special features disabled specf:n
ultra scsi disabled ultra:n
force sync negotiation disabled fsn:n
reverse probe disabled revprob:n
PCI fix up disabled pcifix:0
serial NVRAM enabled nvram:y
verbosity level 2 verb:2
tagged command queuing disabled tags:0
synchronous negotiation disabled sync:255
debug flags none debug:0
burst length from BIOS settings burst:255
LED support disabled led:0
wide support disabled wide:0
settle time 10 seconds settle:10
differential support from BIOS settings diff:1
irq mode from BIOS settings irqm:1
SCSI BUS check do not attach on error buschk:1
immediate arbitration disabled iarb:0
10.3 Advised boot setup commands
If the driver has been configured with default options, the equivalent
boot setup is:
ncr53c8xx=mpar:y,spar:y,disc:y,specf:3,fsn:n,ultra:2,fsn:n,revprob:n,verb:1\
tags:0,sync:50,debug:0,burst:7,led:0,wide:1,settle:2,diff:0,irqm:0
For an installation diskette or a safe but not fast system,
boot setup can be:
ncr53c8xx=safe:y,mpar:y,disc:y
ncr53c8xx=safe:y,disc:y
ncr53c8xx=safe:y,mpar:y
ncr53c8xx=safe:y
My personal system works flawlessly with the following equivalent setup:
ncr53c8xx=mpar:y,spar:y,disc:y,specf:1,fsn:n,ultra:2,fsn:n,revprob:n,verb:1\
tags:32,sync:12,debug:0,burst:7,led:1,wide:1,settle:2,diff:0,irqm:0
The driver prints its actual setup when verbosity level is 2. You can try
"ncr53c8xx=verb:2" to get the "static" setup of the driver, or add "verb:2"
to your boot setup command in order to check the actual setup the driver is
using.
10.4 PCI configuration fix-up boot option
pcifix:<option bits>
Available option bits:
0x1: Set PCI cache-line size register if not set.
0x2: Set write and invalidate bit in PCI command register.
Use 'pcifix:3' in order to allow the driver to fix both PCI features.
These options only apply to new SYMBIOS chips 810A, 825A, 860, 875
and 895 and are only supported for Pentium and 486 class processors.
Recent SYMBIOS 53C8XX scsi processors are able to use PCI read multiple
and PCI write and invalidate commands. These features require the
cache line size register to be properly set in the PCI configuration
space of the chips. On the other hand, chips will use PCI write and
invalidate commands only if the corresponding bit is set to 1 in the
PCI command register.
Not all PCI bioses set the PCI cache line register and the PCI write and
invalidate bit in the PCI configuration space of 53C8XX chips.
Optimized PCI accesses may be broken for some PCI/memory controllers or
make problems with some PCI boards.
This fix-up worked flawlessly on my previous system.
(MB Triton HX / 53C875 / 53C810A)
I use these options at my own risks as you will do if you decide to
use them too.
10.5 Serial NVRAM support boot option
nvram:n do not look for serial NVRAM
nvram:y test controllers for onboard serial NVRAM
This option can also been entered as an hexadecimal value that allows
to control what information the driver will get from the NVRAM and what
information it will ignore.
For details see '17. Serial NVRAM support'.
When this option is enabled, the driver tries to detect all boards using
a Serial NVRAM. This memory is used to hold user set up parameters.
The parameters the driver is able to get from the NVRAM depend on the
data format used, as follow:
Tekram format Symbios format
General and host parameters
Boot order N Y
Host SCSI ID Y Y
SCSI parity checking Y Y
Verbose boot messages N Y
SCSI devices parameters
Synchronous transfer speed Y Y
Wide 16 / Narrow Y Y
Tagged Command Queuing enabled Y Y
Disconnections enabled Y Y
Scan at boot time N Y
In order to speed up the system boot, for each device configured without
the "scan at boot time" option, the driver forces an error on the
first TEST UNIT READY command received for this device.
Some SDMS BIOS revisions seem to be unable to boot cleanly with very fast
hard disks. In such a situation you cannot configure the NVRAM with
optimized parameters value.
The 'nvram' boot option can be entered in hexadecimal form in order
to ignore some options configured in the NVRAM, as follow:
mvram=<bits options>
0x01 look for NVRAM (equivalent to nvram=y)
0x02 ignore NVRAM "Synchronous negotiation" parameters for all devices
0x04 ignore NVRAM "Wide negotiation" parameter for all devices
0x08 ignore NVRAM "Scan at boot time" parameter for all devices
0x80 also attach controllers set to OFF in the NVRAM (sym53c8xx only)
Option 0x80 is only supported by the sym53c8xx driver and is disabled by
default. Result is that, by default (option not set), the sym53c8xx driver
will not attach controllers set to OFF in the NVRAM.
