Blame view

kernel/linux-imx6_3.14.28/arch/arm/common/edma.c 48.7 KB
6b13f685e   김민수   BSP 최초 추가
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
  /*
   * EDMA3 support for DaVinci
   *
   * Copyright (C) 2006-2009 Texas Instruments.
   *
   * This program is free software; you can redistribute it and/or modify
   * it under the terms of the GNU General Public License as published by
   * the Free Software Foundation; either version 2 of the License, or
   * (at your option) any later version.
   *
   * This program is distributed in the hope that it will be useful,
   * but WITHOUT ANY WARRANTY; without even the implied warranty of
   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   * GNU General Public License for more details.
   *
   * You should have received a copy of the GNU General Public License
   * along with this program; if not, write to the Free Software
   * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
   */
  #include <linux/err.h>
  #include <linux/kernel.h>
  #include <linux/init.h>
  #include <linux/module.h>
  #include <linux/interrupt.h>
  #include <linux/platform_device.h>
  #include <linux/io.h>
  #include <linux/slab.h>
  #include <linux/edma.h>
  #include <linux/of_address.h>
  #include <linux/of_device.h>
  #include <linux/of_dma.h>
  #include <linux/of_irq.h>
  #include <linux/pm_runtime.h>
  
  #include <linux/platform_data/edma.h>
  
  /* Offsets matching "struct edmacc_param" */
  #define PARM_OPT		0x00
  #define PARM_SRC		0x04
  #define PARM_A_B_CNT		0x08
  #define PARM_DST		0x0c
  #define PARM_SRC_DST_BIDX	0x10
  #define PARM_LINK_BCNTRLD	0x14
  #define PARM_SRC_DST_CIDX	0x18
  #define PARM_CCNT		0x1c
  
  #define PARM_SIZE		0x20
  
  /* Offsets for EDMA CC global channel registers and their shadows */
  #define SH_ER		0x00	/* 64 bits */
  #define SH_ECR		0x08	/* 64 bits */
  #define SH_ESR		0x10	/* 64 bits */
  #define SH_CER		0x18	/* 64 bits */
  #define SH_EER		0x20	/* 64 bits */
  #define SH_EECR		0x28	/* 64 bits */
  #define SH_EESR		0x30	/* 64 bits */
  #define SH_SER		0x38	/* 64 bits */
  #define SH_SECR		0x40	/* 64 bits */
  #define SH_IER		0x50	/* 64 bits */
  #define SH_IECR		0x58	/* 64 bits */
  #define SH_IESR		0x60	/* 64 bits */
  #define SH_IPR		0x68	/* 64 bits */
  #define SH_ICR		0x70	/* 64 bits */
  #define SH_IEVAL	0x78
  #define SH_QER		0x80
  #define SH_QEER		0x84
  #define SH_QEECR	0x88
  #define SH_QEESR	0x8c
  #define SH_QSER		0x90
  #define SH_QSECR	0x94
  #define SH_SIZE		0x200
  
  /* Offsets for EDMA CC global registers */
  #define EDMA_REV	0x0000
  #define EDMA_CCCFG	0x0004
  #define EDMA_QCHMAP	0x0200	/* 8 registers */
  #define EDMA_DMAQNUM	0x0240	/* 8 registers (4 on OMAP-L1xx) */
  #define EDMA_QDMAQNUM	0x0260
  #define EDMA_QUETCMAP	0x0280
  #define EDMA_QUEPRI	0x0284
  #define EDMA_EMR	0x0300	/* 64 bits */
  #define EDMA_EMCR	0x0308	/* 64 bits */
  #define EDMA_QEMR	0x0310
  #define EDMA_QEMCR	0x0314
  #define EDMA_CCERR	0x0318
  #define EDMA_CCERRCLR	0x031c
  #define EDMA_EEVAL	0x0320
  #define EDMA_DRAE	0x0340	/* 4 x 64 bits*/
  #define EDMA_QRAE	0x0380	/* 4 registers */
  #define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */
  #define EDMA_QSTAT	0x0600	/* 2 registers */
  #define EDMA_QWMTHRA	0x0620
  #define EDMA_QWMTHRB	0x0624
  #define EDMA_CCSTAT	0x0640
  
