Blame view

kernel/linux-imx6_3.14.28/arch/powerpc/mm/stab.c 7.43 KB
6b13f685e   김민수   BSP 최초 추가
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
  /*
   * PowerPC64 Segment Translation Support.
   *
   * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
   *    Copyright (c) 2001 Dave Engebretsen
   *
   * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
   *
   *      This program is free software; you can redistribute it and/or
   *      modify it under the terms of the GNU General Public License
   *      as published by the Free Software Foundation; either version
   *      2 of the License, or (at your option) any later version.
   */
  
  #include <linux/memblock.h>
  
  #include <asm/pgtable.h>
  #include <asm/mmu.h>
  #include <asm/mmu_context.h>
  #include <asm/paca.h>
  #include <asm/cputable.h>
  #include <asm/prom.h>
  
  struct stab_entry {
  	unsigned long esid_data;
  	unsigned long vsid_data;
  };
  
  #define NR_STAB_CACHE_ENTRIES 8
  static DEFINE_PER_CPU(long, stab_cache_ptr);
  static DEFINE_PER_CPU(long [NR_STAB_CACHE_ENTRIES], stab_cache);
  
  /*
   * Create a segment table entry for the given esid/vsid pair.
   */
  static int make_ste(unsigned long stab, unsigned long esid, unsigned long vsid)
  {
  	unsigned long esid_data, vsid_data;
  	unsigned long entry, group, old_esid, castout_entry, i;
  	unsigned int global_entry;
  	struct stab_entry *ste, *castout_ste;
  	unsigned long kernel_segment = (esid << SID_SHIFT) >= PAGE_OFFSET;
  
  	vsid_data = vsid << STE_VSID_SHIFT;
  	esid_data = esid << SID_SHIFT | STE_ESID_KP | STE_ESID_V;
  	if (! kernel_segment)
  		esid_data |= STE_ESID_KS;
  
  	/* Search the primary group first. */
  	global_entry = (esid & 0x1f) << 3;
  	ste = (struct stab_entry *)(stab | ((esid & 0x1f) << 7));
  
  	/* Find an empty entry, if one exists. */
  	for (group = 0; group < 2; group++) {
  		for (entry = 0; entry < 8; entry++, ste++) {
  			if (!(ste->esid_data & STE_ESID_V)) {
  				ste->vsid_data = vsid_data;
  				eieio();
  				ste->esid_data = esid_data;
  				return (global_entry | entry);
  			}
  		}
  		/* Now search the secondary group. */
  		global_entry = ((~esid) & 0x1f) << 3;
  		ste = (struct stab_entry *)(stab | (((~esid) & 0x1f) << 7));
  	}
  
  	/*
  	 * Could not find empty entry, pick one with a round robin selection.
  	 * Search all entries in the two groups.
  	 */
  	castout_entry = get_paca()->stab_rr;
  	for (i = 0; i < 16; i++) {
  		if (castout_entry < 8) {
  			global_entry = (esid & 0x1f) << 3;
  			ste = (struct stab_entry *)(stab | ((esid & 0x1f) << 7));
  			castout_ste = ste + castout_entry;
  		} else {
  			global_entry = ((~esid) & 0x1f) << 3;
  			ste = (struct stab_entry *)(stab | (((~esid) & 0x1f) << 7));
  			castout_ste = ste + (castout_entry - 8);
  		}
  
  		/* Dont cast out the first kernel segment */
  		if ((castout_ste->esid_data & ESID_MASK) != PAGE_OFFSET)
  			break;
  
  		castout_entry = (castout_entry + 1) & 0xf;
  	}
  
  	get_paca()->stab_rr = (castout_entry + 1) & 0xf;
  
  	/* Modify the old entry to the new value. */
  
  	/* Force previous translations to complete. DRENG */
  	asm volatile("isync" : : : "memory");
  
  	old_esid = castout_ste->esid_data >> SID_SHIFT;
  	castout_ste->esid_data = 0;		/* Invalidate old entry */
  
  	asm volatile("sync" : : : "memory");    /* Order update */
  
  	castout_ste->vsid_data = vsid_data;
  	eieio();				/* Order update */
  	castout_ste->esid_data = esid_data;
  
  	asm volatile("slbie  %0" : : "r" (old_esid << SID_SHIFT));
  	/* Ensure completion of slbie */
  	asm volatile("sync" : : : "memory");
  
  	return (global_entry | (castout_entry & 0x7));
  }
  
  /*
   * Allocate a segment table entry for the given ea and mm
   */
  static int __ste_allocate(unsigned long ea, struct mm_struct *mm)
  {
  	unsigned long vsid;
  	unsigned char stab_entry;
  	unsigned long offset;
  
  	/* Kernel or user address? */
  	if (is_kernel_addr(ea)) {
  		vsid = get_kernel_vsid(ea, MMU_SEGSIZE_256M);
  	} else {
  		if ((ea >= TASK_SIZE_USER64) || (! mm))
  			return 1;
  
  		vsid = get_vsid(mm->context.id, ea, MMU_SEGSIZE_256M);
  	}
  
  	stab_entry = make_ste(get_paca()->stab_addr, GET_ESID(ea), vsid);
  
  	if (!is_kernel_addr(ea)) {
  		offset = __get_cpu_var(stab_cache_ptr);
  		if (offset < NR_STAB_CACHE_ENTRIES)
  			__get_cpu_var(stab_cache[offset++]) = stab_entry;
  		else
  			offset = NR_STAB_CACHE_ENTRIES+1;
  		__get_cpu_var(stab_cache_ptr) = offset;
  