The ncr53c8xx always tries to attach all the controllers. Option 0x80 has
not been added to the ncr53c8xx driver, since it has been reported to
confuse users who use this driver since a long time. If you desire a
controller not to be attached by the ncr53c8xx driver at Linux boot, you
must use the 'excl' driver boot option.
10.6 SCSI BUS checking boot option.
When this option is set to a non-zero value, the driver checks SCSI lines
logic state, 100 micro-seconds after having asserted the SCSI RESET line.
The driver just reads SCSI lines and checks all lines read FALSE except RESET.
Since SCSI devices shall release the BUS at most 800 nano-seconds after SCSI
RESET has been asserted, any signal to TRUE may indicate a SCSI BUS problem.
Unfortunately, the following common SCSI BUS problems are not detected:
- Only 1 terminator installed.
- Misplaced terminators.
- Bad quality terminators.
On the other hand, either bad cabling, broken devices, not conformant
devices, ... may cause a SCSI signal to be wrong when te driver reads it.
10.7 IMMEDIATE ARBITRATION boot option
This option is only supported by the SYM53C8XX driver (not by the NCR53C8XX).
SYMBIOS 53C8XX chips are able to arbitrate for the SCSI BUS as soon as they
have detected an expected disconnection (BUS FREE PHASE). For this process
to be started, bit 1 of SCNTL1 IO register must be set when the chip is
connected to the SCSI BUS.
When this feature has been enabled for the current connection, the chip has
every chance to win arbitration if only devices with lower priority are
competing for the SCSI BUS. By the way, when the chip is using SCSI id 7,
then it will for sure win the next SCSI BUS arbitration.
Since, there is no way to know what devices are trying to arbitrate for the
BUS, using this feature can be extremely unfair. So, you are not advised
to enable it, or at most enable this feature for the case the chip lost
the previous arbitration (boot option 'iarb:1').
This feature has the following advantages:
a) Allow the initiator with ID 7 to win arbitration when it wants so.
b) Overlap at least 4 micro-seconds of arbitration time with the execution
of SCRIPTS that deal with the end of the current connection and that
starts the next job.
Hmmm... But (a) may just prevent other devices from reselecting the initiator,
and delay data transfers or status/completions, and (b) may just waste
SCSI BUS bandwidth if the SCRIPTS execution lasts more than 4 micro-seconds.
The use of IARB needs the SCSI_NCR_IARB_SUPPORT option to have been defined
at compile time and the 'iarb' boot option to have been set to a non zero
value at boot time. It is not that useful for real work, but can be used
to stress SCSI devices or for some applications that can gain advantage of
it. By the way, if you experience badnesses like 'unexpected disconnections',
'bad reselections', etc... when using IARB on heavy IO load, you should not
be surprised, because force-feeding anything and blocking its arse at the
same time cannot work for a long time. :-))
11. Some constants and flags of the ncr53c8xx.h header file
Some of these are defined from the configuration parameters. To
change other "defines", you must edit the header file. Do that only
if you know what you are doing.
SCSI_NCR_SETUP_SPECIAL_FEATURES (default: defined)
If defined, the driver will enable some special features according
to chip and revision id.
For 810A, 860, 825A, 875 and 895 scsi chips, this option enables
support of features that reduce load of PCI bus and memory accesses
during scsi transfer processing: burst op-code fetch, read multiple,
read line, prefetch, cache line, write and invalidate,
burst 128 (875 only), large dma fifo (875 only), offset 16 (875 only).
Can be changed by the following boot setup command:
ncr53c8xx=specf:n
SCSI_NCR_IOMAPPED (default: not defined)
If defined, normal I/O is forced.
SCSI_NCR_SHARE_IRQ (default: defined)
If defined, request shared IRQ.
SCSI_NCR_MAX_TAGS (default: 8)
Maximum number of simultaneous tagged commands to a device.
Can be changed by "settags <target> <maxtags>"
SCSI_NCR_SETUP_DEFAULT_SYNC (default: 50)
Transfer period factor the driver will use at boot time for synchronous
negotiation. 0 means asynchronous.
Can be changed by "setsync <target> <period factor>"
SCSI_NCR_SETUP_DEFAULT_TAGS (default: 8)
Default number of simultaneous tagged commands to a device.