  #define EDMA_M		0x1000	/* global channel registers */
  #define EDMA_ECR	0x1008
  #define EDMA_ECRH	0x100C
  #define EDMA_SHADOW0	0x2000	/* 4 regions shadowing global channels */
  #define EDMA_PARM	0x4000	/* 128 param entries */
  
  #define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5))
  
  #define EDMA_DCHMAP	0x0100  /* 64 registers */
  #define CHMAP_EXIST	BIT(24)
  
  #define EDMA_MAX_DMACH           64
  #define EDMA_MAX_PARAMENTRY     512
  
  /*****************************************************************************/
  
  static void __iomem *edmacc_regs_base[EDMA_MAX_CC];
  
  static inline unsigned int edma_read(unsigned ctlr, int offset)
  {
  	return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset);
  }
  
  static inline void edma_write(unsigned ctlr, int offset, int val)
  {
  	__raw_writel(val, edmacc_regs_base[ctlr] + offset);
  }
  static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
  		unsigned or)
  {
  	unsigned val = edma_read(ctlr, offset);
  	val &= and;
  	val |= or;
  	edma_write(ctlr, offset, val);
  }
  static inline void edma_and(unsigned ctlr, int offset, unsigned and)
  {
  	unsigned val = edma_read(ctlr, offset);
  	val &= and;
  	edma_write(ctlr, offset, val);
  }
  static inline void edma_or(unsigned ctlr, int offset, unsigned or)
  {
  	unsigned val = edma_read(ctlr, offset);
  	val |= or;
  	edma_write(ctlr, offset, val);
  }
  static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
  {
  	return edma_read(ctlr, offset + (i << 2));
  }
  static inline void edma_write_array(unsigned ctlr, int offset, int i,
  		unsigned val)
  {
  	edma_write(ctlr, offset + (i << 2), val);
  }
  static inline void edma_modify_array(unsigned ctlr, int offset, int i,
  		unsigned and, unsigned or)
  {
  	edma_modify(ctlr, offset + (i << 2), and, or);
  }
  static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
  {
  	edma_or(ctlr, offset + (i << 2), or);
  }
  static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
  		unsigned or)
  {
  	edma_or(ctlr, offset + ((i*2 + j) << 2), or);
  }
  static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
  		unsigned val)
  {
  	edma_write(ctlr, offset + ((i*2 + j) << 2), val);
  }
  static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
  {
  	return edma_read(ctlr, EDMA_SHADOW0 + offset);
  }
  static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
  		int i)
  {
  	return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
  }
  static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
  {
  	edma_write(ctlr, EDMA_SHADOW0 + offset, val);
  }
  static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
  		unsigned val)
  {
  	edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
  }
  static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
  		int param_no)
  {
  	return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
  }
  static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
  		unsigned val)
  {
  	edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
  }
  static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
  		unsigned and, unsigned or)
  {
  	edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
  }
  static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
  		unsigned and)
  {
  	edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
  }
  static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
  		unsigned or)
  {
  	edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
  }
  
  static inline void set_bits(int offset, int len, unsigned long *p)
  {
  	for (; len > 0; len--)
  		set_bit(offset + (len - 1), p);
  }
  
  static inline void clear_bits(int offset, int len, unsigned long *p)
  {
  	for (; len > 0; len--)
  		clear_bit(offset + (len - 1), p);
  }
  
  /*****************************************************************************/
  
  /* actual number of DMA channels and slots on this silicon */
  struct edma {
  	/* how many dma resources of each type */
  	unsigned	num_channels;
  	unsigned	num_region;
  	unsigned	num_slots;
  	unsigned	num_tc;
  	unsigned	num_cc;
  	enum dma_event_q 	default_queue;
  
  	/* list of channels with no even trigger; terminated by "-1" */
  	const s8	*noevent;
  
  	/* The edma_inuse bit for each PaRAM slot is clear unless the
  	 * channel is in use ... by ARM or DSP, for QDMA, or whatever.
  	 */
  	DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
  
