Blame view

bootloader/u-boot_2015_04/drivers/net/cpsw.c 24 KB
6b13f685e   김민수   BSP 최초 추가
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
  /*
   * CPSW Ethernet Switch Driver
   *
   * Copyright (C) 2010 Texas Instruments Incorporated - http://www.ti.com/
   *
   * This program is free software; you can redistribute it and/or
   * modify it under the terms of the GNU General Public License as
   * published by the Free Software Foundation version 2.
   *
   * This program is distributed "as is" WITHOUT ANY WARRANTY of any
   * kind, whether express or implied; without even the implied warranty
   * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
   * GNU General Public License for more details.
   */
  
  #include <common.h>
  #include <command.h>
  #include <net.h>
  #include <miiphy.h>
  #include <malloc.h>
  #include <net.h>
  #include <netdev.h>
  #include <cpsw.h>
  #include <asm/errno.h>
  #include <asm/io.h>
  #include <phy.h>
  #include <asm/arch/cpu.h>
  
  #define BITMASK(bits)		(BIT(bits) - 1)
  #define PHY_REG_MASK		0x1f
  #define PHY_ID_MASK		0x1f
  #define NUM_DESCS		(PKTBUFSRX * 2)
  #define PKT_MIN			60
  #define PKT_MAX			(1500 + 14 + 4 + 4)
  #define CLEAR_BIT		1
  #define GIGABITEN		BIT(7)
  #define FULLDUPLEXEN		BIT(0)
  #define MIIEN			BIT(15)
  
  /* DMA Registers */
  #define CPDMA_TXCONTROL		0x004
  #define CPDMA_RXCONTROL		0x014
  #define CPDMA_SOFTRESET		0x01c
  #define CPDMA_RXFREE		0x0e0
  #define CPDMA_TXHDP_VER1	0x100
  #define CPDMA_TXHDP_VER2	0x200
  #define CPDMA_RXHDP_VER1	0x120
  #define CPDMA_RXHDP_VER2	0x220
  #define CPDMA_TXCP_VER1		0x140
  #define CPDMA_TXCP_VER2		0x240
  #define CPDMA_RXCP_VER1		0x160
  #define CPDMA_RXCP_VER2		0x260
  
  /* Descriptor mode bits */
  #define CPDMA_DESC_SOP		BIT(31)
  #define CPDMA_DESC_EOP		BIT(30)
  #define CPDMA_DESC_OWNER	BIT(29)
  #define CPDMA_DESC_EOQ		BIT(28)
  
  /*
   * This timeout definition is a worst-case ultra defensive measure against
   * unexpected controller lock ups.  Ideally, we should never ever hit this
   * scenario in practice.
   */
  #define MDIO_TIMEOUT            100 /* msecs */
  #define CPDMA_TIMEOUT		100 /* msecs */
  
  struct cpsw_mdio_regs {
  	u32	version;
  	u32	control;
  #define CONTROL_IDLE		BIT(31)
  #define CONTROL_ENABLE		BIT(30)
  
  	u32	alive;
  	u32	link;
  	u32	linkintraw;
  	u32	linkintmasked;
  	u32	__reserved_0[2];
  	u32	userintraw;
  	u32	userintmasked;
  	u32	userintmaskset;
  	u32	userintmaskclr;
  	u32	__reserved_1[20];
  
  	struct {
  		u32		access;
  		u32		physel;
  #define USERACCESS_GO		BIT(31)
  #define USERACCESS_WRITE	BIT(30)
  #define USERACCESS_ACK		BIT(29)
  #define USERACCESS_READ		(0)
  #define USERACCESS_DATA		(0xffff)
  	} user[0];
  };
  
  struct cpsw_regs {
  	u32	id_ver;
  	u32	control;
  	u32	soft_reset;
  	u32	stat_port_en;
  	u32	ptype;
  };
  
  struct cpsw_slave_regs {
  	u32	max_blks;
  	u32	blk_cnt;
  	u32	flow_thresh;
  	u32	port_vlan;
  	u32	tx_pri_map;
  #ifdef CONFIG_AM33XX
  	u32	gap_thresh;
  #elif defined(CONFIG_TI814X)
  	u32	ts_ctl;
  	u32	ts_seq_ltype;
  	u32	ts_vlan;
  #endif
  	u32	sa_lo;
  	u32	sa_hi;
  };
  
  struct cpsw_host_regs {
  	u32	max_blks;
  	u32	blk_cnt;
  	u32	flow_thresh;
  	u32	port_vlan;
  	u32	tx_pri_map;
  	u32	cpdma_tx_pri_map;
  	u32	cpdma_rx_chan_map;
  };
  
  struct cpsw_sliver_regs {
  	u32	id_ver;
  	u32	mac_control;
  	u32	mac_status;
  	u32	soft_reset;
  	u32	rx_maxlen;
  	u32	__reserved_0;
  	u32	rx_pause;
  	u32	tx_pause;
  	u32	__reserved_1;
  	u32	rx_pri_map;
  };
  