< 1 means tagged command queuing disabled at start-up.
SCSI_NCR_ALWAYS_SIMPLE_TAG (default: defined)
Use SIMPLE TAG for read and write commands.
Can be changed by "setorder <ordered|simple|default>"
SCSI_NCR_SETUP_DISCONNECTION (default: defined)
If defined, targets are allowed to disconnect.
SCSI_NCR_SETUP_FORCE_SYNC_NEGO (default: not defined)
If defined, synchronous negotiation is tried for all SCSI-2 devices.
Can be changed by "setsync <target> <period>"
SCSI_NCR_SETUP_MASTER_PARITY (default: defined)
If defined, master parity checking is enabled.
SCSI_NCR_SETUP_MASTER_PARITY (default: defined)
If defined, SCSI parity checking is enabled.
SCSI_NCR_PROFILE_SUPPORT (default: not defined)
If defined, profiling information is gathered.
SCSI_NCR_MAX_SCATTER (default: 128)
Scatter list size of the driver ccb.
SCSI_NCR_MAX_TARGET (default: 16)
Max number of targets per host.
SCSI_NCR_MAX_HOST (default: 2)
Max number of host controllers.
SCSI_NCR_SETTLE_TIME (default: 2)
Number of seconds the driver will wait after reset.
SCSI_NCR_TIMEOUT_ALERT (default: 3)
If a pending command will time out after this amount of seconds,
an ordered tag is used for the next command.
Avoids timeouts for unordered tagged commands.
SCSI_NCR_CAN_QUEUE (default: 7*SCSI_NCR_MAX_TAGS)
Max number of commands that can be queued to a host.
SCSI_NCR_CMD_PER_LUN (default: SCSI_NCR_MAX_TAGS)
Max number of commands queued to a host for a device.
SCSI_NCR_SG_TABLESIZE (default: SCSI_NCR_MAX_SCATTER-1)
Max size of the Linux scatter/gather list.
SCSI_NCR_MAX_LUN (default: 8)
Max number of LUNs per target.
12. Installation
This driver is part of the linux kernel distribution.
Driver files are located in the sub-directory "drivers/scsi" of the
kernel source tree.
Driver files:
README.ncr53c8xx : this file
ChangeLog.ncr53c8xx : change log
ncr53c8xx.h : definitions
ncr53c8xx.c : the driver code
New driver versions are made available separately in order to allow testing
changes and new features prior to including them into the linux kernel
distribution. The following URL provides information on latest available
patches:
ftp://ftp.tux.org/pub/people/gerard-roudier/README
13. Architecture dependent features.
<Not yet written>
14. Known problems
14.1 Tagged commands with Iomega Jaz device
I have not tried this device, however it has been reported to me the
following: This device is capable of Tagged command queuing. However
while spinning up, it rejects Tagged commands. This behaviour is
conforms to 6.8.2 of SCSI-2 specifications. The current behaviour of
the driver in that situation is not satisfying. So do not enable
Tagged command queuing for devices that are able to spin down. The
other problem that may appear is timeouts. The only way to avoid
timeouts seems to edit linux/drivers/scsi/sd.c and to increase the
current timeout values.
14.2 Device names change when another controller is added.
When you add a new NCR53C8XX chip based controller to a system that already
has one or more controllers of this family, it may happen that the order
the driver registers them to the kernel causes problems due to device
name changes.
When at least one controller uses NvRAM, SDMS BIOS version 4 allows you to
define the order the BIOS will scan the scsi boards. The driver attaches
controllers according to BIOS information if NvRAM detect option is set.
If your controllers do not have NvRAM, you can:
- Ask the driver to probe chip ids in reverse order from the boot command
line: ncr53c8xx=revprob:y
- Make appropriate changes in the fstab.
- Use the 'scsidev' tool from Eric Youngdale.
14.3 Using only 8 bit devices with a WIDE SCSI controller.
When only 8 bit NARROW devices are connected to a 16 bit WIDE SCSI controller,
you must ensure that lines of the wide part of the SCSI BUS are pulled-up.
This can be achieved by ENABLING the WIDE TERMINATOR portion of the SCSI
controller card.
The TYAN 1365 documentation revision 1.2 is not correct about such settings.
(page 10, figure 3.3).
14.4 Possible data corruption during a Memory Write and Invalidate
This problem is described in SYMBIOS DEL 397, Part Number 69-039241, ITEM 4.
In some complex situations, 53C875 chips revision <= 3 may start a PCI
Write and Invalidate Command at a not cache-line-aligned 4 DWORDS boundary.