  		/* Order update */
  		asm volatile("sync":::"memory");
  	}
  
  	return 0;
  }
  
  int ste_allocate(unsigned long ea)
  {
  	return __ste_allocate(ea, current->mm);
  }
  
  /*
   * Do the segment table work for a context switch: flush all user
   * entries from the table, then preload some probably useful entries
   * for the new task
   */
  void switch_stab(struct task_struct *tsk, struct mm_struct *mm)
  {
  	struct stab_entry *stab = (struct stab_entry *) get_paca()->stab_addr;
  	struct stab_entry *ste;
  	unsigned long offset;
  	unsigned long pc = KSTK_EIP(tsk);
  	unsigned long stack = KSTK_ESP(tsk);
  	unsigned long unmapped_base;
  
  	/* Force previous translations to complete. DRENG */
  	asm volatile("isync" : : : "memory");
  
  	/*
  	 * We need interrupts hard-disabled here, not just soft-disabled,
  	 * so that a PMU interrupt can't occur, which might try to access
  	 * user memory (to get a stack trace) and possible cause an STAB miss
  	 * which would update the stab_cache/stab_cache_ptr per-cpu variables.
  	 */
  	hard_irq_disable();
  
  	offset = __get_cpu_var(stab_cache_ptr);
  	if (offset <= NR_STAB_CACHE_ENTRIES) {
  		int i;
  
  		for (i = 0; i < offset; i++) {
  			ste = stab + __get_cpu_var(stab_cache[i]);
  			ste->esid_data = 0; /* invalidate entry */
  		}
  	} else {
  		unsigned long entry;
  
  		/* Invalidate all entries. */
  		ste = stab;
  
  		/* Never flush the first entry. */
  		ste += 1;
  		for (entry = 1;
  		     entry < (HW_PAGE_SIZE / sizeof(struct stab_entry));
  		     entry++, ste++) {
  			unsigned long ea;
  			ea = ste->esid_data & ESID_MASK;
  			if (!is_kernel_addr(ea)) {
  				ste->esid_data = 0;
  			}
  		}
  	}
  
  	asm volatile("sync; slbia; sync":::"memory");
  
  	__get_cpu_var(stab_cache_ptr) = 0;
  
  	/* Now preload some entries for the new task */
  	if (test_tsk_thread_flag(tsk, TIF_32BIT))
  		unmapped_base = TASK_UNMAPPED_BASE_USER32;
  	else
  		unmapped_base = TASK_UNMAPPED_BASE_USER64;
  
  	__ste_allocate(pc, mm);
  
  	if (GET_ESID(pc) == GET_ESID(stack))
  		return;
  
  	__ste_allocate(stack, mm);
  
  	if ((GET_ESID(pc) == GET_ESID(unmapped_base))
  	    || (GET_ESID(stack) == GET_ESID(unmapped_base)))
  		return;
  
  	__ste_allocate(unmapped_base, mm);
  
  	/* Order update */
  	asm volatile("sync" : : : "memory");
  }
  
  /*
   * Allocate segment tables for secondary CPUs.  These must all go in
   * the first (bolted) segment, so that do_stab_bolted won't get a
   * recursive segment miss on the segment table itself.
   */
  void __init stabs_alloc(void)
  {
  	int cpu;
  
  	if (mmu_has_feature(MMU_FTR_SLB))
  		return;
  
  	for_each_possible_cpu(cpu) {
  		unsigned long newstab;
  
  		if (cpu == 0)
  			continue; /* stab for CPU 0 is statically allocated */
  
  		newstab = memblock_alloc_base(HW_PAGE_SIZE, HW_PAGE_SIZE,
  					 1<<SID_SHIFT);
  		newstab = (unsigned long)__va(newstab);
  
  		memset((void *)newstab, 0, HW_PAGE_SIZE);
  
  		paca[cpu].stab_addr = newstab;
  		paca[cpu].stab_real = __pa(newstab);
  		printk(KERN_INFO "Segment table for CPU %d at 0x%llx "
  		       "virtual, 0x%llx absolute
  ",
  		       cpu, paca[cpu].stab_addr, paca[cpu].stab_real);
  	}
  }
  
  /*
   * Build an entry for the base kernel segment and put it into
   * the segment table or SLB.  All other segment table or SLB
   * entries are faulted in.
   */
  void stab_initialize(unsigned long stab)
  {
  	unsigned long vsid = get_kernel_vsid(PAGE_OFFSET, MMU_SEGSIZE_256M);
  	unsigned long stabreal;
  
  	asm volatile("isync; slbia; isync":::"memory");
  	make_ste(stab, GET_ESID(PAGE_OFFSET), vsid);
  
  	/* Order update */
  	asm volatile("sync":::"memory");
  
  	/* Set ASR */
  	stabreal = get_paca()->stab_real | 0x1ul;
  
  	mtspr(SPRN_ASR, stabreal);
  }