  #define ALE_ENTRY_BITS		68
  #define ALE_ENTRY_WORDS		DIV_ROUND_UP(ALE_ENTRY_BITS, 32)
  
  /* ALE Registers */
  #define ALE_CONTROL		0x08
  #define ALE_UNKNOWNVLAN		0x18
  #define ALE_TABLE_CONTROL	0x20
  #define ALE_TABLE		0x34
  #define ALE_PORTCTL		0x40
  
  #define ALE_TABLE_WRITE		BIT(31)
  
  #define ALE_TYPE_FREE			0
  #define ALE_TYPE_ADDR			1
  #define ALE_TYPE_VLAN			2
  #define ALE_TYPE_VLAN_ADDR		3
  
  #define ALE_UCAST_PERSISTANT		0
  #define ALE_UCAST_UNTOUCHED		1
  #define ALE_UCAST_OUI			2
  #define ALE_UCAST_TOUCHED		3
  
  #define ALE_MCAST_FWD			0
  #define ALE_MCAST_BLOCK_LEARN_FWD	1
  #define ALE_MCAST_FWD_LEARN		2
  #define ALE_MCAST_FWD_2			3
  
  enum cpsw_ale_port_state {
  	ALE_PORT_STATE_DISABLE	= 0x00,
  	ALE_PORT_STATE_BLOCK	= 0x01,
  	ALE_PORT_STATE_LEARN	= 0x02,
  	ALE_PORT_STATE_FORWARD	= 0x03,
  };
  
  /* ALE unicast entry flags - passed into cpsw_ale_add_ucast() */
  #define ALE_SECURE	1
  #define ALE_BLOCKED	2
  
  struct cpsw_slave {
  	struct cpsw_slave_regs		*regs;
  	struct cpsw_sliver_regs		*sliver;
  	int				slave_num;
  	u32				mac_control;
  	struct cpsw_slave_data		*data;
  };
  
  struct cpdma_desc {
  	/* hardware fields */
  	u32			hw_next;
  	u32			hw_buffer;
  	u32			hw_len;
  	u32			hw_mode;
  	/* software fields */
  	u32			sw_buffer;
  	u32			sw_len;
  };
  
  struct cpdma_chan {
  	struct cpdma_desc	*head, *tail;
  	void			*hdp, *cp, *rxfree;
  };
  
  #define desc_write(desc, fld, val)	__raw_writel((u32)(val), &(desc)->fld)
  #define desc_read(desc, fld)		__raw_readl(&(desc)->fld)
  #define desc_read_ptr(desc, fld)	((void *)__raw_readl(&(desc)->fld))
  
  #define chan_write(chan, fld, val)	__raw_writel((u32)(val), (chan)->fld)
  #define chan_read(chan, fld)		__raw_readl((chan)->fld)
  #define chan_read_ptr(chan, fld)	((void *)__raw_readl((chan)->fld))
  
  #define for_active_slave(slave, priv) \
  	slave = (priv)->slaves + (priv)->data.active_slave; if (slave)
  #define for_each_slave(slave, priv) \
  	for (slave = (priv)->slaves; slave != (priv)->slaves + \
  				(priv)->data.slaves; slave++)
  
  struct cpsw_priv {
  	struct eth_device		*dev;
  	struct cpsw_platform_data	data;
  	int				host_port;
  
  	struct cpsw_regs		*regs;
  	void				*dma_regs;
  	struct cpsw_host_regs		*host_port_regs;
  	void				*ale_regs;
  
  	struct cpdma_desc		*descs;
  	struct cpdma_desc		*desc_free;
  	struct cpdma_chan		rx_chan, tx_chan;
  
  	struct cpsw_slave		*slaves;
  	struct phy_device		*phydev;
  	struct mii_dev			*bus;
  
  	u32				phy_mask;
  };
  
  static inline int cpsw_ale_get_field(u32 *ale_entry, u32 start, u32 bits)
  {
  	int idx;
  
  	idx    = start / 32;
  	start -= idx * 32;
  	idx    = 2 - idx; /* flip */
  	return (ale_entry[idx] >> start) & BITMASK(bits);
  }
  
  static inline void cpsw_ale_set_field(u32 *ale_entry, u32 start, u32 bits,
  				      u32 value)
  {
  	int idx;
  
  	value &= BITMASK(bits);
  	idx    = start / 32;
  	start -= idx * 32;
  	idx    = 2 - idx; /* flip */
  	ale_entry[idx] &= ~(BITMASK(bits) << start);
  	ale_entry[idx] |=  (value << start);
  }
  