This is only possible when Cache Line Size is 8 DWORDS or greater.
Pentium systems use a 8 DWORDS cache line size and so are concerned by
this chip bug, unlike i486 systems that use a 4 DWORDS cache line size.
When this situation occurs, the chip may complete the Write and Invalidate
command after having only filled part of the last cache line involved in
the transfer, leaving to data corruption the remainder of this cache line.
Not using Write And Invalidate obviously gets rid of this chip bug, and so
it is now the default setting of the driver.
However, for people like me who want to enable this feature, I have added
part of a work-around suggested by SYMBIOS. This work-around resets the
addressing logic when the DATA IN phase is entered and so prevents the bug
from being triggered for the first SCSI MOVE of the phase. This work-around
should be enough according to the following:
The only driver internal data structure that is greater than 8 DWORDS and
that is moved by the SCRIPTS processor is the 'CCB header' that contains
the context of the SCSI transfer. This data structure is aligned on 8 DWORDS
boundary (Pentium Cache Line Size), and so is immune to this chip bug, at
least on Pentium systems.
But the conditions of this bug can be met when a SCSI read command is
performed using a buffer that is 4 DWORDS but not cache-line aligned.
This cannot happen under Linux when scatter/gather lists are used since
they only refer to system buffers that are well aligned. So, a work around
may only be needed under Linux when a scatter/gather list is not used and
when the SCSI DATA IN phase is reentered after a phase mismatch.
14.5 IRQ sharing problems
When an IRQ is shared by devices that are handled by different drivers, it
may happen that one driver complains about the request of the IRQ having
failed. Inder Linux-2.0, this may be due to one driver having requested the
IRQ using the IRQF_DISABLED flag but some other having requested the same IRQ
without this flag. Under both Linux-2.0 and linux-2.2, this may be caused by
one driver not having requested the IRQ with the IRQF_SHARED flag.
By default, the ncr53c8xx and sym53c8xx drivers request IRQs with both the
IRQF_DISABLED and the IRQF_SHARED flag under Linux-2.0 and with only the IRQF_SHARED
flag under Linux-2.2.
Under Linux-2.0, you can disable use of IRQF_DISABLED flag from the boot
command line by using the following option:
ncr53c8xx=irqm:0x20 (for the generic ncr53c8xx driver)
sym53c8xx=irqm:0x20 (for the sym53c8xx driver)
If this does not fix the problem, then you may want to check how all other
drivers are requesting the IRQ and report the problem. Note that if at least
a single driver does not request the IRQ with the IRQF_SHARED flag (share IRQ),
then the request of the IRQ obviously will not succeed for all the drivers.
15. SCSI problem troubleshooting
15.1 Problem tracking
Most SCSI problems are due to a non conformant SCSI bus or to buggy
devices. If unfortunately you have SCSI problems, you can check the
following things:
- SCSI bus cables
- terminations at both end of the SCSI chain
- linux syslog messages (some of them may help you)
If you do not find the source of problems, you can configure the
driver with no features enabled.
- only asynchronous data transfers
- tagged commands disabled
- disconnections not allowed
Now, if your SCSI bus is ok, your system have every chance to work
with this safe configuration but performances will not be optimal.
If it still fails, then you can send your problem description to
appropriate mailing lists or news-groups. Send me a copy in order to
be sure I will receive it. Obviously, a bug in the driver code is
possible.
My email address: Gerard Roudier <groudier@free.fr>
Allowing disconnections is important if you use several devices on
your SCSI bus but often causes problems with buggy devices.
Synchronous data transfers increases throughput of fast devices like
hard disks. Good SCSI hard disks with a large cache gain advantage of
tagged commands queuing.
Try to enable one feature at a time with control commands. For example:
- echo "setsync all 25" >/proc/scsi/ncr53c8xx/0
Will enable fast synchronous data transfer negotiation for all targets.
- echo "setflag 3" >/proc/scsi/ncr53c8xx/0
Will reset flags (no_disc) for target 3, and so will allow it to disconnect
the SCSI Bus.
- echo "settags 3 8" >/proc/scsi/ncr53c8xx/0
Will enable tagged command queuing for target 3 if that device supports it.
Once you have found the device and the feature that cause problems, just
disable that feature for that device.
15.2 Understanding hardware error reports
When the driver detects an unexpected error condition, it may display a
message of the following pattern.
sym53c876-0:1: ERROR (0:48) (1-21-65) (f/95) @ (script 7c0:19000000).
sym53c876-0: script cmd = 19000000
sym53c876-0: regdump: da 10 80 95 47 0f 01 07 75 01 81 21 80 01 09 00.