  	/* The edma_unused bit for each channel is clear unless
  	 * it is not being used on this platform. It uses a bit
  	 * of SOC-specific initialization code.
  	 */
  	DECLARE_BITMAP(edma_unused, EDMA_MAX_DMACH);
  
  	unsigned	irq_res_start;
  	unsigned	irq_res_end;
  
  	struct dma_interrupt_data {
  		void (*callback)(unsigned channel, unsigned short ch_status,
  				void *data);
  		void *data;
  	} intr_data[EDMA_MAX_DMACH];
  };
  
  static struct edma *edma_cc[EDMA_MAX_CC];
  static int arch_num_cc;
  
  /* dummy param set used to (re)initialize parameter RAM slots */
  static const struct edmacc_param dummy_paramset = {
  	.link_bcntrld = 0xffff,
  	.ccnt = 1,
  };
  
  static const struct of_device_id edma_of_ids[] = {
  	{ .compatible = "ti,edma3", },
  	{}
  };
  
  /*****************************************************************************/
  
  static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
  		enum dma_event_q queue_no)
  {
  	int bit = (ch_no & 0x7) * 4;
  
  	/* default to low priority queue */
  	if (queue_no == EVENTQ_DEFAULT)
  		queue_no = edma_cc[ctlr]->default_queue;
  
  	queue_no &= 7;
  	edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
  			~(0x7 << bit), queue_no << bit);
  }
  
  static void __init map_queue_tc(unsigned ctlr, int queue_no, int tc_no)
  {
  	int bit = queue_no * 4;
  	edma_modify(ctlr, EDMA_QUETCMAP, ~(0x7 << bit), ((tc_no & 0x7) << bit));
  }
  
  static void __init assign_priority_to_queue(unsigned ctlr, int queue_no,
  		int priority)
  {
  	int bit = queue_no * 4;
  	edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
  			((priority & 0x7) << bit));
  }
  
  /**
   * map_dmach_param - Maps channel number to param entry number
   *
   * This maps the dma channel number to param entry numberter. In
   * other words using the DMA channel mapping registers a param entry
   * can be mapped to any channel
   *
   * Callers are responsible for ensuring the channel mapping logic is
   * included in that particular EDMA variant (Eg : dm646x)
   *
   */
  static void __init map_dmach_param(unsigned ctlr)
  {
  	int i;
  	for (i = 0; i < EDMA_MAX_DMACH; i++)
  		edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
  }
  
  static inline void
  setup_dma_interrupt(unsigned lch,
  	void (*callback)(unsigned channel, u16 ch_status, void *data),
  	void *data)
  {
  	unsigned ctlr;
  
  	ctlr = EDMA_CTLR(lch);
  	lch = EDMA_CHAN_SLOT(lch);
  
  	if (!callback)
  		edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
  				BIT(lch & 0x1f));
  
  	edma_cc[ctlr]->intr_data[lch].callback = callback;
  	edma_cc[ctlr]->intr_data[lch].data = data;
  
  	if (callback) {
  		edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
  				BIT(lch & 0x1f));
  		edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
  				BIT(lch & 0x1f));
  	}
  }
  
  static int irq2ctlr(int irq)
  {
  	if (irq >= edma_cc[0]->irq_res_start && irq <= edma_cc[0]->irq_res_end)
  		return 0;
  	else if (irq >= edma_cc[1]->irq_res_start &&
  		irq <= edma_cc[1]->irq_res_end)
  		return 1;
  
  	return -1;
  }
  
  /******************************************************************************
   *
   * DMA interrupt handler
   *
   *****************************************************************************/
  static irqreturn_t dma_irq_handler(int irq, void *data)
  {
  	int ctlr;
  	u32 sh_ier;
  	u32 sh_ipr;
  	u32 bank;
  
  	ctlr = irq2ctlr(irq);
  	if (ctlr < 0)
  		return IRQ_NONE;
  
  	dev_dbg(data, "dma_irq_handler
  ");
  