  #define DEFINE_ALE_FIELD(name, start, bits)				\
  static inline int cpsw_ale_get_##name(u32 *ale_entry)			\
  {									\
  	return cpsw_ale_get_field(ale_entry, start, bits);		\
  }									\
  static inline void cpsw_ale_set_##name(u32 *ale_entry, u32 value)	\
  {									\
  	cpsw_ale_set_field(ale_entry, start, bits, value);		\
  }
  
  DEFINE_ALE_FIELD(entry_type,		60,	2)
  DEFINE_ALE_FIELD(mcast_state,		62,	2)
  DEFINE_ALE_FIELD(port_mask,		66,	3)
  DEFINE_ALE_FIELD(ucast_type,		62,	2)
  DEFINE_ALE_FIELD(port_num,		66,	2)
  DEFINE_ALE_FIELD(blocked,		65,	1)
  DEFINE_ALE_FIELD(secure,		64,	1)
  DEFINE_ALE_FIELD(mcast,			40,	1)
  
  /* The MAC address field in the ALE entry cannot be macroized as above */
  static inline void cpsw_ale_get_addr(u32 *ale_entry, u8 *addr)
  {
  	int i;
  
  	for (i = 0; i < 6; i++)
  		addr[i] = cpsw_ale_get_field(ale_entry, 40 - 8*i, 8);
  }
  
  static inline void cpsw_ale_set_addr(u32 *ale_entry, u8 *addr)
  {
  	int i;
  
  	for (i = 0; i < 6; i++)
  		cpsw_ale_set_field(ale_entry, 40 - 8*i, 8, addr[i]);
  }
  
  static int cpsw_ale_read(struct cpsw_priv *priv, int idx, u32 *ale_entry)
  {
  	int i;
  
  	__raw_writel(idx, priv->ale_regs + ALE_TABLE_CONTROL);
  
  	for (i = 0; i < ALE_ENTRY_WORDS; i++)
  		ale_entry[i] = __raw_readl(priv->ale_regs + ALE_TABLE + 4 * i);
  
  	return idx;
  }
  
  static int cpsw_ale_write(struct cpsw_priv *priv, int idx, u32 *ale_entry)
  {
  	int i;
  
  	for (i = 0; i < ALE_ENTRY_WORDS; i++)
  		__raw_writel(ale_entry[i], priv->ale_regs + ALE_TABLE + 4 * i);
  
  	__raw_writel(idx | ALE_TABLE_WRITE, priv->ale_regs + ALE_TABLE_CONTROL);
  
  	return idx;
  }
  
  static int cpsw_ale_match_addr(struct cpsw_priv *priv, u8* addr)
  {
  	u32 ale_entry[ALE_ENTRY_WORDS];
  	int type, idx;
  
  	for (idx = 0; idx < priv->data.ale_entries; idx++) {
  		u8 entry_addr[6];
  
  		cpsw_ale_read(priv, idx, ale_entry);
  		type = cpsw_ale_get_entry_type(ale_entry);
  		if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
  			continue;
  		cpsw_ale_get_addr(ale_entry, entry_addr);
  		if (memcmp(entry_addr, addr, 6) == 0)
  			return idx;
  	}
  	return -ENOENT;
  }
  
  static int cpsw_ale_match_free(struct cpsw_priv *priv)
  {
  	u32 ale_entry[ALE_ENTRY_WORDS];
  	int type, idx;
  
  	for (idx = 0; idx < priv->data.ale_entries; idx++) {
  		cpsw_ale_read(priv, idx, ale_entry);
  		type = cpsw_ale_get_entry_type(ale_entry);
  		if (type == ALE_TYPE_FREE)
  			return idx;
  	}
  	return -ENOENT;
  }
  
  static int cpsw_ale_find_ageable(struct cpsw_priv *priv)
  {
  	u32 ale_entry[ALE_ENTRY_WORDS];
  	int type, idx;
  
  	for (idx = 0; idx < priv->data.ale_entries; idx++) {
  		cpsw_ale_read(priv, idx, ale_entry);
  		type = cpsw_ale_get_entry_type(ale_entry);
  		if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
  			continue;
  		if (cpsw_ale_get_mcast(ale_entry))
  			continue;
  		type = cpsw_ale_get_ucast_type(ale_entry);
  		if (type != ALE_UCAST_PERSISTANT &&
  		    type != ALE_UCAST_OUI)
  			return idx;
  	}
  	return -ENOENT;
  }
  