Some fields in such a message may help you understand the cause of the
problem, as follows:
sym53c876-0:1: ERROR (0:48) (1-21-65) (f/95) @ (script 7c0:19000000).
............A.........B.C....D.E..F....G.H.......I.....J...K.......
Field A : target number.
SCSI ID of the device the controller was talking with at the moment the
error occurs.
Field B : DSTAT io register (DMA STATUS)
Bit 0x40 : MDPE Master Data Parity Error
Data parity error detected on the PCI BUS.
Bit 0x20 : BF Bus Fault
PCI bus fault condition detected
Bit 0x01 : IID Illegal Instruction Detected
Set by the chip when it detects an Illegal Instruction format
on some condition that makes an instruction illegal.
Bit 0x80 : DFE Dma Fifo Empty
Pure status bit that does not indicate an error.
If the reported DSTAT value contains a combination of MDPE (0x40),
BF (0x20), then the cause may be likely due to a PCI BUS problem.
Field C : SIST io register (SCSI Interrupt Status)
Bit 0x08 : SGE SCSI GROSS ERROR
Indicates that the chip detected a severe error condition
on the SCSI BUS that prevents the SCSI protocol from functioning
properly.
Bit 0x04 : UDC Unexpected Disconnection
Indicates that the device released the SCSI BUS when the chip
was not expecting this to happen. A device may behave so to
indicate the SCSI initiator that an error condition not reportable using the SCSI protocol has occurred.
Bit 0x02 : RST SCSI BUS Reset
Generally SCSI targets do not reset the SCSI BUS, although any
device on the BUS can reset it at any time.
Bit 0x01 : PAR Parity
SCSI parity error detected.
On a faulty SCSI BUS, any error condition among SGE (0x08), UDC (0x04) and
PAR (0x01) may be detected by the chip. If your SCSI system sometimes
encounters such error conditions, especially SCSI GROSS ERROR, then a SCSI
BUS problem is likely the cause of these errors.
For fields D,E,F,G and H, you may look into the sym53c8xx_defs.h file
that contains some minimal comments on IO register bits.
Field D : SOCL Scsi Output Control Latch
This register reflects the state of the SCSI control lines the
chip want to drive or compare against.
Field E : SBCL Scsi Bus Control Lines
Actual value of control lines on the SCSI BUS.
Field F : SBDL Scsi Bus Data Lines
Actual value of data lines on the SCSI BUS.
Field G : SXFER SCSI Transfer
Contains the setting of the Synchronous Period for output and
the current Synchronous offset (offset 0 means asynchronous).
Field H : SCNTL3 Scsi Control Register 3
Contains the setting of timing values for both asynchronous and
synchronous data transfers.
Understanding Fields I, J, K and dumps requires to have good knowledge of
SCSI standards, chip cores functionnals and internal driver data structures.
You are not required to decode and understand them, unless you want to help
maintain the driver code.
16. Synchronous transfer negotiation tables
Tables below have been created by calling the routine the driver uses
for synchronisation negotiation timing calculation and chip setting.
The first table corresponds to Ultra chips 53875 and 53C860 with 80 MHz
clock and 5 clock divisors.
The second one has been calculated by setting the scsi clock to 40 Mhz
and using 4 clock divisors and so applies to all NCR53C8XX chips in fast
SCSI-2 mode.
Periods are in nano-seconds and speeds are in Mega-transfers per second.
1 Mega-transfers/second means 1 MB/s with 8 bits SCSI and 2 MB/s with
Wide16 SCSI.