  	sh_ipr = edma_shadow0_read_array(ctlr, SH_IPR, 0);
  	if (!sh_ipr) {
  		sh_ipr = edma_shadow0_read_array(ctlr, SH_IPR, 1);
  		if (!sh_ipr)
  			return IRQ_NONE;
  		sh_ier = edma_shadow0_read_array(ctlr, SH_IER, 1);
  		bank = 1;
  	} else {
  		sh_ier = edma_shadow0_read_array(ctlr, SH_IER, 0);
  		bank = 0;
  	}
  
  	do {
  		u32 slot;
  		u32 channel;
  
  		dev_dbg(data, "IPR%d %08x
  ", bank, sh_ipr);
  
  		slot = __ffs(sh_ipr);
  		sh_ipr &= ~(BIT(slot));
  
  		if (sh_ier & BIT(slot)) {
  			channel = (bank << 5) | slot;
  			/* Clear the corresponding IPR bits */
  			edma_shadow0_write_array(ctlr, SH_ICR, bank,
  					BIT(slot));
  			if (edma_cc[ctlr]->intr_data[channel].callback)
  				edma_cc[ctlr]->intr_data[channel].callback(
  					channel, EDMA_DMA_COMPLETE,
  					edma_cc[ctlr]->intr_data[channel].data);
  		}
  	} while (sh_ipr);
  
  	edma_shadow0_write(ctlr, SH_IEVAL, 1);
  	return IRQ_HANDLED;
  }
  
  /******************************************************************************
   *
   * DMA error interrupt handler
   *
   *****************************************************************************/
  static irqreturn_t dma_ccerr_handler(int irq, void *data)
  {
  	int i;
  	int ctlr;
  	unsigned int cnt = 0;
  
  	ctlr = irq2ctlr(irq);
  	if (ctlr < 0)
  		return IRQ_NONE;
  
  	dev_dbg(data, "dma_ccerr_handler
  ");
  
  	if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
  	    (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
  	    (edma_read(ctlr, EDMA_QEMR) == 0) &&
  	    (edma_read(ctlr, EDMA_CCERR) == 0))
  		return IRQ_NONE;
  
  	while (1) {
  		int j = -1;
  		if (edma_read_array(ctlr, EDMA_EMR, 0))
  			j = 0;
  		else if (edma_read_array(ctlr, EDMA_EMR, 1))
  			j = 1;
  		if (j >= 0) {
  			dev_dbg(data, "EMR%d %08x
  ", j,
  					edma_read_array(ctlr, EDMA_EMR, j));
  			for (i = 0; i < 32; i++) {
  				int k = (j << 5) + i;
  				if (edma_read_array(ctlr, EDMA_EMR, j) &
  							BIT(i)) {
  					/* Clear the corresponding EMR bits */
  					edma_write_array(ctlr, EDMA_EMCR, j,
  							BIT(i));
  					/* Clear any SER */
  					edma_shadow0_write_array(ctlr, SH_SECR,
  								j, BIT(i));
  					if (edma_cc[ctlr]->intr_data[k].
  								callback) {
  						edma_cc[ctlr]->intr_data[k].
  						callback(k,
  						EDMA_DMA_CC_ERROR,
  						edma_cc[ctlr]->intr_data
  						[k].data);
  					}
  				}
  			}
  		} else if (edma_read(ctlr, EDMA_QEMR)) {
  			dev_dbg(data, "QEMR %02x
  ",
  				edma_read(ctlr, EDMA_QEMR));
  			for (i = 0; i < 8; i++) {
  				if (edma_read(ctlr, EDMA_QEMR) & BIT(i)) {
  					/* Clear the corresponding IPR bits */
  					edma_write(ctlr, EDMA_QEMCR, BIT(i));
  					edma_shadow0_write(ctlr, SH_QSECR,
  								BIT(i));
  