  static int cpsw_ale_add_ucast(struct cpsw_priv *priv, u8 *addr,
  			      int port, int flags)
  {
  	u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
  	int idx;
  
  	cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
  	cpsw_ale_set_addr(ale_entry, addr);
  	cpsw_ale_set_ucast_type(ale_entry, ALE_UCAST_PERSISTANT);
  	cpsw_ale_set_secure(ale_entry, (flags & ALE_SECURE) ? 1 : 0);
  	cpsw_ale_set_blocked(ale_entry, (flags & ALE_BLOCKED) ? 1 : 0);
  	cpsw_ale_set_port_num(ale_entry, port);
  
  	idx = cpsw_ale_match_addr(priv, addr);
  	if (idx < 0)
  		idx = cpsw_ale_match_free(priv);
  	if (idx < 0)
  		idx = cpsw_ale_find_ageable(priv);
  	if (idx < 0)
  		return -ENOMEM;
  
  	cpsw_ale_write(priv, idx, ale_entry);
  	return 0;
  }
  
  static int cpsw_ale_add_mcast(struct cpsw_priv *priv, u8 *addr, int port_mask)
  {
  	u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
  	int idx, mask;
  
  	idx = cpsw_ale_match_addr(priv, addr);
  	if (idx >= 0)
  		cpsw_ale_read(priv, idx, ale_entry);
  
  	cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
  	cpsw_ale_set_addr(ale_entry, addr);
  	cpsw_ale_set_mcast_state(ale_entry, ALE_MCAST_FWD_2);
  
  	mask = cpsw_ale_get_port_mask(ale_entry);
  	port_mask |= mask;
  	cpsw_ale_set_port_mask(ale_entry, port_mask);
  
  	if (idx < 0)
  		idx = cpsw_ale_match_free(priv);
  	if (idx < 0)
  		idx = cpsw_ale_find_ageable(priv);
  	if (idx < 0)
  		return -ENOMEM;
  
  	cpsw_ale_write(priv, idx, ale_entry);
  	return 0;
  }
  
  static inline void cpsw_ale_control(struct cpsw_priv *priv, int bit, int val)
  {
  	u32 tmp, mask = BIT(bit);
  
  	tmp  = __raw_readl(priv->ale_regs + ALE_CONTROL);
  	tmp &= ~mask;
  	tmp |= val ? mask : 0;
  	__raw_writel(tmp, priv->ale_regs + ALE_CONTROL);
  }
  
  #define cpsw_ale_enable(priv, val)	cpsw_ale_control(priv, 31, val)
  #define cpsw_ale_clear(priv, val)	cpsw_ale_control(priv, 30, val)
  #define cpsw_ale_vlan_aware(priv, val)	cpsw_ale_control(priv,  2, val)
  
  static inline void cpsw_ale_port_state(struct cpsw_priv *priv, int port,
  				       int val)
  {
  	int offset = ALE_PORTCTL + 4 * port;
  	u32 tmp, mask = 0x3;
  
  	tmp  = __raw_readl(priv->ale_regs + offset);
  	tmp &= ~mask;
  	tmp |= val & mask;
  	__raw_writel(tmp, priv->ale_regs + offset);
  }
  
  static struct cpsw_mdio_regs *mdio_regs;
  
  /* wait until hardware is ready for another user access */
  static inline u32 wait_for_user_access(void)
  {
  	u32 reg = 0;
  	int timeout = MDIO_TIMEOUT;
  
  	while (timeout-- &&
  	((reg = __raw_readl(&mdio_regs->user[0].access)) & USERACCESS_GO))
  		udelay(10);
  
  	if (timeout == -1) {
  		printf("wait_for_user_access Timeout
  ");
  		return -ETIMEDOUT;
  	}
  	return reg;
  }
  
  /* wait until hardware state machine is idle */
  static inline void wait_for_idle(void)
  {
  	int timeout = MDIO_TIMEOUT;
  
  	while (timeout-- &&
  		((__raw_readl(&mdio_regs->control) & CONTROL_IDLE) == 0))
  		udelay(10);
  
  	if (timeout == -1)
  		printf("wait_for_idle Timeout
  ");
  }
  
  static int cpsw_mdio_read(struct mii_dev *bus, int phy_id,
  				int dev_addr, int phy_reg)
  {
  	int data;
  	u32 reg;
  
  	if (phy_reg & ~PHY_REG_MASK || phy_id & ~PHY_ID_MASK)
  		return -EINVAL;
  