16.1 Synchronous timings for 53C895, 53C875 and 53C860 SCSI controllers
----------------------------------------------
Negotiated NCR settings
Factor Period Speed Period Speed
------ ------ ------ ------ ------
10 25 40.000 25 40.000 (53C895 only)
11 30.2 33.112 31.25 32.000 (53C895 only)
12 50 20.000 50 20.000
13 52 19.230 62 16.000
14 56 17.857 62 16.000
15 60 16.666 62 16.000
16 64 15.625 75 13.333
17 68 14.705 75 13.333
18 72 13.888 75 13.333
19 76 13.157 87 11.428
20 80 12.500 87 11.428
21 84 11.904 87 11.428
22 88 11.363 93 10.666
23 92 10.869 93 10.666
24 96 10.416 100 10.000
25 100 10.000 100 10.000
26 104 9.615 112 8.888
27 108 9.259 112 8.888
28 112 8.928 112 8.888
29 116 8.620 125 8.000
30 120 8.333 125 8.000
31 124 8.064 125 8.000
32 128 7.812 131 7.619
33 132 7.575 150 6.666
34 136 7.352 150 6.666
35 140 7.142 150 6.666
36 144 6.944 150 6.666
37 148 6.756 150 6.666
38 152 6.578 175 5.714
39 156 6.410 175 5.714
40 160 6.250 175 5.714
41 164 6.097 175 5.714
42 168 5.952 175 5.714
43 172 5.813 175 5.714
44 176 5.681 187 5.333
45 180 5.555 187 5.333
46 184 5.434 187 5.333
47 188 5.319 200 5.000
48 192 5.208 200 5.000
49 196 5.102 200 5.000
16.2 Synchronous timings for fast SCSI-2 53C8XX controllers
----------------------------------------------
Negotiated NCR settings
Factor Period Speed Period Speed
------ ------ ------ ------ ------
25 100 10.000 100 10.000
26 104 9.615 125 8.000
27 108 9.259 125 8.000
28 112 8.928 125 8.000
29 116 8.620 125 8.000
30 120 8.333 125 8.000
31 124 8.064 125 8.000
32 128 7.812 131 7.619
33 132 7.575 150 6.666
34 136 7.352 150 6.666
35 140 7.142 150 6.666
36 144 6.944 150 6.666
37 148 6.756 150 6.666
38 152 6.578 175 5.714
39 156 6.410 175 5.714
40 160 6.250 175 5.714
41 164 6.097 175 5.714
42 168 5.952 175 5.714
43 172 5.813 175 5.714
44 176 5.681 187 5.333
45 180 5.555 187 5.333
46 184 5.434 187 5.333
47 188 5.319 200 5.000
48 192 5.208 200 5.000
49 196 5.102 200 5.000
17. Serial NVRAM (added by Richard Waltham: dormouse@farsrobt.demon.co.uk)
17.1 Features
Enabling serial NVRAM support enables detection of the serial NVRAM included
on Symbios and some Symbios compatible host adaptors, and Tekram boards. The
serial NVRAM is used by Symbios and Tekram to hold set up parameters for the
host adaptor and its attached drives.
The Symbios NVRAM also holds data on the boot order of host adaptors in a
system with more than one host adaptor. This enables the order of scanning
the cards for drives to be changed from the default used during host adaptor
detection.
This can be done to a limited extent at the moment using "reverse probe" but
this only changes the order of detection of different types of cards. The
NVRAM boot order settings can do this as well as change the order the same
types of cards are scanned in, something "reverse probe" cannot do.
Tekram boards using Symbios chips, DC390W/F/U, which have NVRAM are detected
and this is used to distinguish between Symbios compatible and Tekram host
adaptors. This is used to disable the Symbios compatible "diff" setting
incorrectly set on Tekram boards if the CONFIG_SCSI_53C8XX_SYMBIOS_COMPAT
configuration parameter is set enabling both Symbios and Tekram boards to be
used together with the Symbios cards using all their features, including
"diff" support. ("led pin" support for Symbios compatible cards can remain
enabled when using Tekram cards. It does nothing useful for Tekram host
adaptors but does not cause problems either.)