  					/* NOTE:  not reported!! */
  				}
  			}
  		} else if (edma_read(ctlr, EDMA_CCERR)) {
  			dev_dbg(data, "CCERR %08x
  ",
  				edma_read(ctlr, EDMA_CCERR));
  			/* FIXME:  CCERR.BIT(16) ignored!  much better
  			 * to just write CCERRCLR with CCERR value...
  			 */
  			for (i = 0; i < 8; i++) {
  				if (edma_read(ctlr, EDMA_CCERR) & BIT(i)) {
  					/* Clear the corresponding IPR bits */
  					edma_write(ctlr, EDMA_CCERRCLR, BIT(i));
  
  					/* NOTE:  not reported!! */
  				}
  			}
  		}
  		if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
  		    (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
  		    (edma_read(ctlr, EDMA_QEMR) == 0) &&
  		    (edma_read(ctlr, EDMA_CCERR) == 0))
  			break;
  		cnt++;
  		if (cnt > 10)
  			break;
  	}
  	edma_write(ctlr, EDMA_EEVAL, 1);
  	return IRQ_HANDLED;
  }
  
  static int reserve_contiguous_slots(int ctlr, unsigned int id,
  				     unsigned int num_slots,
  				     unsigned int start_slot)
  {
  	int i, j;
  	unsigned int count = num_slots;
  	int stop_slot = start_slot;
  	DECLARE_BITMAP(tmp_inuse, EDMA_MAX_PARAMENTRY);
  
  	for (i = start_slot; i < edma_cc[ctlr]->num_slots; ++i) {
  		j = EDMA_CHAN_SLOT(i);
  		if (!test_and_set_bit(j, edma_cc[ctlr]->edma_inuse)) {
  			/* Record our current beginning slot */
  			if (count == num_slots)
  				stop_slot = i;
  
  			count--;
  			set_bit(j, tmp_inuse);
  
  			if (count == 0)
  				break;
  		} else {
  			clear_bit(j, tmp_inuse);
  
  			if (id == EDMA_CONT_PARAMS_FIXED_EXACT) {
  				stop_slot = i;
  				break;
  			} else {
  				count = num_slots;
  			}
  		}
  	}
  
  	/*
  	 * We have to clear any bits that we set
  	 * if we run out parameter RAM slots, i.e we do find a set
  	 * of contiguous parameter RAM slots but do not find the exact number
  	 * requested as we may reach the total number of parameter RAM slots
  	 */
  	if (i == edma_cc[ctlr]->num_slots)
  		stop_slot = i;
  
  	j = start_slot;
  	for_each_set_bit_from(j, tmp_inuse, stop_slot)
  		clear_bit(j, edma_cc[ctlr]->edma_inuse);
  
  	if (count)
  		return -EBUSY;
  
  	for (j = i - num_slots + 1; j <= i; ++j)
  		memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(j),
  			&dummy_paramset, PARM_SIZE);
  
  	return EDMA_CTLR_CHAN(ctlr, i - num_slots + 1);
  }
  
  static int prepare_unused_channel_list(struct device *dev, void *data)
  {
  	struct platform_device *pdev = to_platform_device(dev);
  	int i, count, ctlr;
  	struct of_phandle_args  dma_spec;
  
  	if (dev->of_node) {
  		count = of_property_count_strings(dev->of_node, "dma-names");
  		if (count < 0)
  			return 0;
  		for (i = 0; i < count; i++) {
  			if (of_parse_phandle_with_args(dev->of_node, "dmas",
  						       "#dma-cells", i,
  						       &dma_spec))
  				continue;
  
  			if (!of_match_node(edma_of_ids, dma_spec.np)) {
  				of_node_put(dma_spec.np);
  				continue;
  			}
  
  			clear_bit(EDMA_CHAN_SLOT(dma_spec.args[0]),
  				  edma_cc[0]->edma_unused);
  			of_node_put(dma_spec.np);
  		}
  		return 0;
  	}
  
  	/* For non-OF case */
  	for (i = 0; i < pdev->num_resources; i++) {
  		if ((pdev->resource[i].flags & IORESOURCE_DMA) &&
  				(int)pdev->resource[i].start >= 0) {
  			ctlr = EDMA_CTLR(pdev->resource[i].start);
  			clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
  				  edma_cc[ctlr]->edma_unused);
  		}
  	}
  
  	return 0;
  }
  
  /*-----------------------------------------------------------------------*/
  
  static bool unused_chan_list_done;
  