  	wait_for_user_access();
  	reg = (USERACCESS_GO | USERACCESS_READ | (phy_reg << 21) |
  	       (phy_id << 16));
  	__raw_writel(reg, &mdio_regs->user[0].access);
  	reg = wait_for_user_access();
  
  	data = (reg & USERACCESS_ACK) ? (reg & USERACCESS_DATA) : -1;
  	return data;
  }
  
  static int cpsw_mdio_write(struct mii_dev *bus, int phy_id, int dev_addr,
  				int phy_reg, u16 data)
  {
  	u32 reg;
  
  	if (phy_reg & ~PHY_REG_MASK || phy_id & ~PHY_ID_MASK)
  		return -EINVAL;
  
  	wait_for_user_access();
  	reg = (USERACCESS_GO | USERACCESS_WRITE | (phy_reg << 21) |
  		   (phy_id << 16) | (data & USERACCESS_DATA));
  	__raw_writel(reg, &mdio_regs->user[0].access);
  	wait_for_user_access();
  
  	return 0;
  }
  
  static void cpsw_mdio_init(char *name, u32 mdio_base, u32 div)
  {
  	struct mii_dev *bus = mdio_alloc();
  
  	mdio_regs = (struct cpsw_mdio_regs *)mdio_base;
  
  	/* set enable and clock divider */
  	__raw_writel(div | CONTROL_ENABLE, &mdio_regs->control);
  
  	/*
  	 * wait for scan logic to settle:
  	 * the scan time consists of (a) a large fixed component, and (b) a
  	 * small component that varies with the mii bus frequency.  These
  	 * were estimated using measurements at 1.1 and 2.2 MHz on tnetv107x
  	 * silicon.  Since the effect of (b) was found to be largely
  	 * negligible, we keep things simple here.
  	 */
  	udelay(1000);
  
  	bus->read = cpsw_mdio_read;
  	bus->write = cpsw_mdio_write;
  	sprintf(bus->name, name);
  
  	mdio_register(bus);
  }
  
  /* Set a self-clearing bit in a register, and wait for it to clear */
  static inline void setbit_and_wait_for_clear32(void *addr)
  {
  	__raw_writel(CLEAR_BIT, addr);
  	while (__raw_readl(addr) & CLEAR_BIT)
  		;
  }
  
  #define mac_hi(mac)	(((mac)[0] << 0) | ((mac)[1] << 8) |	\
  			 ((mac)[2] << 16) | ((mac)[3] << 24))
  #define mac_lo(mac)	(((mac)[4] << 0) | ((mac)[5] << 8))
  
  static void cpsw_set_slave_mac(struct cpsw_slave *slave,
  			       struct cpsw_priv *priv)
  {
  	__raw_writel(mac_hi(priv->dev->enetaddr), &slave->regs->sa_hi);
  	__raw_writel(mac_lo(priv->dev->enetaddr), &slave->regs->sa_lo);
  }
  
  static void cpsw_slave_update_link(struct cpsw_slave *slave,
  				   struct cpsw_priv *priv, int *link)
  {
  	struct phy_device *phy;
  	u32 mac_control = 0;
  
  	phy = priv->phydev;
  
  	if (!phy)
  		return;
  
  	phy_startup(phy);
  	*link = phy->link;
  
  	if (*link) { /* link up */
  		mac_control = priv->data.mac_control;
  		if (phy->speed == 1000)
  			mac_control |= GIGABITEN;
  		if (phy->duplex == DUPLEX_FULL)
  			mac_control |= FULLDUPLEXEN;
  		if (phy->speed == 100)
  			mac_control |= MIIEN;
  	}
  
  	if (mac_control == slave->mac_control)
  		return;
  
  	if (mac_control) {
  		printf("link up on port %d, speed %d, %s duplex
  ",
  				slave->slave_num, phy->speed,
  				(phy->duplex == DUPLEX_FULL) ? "full" : "half");
  	} else {
  		printf("link down on port %d
  ", slave->slave_num);
  	}
  
  	__raw_writel(mac_control, &slave->sliver->mac_control);
  	slave->mac_control = mac_control;
  }
  
  static int cpsw_update_link(struct cpsw_priv *priv)
  {
  	int link = 0;
  	struct cpsw_slave *slave;
  
  	for_active_slave(slave, priv)
  		cpsw_slave_update_link(slave, priv, &link);
  
  	return link;
  }
  
  static inline u32  cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num)
  {
  	if (priv->host_port == 0)
  		return slave_num + 1;
  	else
  		return slave_num;
  }
  
  static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv)
  {
  	u32     slave_port;
  
  	setbit_and_wait_for_clear32(&slave->sliver->soft_reset);
  