17.2 Symbios NVRAM layout
typical data at NVRAM address 0x100 (53c810a NVRAM)
-----------------------------------------------------------
00 00
64 01
8e 0b
00 30 00 00 00 00 07 00 00 00 00 00 00 00 07 04 10 04 00 00
04 00 0f 00 00 10 00 50 00 00 01 00 00 62
04 00 03 00 00 10 00 58 00 00 01 00 00 63
04 00 01 00 00 10 00 48 00 00 01 00 00 61
00 00 00 00 00 00 00 00 00 00 00 00 00 00
0f 00 08 08 64 00 0a 00
0f 00 08 08 64 00 0a 00
0f 00 08 08 64 00 0a 00
0f 00 08 08 64 00 0a 00
0f 00 08 08 64 00 0a 00
0f 00 08 08 64 00 0a 00
0f 00 08 08 64 00 0a 00
0f 00 08 08 64 00 0a 00
0f 00 08 08 64 00 0a 00
0f 00 08 08 64 00 0a 00
0f 00 08 08 64 00 0a 00
0f 00 08 08 64 00 0a 00
0f 00 08 08 64 00 0a 00
0f 00 08 08 64 00 0a 00
0f 00 08 08 64 00 0a 00
0f 00 08 08 64 00 0a 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
fe fe
00 00
00 00
-----------------------------------------------------------
NVRAM layout details
NVRAM Address 0x000-0x0ff not used
0x100-0x26f initialised data
0x270-0x7ff not used
general layout
header - 6 bytes,
data - 356 bytes (checksum is byte sum of this data)
trailer - 6 bytes
---
total 368 bytes
data area layout
controller set up - 20 bytes
boot configuration - 56 bytes (4x14 bytes)
device set up - 128 bytes (16x8 bytes)
unused (spare?) - 152 bytes (19x8 bytes)
---
total 356 bytes
-----------------------------------------------------------
header
00 00 - ?? start marker
64 01 - byte count (lsb/msb excludes header/trailer)
8e 0b - checksum (lsb/msb excludes header/trailer)
-----------------------------------------------------------
controller set up
00 30 00 00 00 00 07 00 00 00 00 00 00 00 07 04 10 04 00 00
| | | |
| | | -- host ID
| | |
| | --Removable Media Support
| | 0x00 = none
| | 0x01 = Bootable Device
| | 0x02 = All with Media
| |
| --flag bits 2
| 0x00000001= scan order hi->low
| (default 0x00 - scan low->hi)
--flag bits 1
0x00000001 scam enable
0x00000010 parity enable
0x00000100 verbose boot msgs
remaining bytes unknown - they do not appear to change in my
current set up for any of the controllers.
default set up is identical for 53c810a and 53c875 NVRAM
(Removable Media added Symbios BIOS version 4.09)
-----------------------------------------------------------
boot configuration
boot order set by order of the devices in this table
04 00 0f 00 00 10 00 50 00 00 01 00 00 62 -- 1st controller
04 00 03 00 00 10 00 58 00 00 01 00 00 63 2nd controller
04 00 01 00 00 10 00 48 00 00 01 00 00 61 3rd controller
00 00 00 00 00 00 00 00 00 00 00 00 00 00 4th controller
| | | | | | | |
| | | | | | ---- PCI io port adr
| | | | | --0x01 init/scan at boot time
| | | | --PCI device/function number (0xdddddfff)
| | ----- ?? PCI vendor ID (lsb/msb)
----PCI device ID (lsb/msb)
?? use of this data is a guess but seems reasonable
remaining bytes unknown - they do not appear to change in my
current set up
default set up is identical for 53c810a and 53c875 NVRAM
-----------------------------------------------------------
device set up (up to 16 devices - includes controller)
0f 00 08 08 64 00 0a 00 - id 0
0f 00 08 08 64 00 0a 00
0f 00 08 08 64 00 0a 00
0f 00 08 08 64 00 0a 00
0f 00 08 08 64 00 0a 00
0f 00 08 08 64 00 0a 00
0f 00 08 08 64 00 0a 00
0f 00 08 08 64 00 0a 00
0f 00 08 08 64 00 0a 00
0f 00 08 08 64 00 0a 00
0f 00 08 08 64 00 0a 00
0f 00 08 08 64 00 0a 00
0f 00 08 08 64 00 0a 00
0f 00 08 08 64 00 0a 00
0f 00 08 08 64 00 0a 00
0f 00 08 08 64 00 0a 00 - id 15
| | | | | |
| | | | ----timeout (lsb/msb)
| | | --synch period (0x?? 40 Mtrans/sec- fast 40) (probably 0x28)
| | | (0x30 20 Mtrans/sec- fast 20)
| | | (0x64 10 Mtrans/sec- fast )
| | | (0xc8 5 Mtrans/sec)
| | | (0x00 asynchronous)
| | -- ?? max sync offset (0x08 in NVRAM on 53c810a)
| | (0x10 in NVRAM on 53c875)
| --device bus width (0x08 narrow)
| (0x10 16 bit wide)
--flag bits
0x00000001 - disconnect enabled
0x00000010 - scan at boot time
0x00000100 - scan luns
0x00001000 - queue tags enabled
remaining bytes unknown - they do not appear to change in my
current set up
?? use of this data is a guess but seems reasonable
(but it could be max bus width)
default set up for 53c810a NVRAM
default set up for 53c875 NVRAM - bus width - 0x10
- sync offset ? - 0x10
- sync period - 0x30
-----------------------------------------------------------
?? spare device space (32 bit bus ??)
00 00 00 00 00 00 00 00 (19x8bytes)
.
.
00 00 00 00 00 00 00 00
default set up is identical for 53c810a and 53c875 NVRAM
-----------------------------------------------------------
trailer
fe fe - ? end marker ?