  /* Resource alloc/free:  dma channels, parameter RAM slots */
  
  /**
   * edma_alloc_channel - allocate DMA channel and paired parameter RAM
   * @channel: specific channel to allocate; negative for "any unmapped channel"
   * @callback: optional; to be issued on DMA completion or errors
   * @data: passed to callback
   * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
   *	Controller (TC) executes requests using this channel.  Use
   *	EVENTQ_DEFAULT unless you really need a high priority queue.
   *
   * This allocates a DMA channel and its associated parameter RAM slot.
   * The parameter RAM is initialized to hold a dummy transfer.
   *
   * Normal use is to pass a specific channel number as @channel, to make
   * use of hardware events mapped to that channel.  When the channel will
   * be used only for software triggering or event chaining, channels not
   * mapped to hardware events (or mapped to unused events) are preferable.
   *
   * DMA transfers start from a channel using edma_start(), or by
   * chaining.  When the transfer described in that channel's parameter RAM
   * slot completes, that slot's data may be reloaded through a link.
   *
   * DMA errors are only reported to the @callback associated with the
   * channel driving that transfer, but transfer completion callbacks can
   * be sent to another channel under control of the TCC field in
   * the option word of the transfer's parameter RAM set.  Drivers must not
   * use DMA transfer completion callbacks for channels they did not allocate.
   * (The same applies to TCC codes used in transfer chaining.)
   *
   * Returns the number of the channel, else negative errno.
   */
  int edma_alloc_channel(int channel,
  		void (*callback)(unsigned channel, u16 ch_status, void *data),
  		void *data,
  		enum dma_event_q eventq_no)
  {
  	unsigned i, done = 0, ctlr = 0;
  	int ret = 0;
  
  	if (!unused_chan_list_done) {
  		/*
  		 * Scan all the platform devices to find out the EDMA channels
  		 * used and clear them in the unused list, making the rest
  		 * available for ARM usage.
  		 */
  		ret = bus_for_each_dev(&platform_bus_type, NULL, NULL,
  				prepare_unused_channel_list);
  		if (ret < 0)
  			return ret;
  
  		unused_chan_list_done = true;
  	}
  
  	if (channel >= 0) {
  		ctlr = EDMA_CTLR(channel);
  		channel = EDMA_CHAN_SLOT(channel);
  	}
  
  	if (channel < 0) {
  		for (i = 0; i < arch_num_cc; i++) {
  			channel = 0;
  			for (;;) {
  				channel = find_next_bit(edma_cc[i]->edma_unused,
  						edma_cc[i]->num_channels,
  						channel);
  				if (channel == edma_cc[i]->num_channels)
  					break;
  				if (!test_and_set_bit(channel,
  						edma_cc[i]->edma_inuse)) {
  					done = 1;
  					ctlr = i;
  					break;
  				}
  				channel++;
  			}
  			if (done)
  				break;
  		}
  		if (!done)
  			return -ENOMEM;
  	} else if (channel >= edma_cc[ctlr]->num_channels) {
  		return -EINVAL;
  	} else if (test_and_set_bit(channel, edma_cc[ctlr]->edma_inuse)) {
  		return -EBUSY;
  	}
  
  	/* ensure access through shadow region 0 */
  	edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
  
  	/* ensure no events are pending */
  	edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
  	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
  			&dummy_paramset, PARM_SIZE);
  
  	if (callback)
  		setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
  					callback, data);
  
  	map_dmach_queue(ctlr, channel, eventq_no);
  
  	return EDMA_CTLR_CHAN(ctlr, channel);
  }
  EXPORT_SYMBOL(edma_alloc_channel);
  