  	/* setup priority mapping */
  	__raw_writel(0x76543210, &slave->sliver->rx_pri_map);
  	__raw_writel(0x33221100, &slave->regs->tx_pri_map);
  
  	/* setup max packet size, and mac address */
  	__raw_writel(PKT_MAX, &slave->sliver->rx_maxlen);
  	cpsw_set_slave_mac(slave, priv);
  
  	slave->mac_control = 0;	/* no link yet */
  
  	/* enable forwarding */
  	slave_port = cpsw_get_slave_port(priv, slave->slave_num);
  	cpsw_ale_port_state(priv, slave_port, ALE_PORT_STATE_FORWARD);
  
  	cpsw_ale_add_mcast(priv, NetBcastAddr, 1 << slave_port);
  
  	priv->phy_mask |= 1 << slave->data->phy_addr;
  }
  
  static struct cpdma_desc *cpdma_desc_alloc(struct cpsw_priv *priv)
  {
  	struct cpdma_desc *desc = priv->desc_free;
  
  	if (desc)
  		priv->desc_free = desc_read_ptr(desc, hw_next);
  	return desc;
  }
  
  static void cpdma_desc_free(struct cpsw_priv *priv, struct cpdma_desc *desc)
  {
  	if (desc) {
  		desc_write(desc, hw_next, priv->desc_free);
  		priv->desc_free = desc;
  	}
  }
  
  static int cpdma_submit(struct cpsw_priv *priv, struct cpdma_chan *chan,
  			void *buffer, int len)
  {
  	struct cpdma_desc *desc, *prev;
  	u32 mode;
  
  	desc = cpdma_desc_alloc(priv);
  	if (!desc)
  		return -ENOMEM;
  
  	if (len < PKT_MIN)
  		len = PKT_MIN;
  
  	mode = CPDMA_DESC_OWNER | CPDMA_DESC_SOP | CPDMA_DESC_EOP;
  
  	desc_write(desc, hw_next,   0);
  	desc_write(desc, hw_buffer, buffer);
  	desc_write(desc, hw_len,    len);
  	desc_write(desc, hw_mode,   mode | len);
  	desc_write(desc, sw_buffer, buffer);
  	desc_write(desc, sw_len,    len);
  
  	if (!chan->head) {
  		/* simple case - first packet enqueued */
  		chan->head = desc;
  		chan->tail = desc;
  		chan_write(chan, hdp, desc);
  		goto done;
  	}
  
  	/* not the first packet - enqueue at the tail */
  	prev = chan->tail;
  	desc_write(prev, hw_next, desc);
  	chan->tail = desc;
  
  	/* next check if EOQ has been triggered already */
  	if (desc_read(prev, hw_mode) & CPDMA_DESC_EOQ)
  		chan_write(chan, hdp, desc);
  
  done:
  	if (chan->rxfree)
  		chan_write(chan, rxfree, 1);
  	return 0;
  }
  
  static int cpdma_process(struct cpsw_priv *priv, struct cpdma_chan *chan,
  			 void **buffer, int *len)
  {
  	struct cpdma_desc *desc = chan->head;
  	u32 status;
  
  	if (!desc)
  		return -ENOENT;
  
  	status = desc_read(desc, hw_mode);
  
  	if (len)
  		*len = status & 0x7ff;
  
  	if (buffer)
  		*buffer = desc_read_ptr(desc, sw_buffer);
  
  	if (status & CPDMA_DESC_OWNER) {
  		if (chan_read(chan, hdp) == 0) {
  			if (desc_read(desc, hw_mode) & CPDMA_DESC_OWNER)
  				chan_write(chan, hdp, desc);
  		}
  
  		return -EBUSY;
  	}
  
  	chan->head = desc_read_ptr(desc, hw_next);
  	chan_write(chan, cp, desc);
  
  	cpdma_desc_free(priv, desc);
  	return 0;
  }
  
  static int cpsw_init(struct eth_device *dev, bd_t *bis)
  {
  	struct cpsw_priv	*priv = dev->priv;
  	struct cpsw_slave	*slave;
  	int i, ret;
  
  	/* soft reset the controller and initialize priv */
  	setbit_and_wait_for_clear32(&priv->regs->soft_reset);
  
  	/* initialize and reset the address lookup engine */
  	cpsw_ale_enable(priv, 1);
  	cpsw_ale_clear(priv, 1);
  	cpsw_ale_vlan_aware(priv, 0); /* vlan unaware mode */
  
  	/* setup host port priority mapping */
  	__raw_writel(0x76543210, &priv->host_port_regs->cpdma_tx_pri_map);
  	__raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map);
  
  	/* disable priority elevation and enable statistics on all ports */
  	__raw_writel(0, &priv->regs->ptype);
  