00 00
00 00
default set up is identical for 53c810a and 53c875 NVRAM
-----------------------------------------------------------
17.3 Tekram NVRAM layout
nvram 64x16 (1024 bit)
Drive settings
Drive ID 0-15 (addr 0x0yyyy0 = device setup, yyyy = ID)
(addr 0x0yyyy1 = 0x0000)
x x x x x x x x x x x x x x x x
| | | | | | | | |
| | | | | | | | ----- parity check 0 - off
| | | | | | | | 1 - on
| | | | | | | |
| | | | | | | ------- sync neg 0 - off
| | | | | | | 1 - on
| | | | | | |
| | | | | | --------- disconnect 0 - off
| | | | | | 1 - on
| | | | | |
| | | | | ----------- start cmd 0 - off
| | | | | 1 - on
| | | | |
| | | | -------------- tagged cmds 0 - off
| | | | 1 - on
| | | |
| | | ---------------- wide neg 0 - off
| | | 1 - on
| | |
--------------------------- sync rate 0 - 10.0 Mtrans/sec
1 - 8.0
2 - 6.6
3 - 5.7
4 - 5.0
5 - 4.0
6 - 3.0
7 - 2.0
7 - 2.0
8 - 20.0
9 - 16.7
a - 13.9
b - 11.9
Global settings
Host flags 0 (addr 0x100000, 32)
x x x x x x x x x x x x x x x x
| | | | | | | | | | | |
| | | | | | | | ----------- host ID 0x00 - 0x0f
| | | | | | | |
| | | | | | | ----------------------- support for 0 - off
| | | | | | | > 2 drives 1 - on
| | | | | | |
| | | | | | ------------------------- support drives 0 - off
| | | | | | > 1Gbytes 1 - on
| | | | | |
| | | | | --------------------------- bus reset on 0 - off
| | | | | power on 1 - on
| | | | |
| | | | ----------------------------- active neg 0 - off
| | | | 1 - on
| | | |
| | | -------------------------------- imm seek 0 - off
| | | 1 - on
| | |
| | ---------------------------------- scan luns 0 - off
| | 1 - on
| |
-------------------------------------- removable 0 - disable
as BIOS dev 1 - boot device
2 - all
Host flags 1 (addr 0x100001, 33)
x x x x x x x x x x x x x x x x
| | | | | |
| | | --------- boot delay 0 - 3 sec
| | | 1 - 5
| | | 2 - 10
| | | 3 - 20
| | | 4 - 30
| | | 5 - 60
| | | 6 - 120
| | |
--------------------------- max tag cmds 0 - 2
1 - 4
2 - 8
3 - 16
4 - 32
Host flags 2 (addr 0x100010, 34)
x x x x x x x x x x x x x x x x
|
----- F2/F6 enable 0 - off ???
1 - on ???
checksum (addr 0x111111)
checksum = 0x1234 - (sum addr 0-63)
----------------------------------------------------------------------------
default nvram data:
0x0037 0x0000 0x0037 0x0000 0x0037 0x0000 0x0037 0x0000
0x0037 0x0000 0x0037 0x0000 0x0037 0x0000 0x0037 0x0000
0x0037 0x0000 0x0037 0x0000 0x0037 0x0000 0x0037 0x0000
0x0037 0x0000 0x0037 0x0000 0x0037 0x0000 0x0037 0x0000
0x0f07 0x0400 0x0001 0x0000 0x0000 0x0000 0x0000 0x0000
0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000
0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000
0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0xfbbc
18. Support for Big Endian
The PCI local bus has been primarily designed for x86 architecture.
As a consequence, PCI devices generally expect DWORDS using little endian
byte ordering.
18.1 Big Endian CPU
In order to support NCR chips on a Big Endian architecture the driver has to
perform byte reordering each time it is needed. This feature has been
added to the driver by Cort <cort@cs.nmt.edu> and is available in driver
version 2.5 and later ones. For the moment Big Endian support has only
been tested on Linux/PPC (PowerPC).
18.2 NCR chip in Big Endian mode of operations
It can be read in SYMBIOS documentation that some chips support a special
Big Endian mode, on paper: 53C815, 53C825A, 53C875, 53C875N, 53C895.
This mode of operations is not software-selectable, but needs pin named
BigLit to be pulled-up. Using this mode, most of byte reorderings should
be avoided when the driver is running on a Big Endian CPU.
Driver version 2.5 is also, in theory, ready for this feature.
===============================================================================
End of NCR53C8XX driver README file
|