  	/* enable statistics collection only on the host port */
  	__raw_writel(BIT(priv->host_port), &priv->regs->stat_port_en);
  	__raw_writel(0x7, &priv->regs->stat_port_en);
  
  	cpsw_ale_port_state(priv, priv->host_port, ALE_PORT_STATE_FORWARD);
  
  	cpsw_ale_add_ucast(priv, priv->dev->enetaddr, priv->host_port,
  			   ALE_SECURE);
  	cpsw_ale_add_mcast(priv, NetBcastAddr, 1 << priv->host_port);
  
  	for_active_slave(slave, priv)
  		cpsw_slave_init(slave, priv);
  
  	cpsw_update_link(priv);
  
  	/* init descriptor pool */
  	for (i = 0; i < NUM_DESCS; i++) {
  		desc_write(&priv->descs[i], hw_next,
  			   (i == (NUM_DESCS - 1)) ? 0 : &priv->descs[i+1]);
  	}
  	priv->desc_free = &priv->descs[0];
  
  	/* initialize channels */
  	if (priv->data.version == CPSW_CTRL_VERSION_2) {
  		memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan));
  		priv->rx_chan.hdp       = priv->dma_regs + CPDMA_RXHDP_VER2;
  		priv->rx_chan.cp        = priv->dma_regs + CPDMA_RXCP_VER2;
  		priv->rx_chan.rxfree    = priv->dma_regs + CPDMA_RXFREE;
  
  		memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan));
  		priv->tx_chan.hdp       = priv->dma_regs + CPDMA_TXHDP_VER2;
  		priv->tx_chan.cp        = priv->dma_regs + CPDMA_TXCP_VER2;
  	} else {
  		memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan));
  		priv->rx_chan.hdp       = priv->dma_regs + CPDMA_RXHDP_VER1;
  		priv->rx_chan.cp        = priv->dma_regs + CPDMA_RXCP_VER1;
  		priv->rx_chan.rxfree    = priv->dma_regs + CPDMA_RXFREE;
  
  		memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan));
  		priv->tx_chan.hdp       = priv->dma_regs + CPDMA_TXHDP_VER1;
  		priv->tx_chan.cp        = priv->dma_regs + CPDMA_TXCP_VER1;
  	}
  
  	/* clear dma state */
  	setbit_and_wait_for_clear32(priv->dma_regs + CPDMA_SOFTRESET);
  
  	if (priv->data.version == CPSW_CTRL_VERSION_2) {
  		for (i = 0; i < priv->data.channels; i++) {
  			__raw_writel(0, priv->dma_regs + CPDMA_RXHDP_VER2 + 4
  					* i);
  			__raw_writel(0, priv->dma_regs + CPDMA_RXFREE + 4
  					* i);
  			__raw_writel(0, priv->dma_regs + CPDMA_RXCP_VER2 + 4
  					* i);
  			__raw_writel(0, priv->dma_regs + CPDMA_TXHDP_VER2 + 4
  					* i);
  			__raw_writel(0, priv->dma_regs + CPDMA_TXCP_VER2 + 4
  					* i);
  		}
  	} else {
  		for (i = 0; i < priv->data.channels; i++) {
  			__raw_writel(0, priv->dma_regs + CPDMA_RXHDP_VER1 + 4
  					* i);
  			__raw_writel(0, priv->dma_regs + CPDMA_RXFREE + 4
  					* i);
  			__raw_writel(0, priv->dma_regs + CPDMA_RXCP_VER1 + 4
  					* i);
  			__raw_writel(0, priv->dma_regs + CPDMA_TXHDP_VER1 + 4
  					* i);
  			__raw_writel(0, priv->dma_regs + CPDMA_TXCP_VER1 + 4
  					* i);
  
  		}
  	}
  
  	__raw_writel(1, priv->dma_regs + CPDMA_TXCONTROL);
  	__raw_writel(1, priv->dma_regs + CPDMA_RXCONTROL);
  
  	/* submit rx descs */
  	for (i = 0; i < PKTBUFSRX; i++) {
  		ret = cpdma_submit(priv, &priv->rx_chan, NetRxPackets[i],
  				   PKTSIZE);
  		if (ret < 0) {
  			printf("error %d submitting rx desc
  ", ret);
  			break;
  		}
  	}
  
  	return 0;
  }
  
  static void cpsw_halt(struct eth_device *dev)
  {
  	struct cpsw_priv	*priv = dev->priv;
  
  	writel(0, priv->dma_regs + CPDMA_TXCONTROL);
  	writel(0, priv->dma_regs + CPDMA_RXCONTROL);
  
  	/* soft reset the controller and initialize priv */
  	setbit_and_wait_for_clear32(&priv->regs->soft_reset);
  
  	/* clear dma state */
  	setbit_and_wait_for_clear32(priv->dma_regs + CPDMA_SOFTRESET);
  
  	priv->data.control(0);
  }
  
  static int cpsw_send(struct eth_device *dev, void *packet, int length)
  {
  	struct cpsw_priv	*priv = dev->priv;
  	void *buffer;
  	int len;
  	int timeout = CPDMA_TIMEOUT;
  
  	flush_dcache_range((unsigned long)packet,
  			   (unsigned long)packet + length);
  
  	/* first reap completed packets */
  	while (timeout-- &&
  		(cpdma_process(priv, &priv->tx_chan, &buffer, &len) >= 0))
  		;
  
  	if (timeout == -1) {
  		printf("cpdma_process timeout
  ");
  		return -ETIMEDOUT;
  	}
  
  	return cpdma_submit(priv, &priv->tx_chan, packet, length);
  }
  
  static int cpsw_recv(struct eth_device *dev)
  {
  	struct cpsw_priv	*priv = dev->priv;
  	void *buffer;
  	int len;
  
  	while (cpdma_process(priv, &priv->rx_chan, &buffer, &len) >= 0) {
  		invalidate_dcache_range((unsigned long)buffer,
  					(unsigned long)buffer + PKTSIZE_ALIGN);
  		NetReceive(buffer, len);
  		cpdma_submit(priv, &priv->rx_chan, buffer, PKTSIZE);
  	}
  
  	return 0;
  }
  
  static void cpsw_slave_setup(struct cpsw_slave *slave, int slave_num,
  			    struct cpsw_priv *priv)
  {
  	void			*regs = priv->regs;
  	struct cpsw_slave_data	*data = priv->data.slave_data + slave_num;
  	slave->slave_num = slave_num;
  	slave->data	= data;
  	slave->regs	= regs + data->slave_reg_ofs;
  	slave->sliver	= regs + data->sliver_reg_ofs;
  }
  
  static int cpsw_phy_init(struct eth_device *dev, struct cpsw_slave *slave)
  {
  	struct cpsw_priv *priv = (struct cpsw_priv *)dev->priv;
  	struct phy_device *phydev;
  	u32 supported = PHY_GBIT_FEATURES;
  
  	phydev = phy_connect(priv->bus,
  			slave->data->phy_addr,
  			dev,
  			slave->data->phy_if);
  
  	if (!phydev)
  		return -1;
  
  	phydev->supported &= supported;
  	phydev->advertising = phydev->supported;
  
  	priv->phydev = phydev;
  	phy_config(phydev);
  
  	return 1;
  }
  
  int cpsw_register(struct cpsw_platform_data *data)
  {
  	struct cpsw_priv	*priv;
  	struct cpsw_slave	*slave;
  	void			*regs = (void *)data->cpsw_base;
  	struct eth_device	*dev;
  
  	dev = calloc(sizeof(*dev), 1);
  	if (!dev)
  		return -ENOMEM;
  
  	priv = calloc(sizeof(*priv), 1);
  	if (!priv) {
  		free(dev);
  		return -ENOMEM;
  	}
  
  	priv->data = *data;
  	priv->dev = dev;
  
  	priv->slaves = malloc(sizeof(struct cpsw_slave) * data->slaves);
  	if (!priv->slaves) {
  		free(dev);
  		free(priv);
  		return -ENOMEM;
  	}
  
  	priv->host_port		= data->host_port_num;
  	priv->regs		= regs;
  	priv->host_port_regs	= regs + data->host_port_reg_ofs;
  	priv->dma_regs		= regs + data->cpdma_reg_ofs;
  	priv->ale_regs		= regs + data->ale_reg_ofs;
  	priv->descs		= (void *)regs + data->bd_ram_ofs;
  
  	int idx = 0;
  
  	for_each_slave(slave, priv) {
  		cpsw_slave_setup(slave, idx, priv);
  		idx = idx + 1;
  	}
  
  	strcpy(dev->name, "cpsw");
  	dev->iobase	= 0;
  	dev->init	= cpsw_init;
  	dev->halt	= cpsw_halt;
  	dev->send	= cpsw_send;
  	dev->recv	= cpsw_recv;
  	dev->priv	= priv;
  
  	eth_register(dev);
  
  	cpsw_mdio_init(dev->name, data->mdio_base, data->mdio_div);
  	priv->bus = miiphy_get_dev_by_name(dev->name);
  	for_active_slave(slave, priv)
  		cpsw_phy_init(dev, slave);
  
  	return 1;
  }