  
  /**
   * edma_free_channel - deallocate DMA channel
   * @channel: dma channel returned from edma_alloc_channel()
   *
   * This deallocates the DMA channel and associated parameter RAM slot
   * allocated by edma_alloc_channel().
   *
   * Callers are responsible for ensuring the channel is inactive, and
   * will not be reactivated by linking, chaining, or software calls to
   * edma_start().
   */
  void edma_free_channel(unsigned channel)
  {
  	unsigned ctlr;
  
  	ctlr = EDMA_CTLR(channel);
  	channel = EDMA_CHAN_SLOT(channel);
  
  	if (channel >= edma_cc[ctlr]->num_channels)
  		return;
  
  	setup_dma_interrupt(channel, NULL, NULL);
  	/* REVISIT should probably take out of shadow region 0 */
  
  	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
  			&dummy_paramset, PARM_SIZE);
  	clear_bit(channel, edma_cc[ctlr]->edma_inuse);
  }
  EXPORT_SYMBOL(edma_free_channel);
  
  /**
   * edma_alloc_slot - allocate DMA parameter RAM
   * @slot: specific slot to allocate; negative for "any unused slot"
   *
   * This allocates a parameter RAM slot, initializing it to hold a
   * dummy transfer.  Slots allocated using this routine have not been
   * mapped to a hardware DMA channel, and will normally be used by
   * linking to them from a slot associated with a DMA channel.
   *
   * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
   * slots may be allocated on behalf of DSP firmware.
   *
   * Returns the number of the slot, else negative errno.
   */
  int edma_alloc_slot(unsigned ctlr, int slot)
  {
  	if (!edma_cc[ctlr])
  		return -EINVAL;
  
  	if (slot >= 0)
  		slot = EDMA_CHAN_SLOT(slot);
  
  	if (slot < 0) {
  		slot = edma_cc[ctlr]->num_channels;
  		for (;;) {
  			slot = find_next_zero_bit(edma_cc[ctlr]->edma_inuse,
  					edma_cc[ctlr]->num_slots, slot);
  			if (slot == edma_cc[ctlr]->num_slots)
  				return -ENOMEM;
  			if (!test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse))
  				break;
  		}
  	} else if (slot < edma_cc[ctlr]->num_channels ||
  			slot >= edma_cc[ctlr]->num_slots) {
  		return -EINVAL;
  	} else if (test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse)) {
  		return -EBUSY;
  	}
  
  	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
  			&dummy_paramset, PARM_SIZE);
  
  	return EDMA_CTLR_CHAN(ctlr, slot);
  }
  EXPORT_SYMBOL(edma_alloc_slot);
  
  /**
   * edma_free_slot - deallocate DMA parameter RAM
   * @slot: parameter RAM slot returned from edma_alloc_slot()
   *
   * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
   * Callers are responsible for ensuring the slot is inactive, and will
   * not be activated.
   */
  void edma_free_slot(unsigned slot)
  {
  	unsigned ctlr;
  
  	ctlr = EDMA_CTLR(slot);
  	slot = EDMA_CHAN_SLOT(slot);
  
  	if (slot < edma_cc[ctlr]->num_channels ||
  		slot >= edma_cc[ctlr]->num_slots)
  		return;
  
  	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
  			&dummy_paramset, PARM_SIZE);
  	clear_bit(slot, edma_cc[ctlr]->edma_inuse);
  }
  EXPORT_SYMBOL(edma_free_slot);
  
  
  /**
   * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
   * The API will return the starting point of a set of
   * contiguous parameter RAM slots that have been requested
   *
   * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
   * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
   * @count: number of contiguous Paramter RAM slots
   * @slot  - the start value of Parameter RAM slot that should be passed if id
   * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
   *
   * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
   * contiguous Parameter RAM slots from parameter RAM 64 in the case of
   * DaVinci SOCs and 32 in the case of DA8xx SOCs.
   *
   * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
   * set of contiguous parameter RAM slots from the "slot" that is passed as an
   * argument to the API.
   *
   * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
   * starts looking for a set of contiguous parameter RAMs from the "slot"
   * that is passed as an argument to the API. On failure the API will try to
   * find a set of contiguous Parameter RAM slots from the remaining Parameter
   * RAM slots
   */
  int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count)
  {
  	/*
  	 * The start slot requested should be greater than
  	 * the number of channels and lesser than the total number
  	 * of slots
  	 */
  	if ((id != EDMA_CONT_PARAMS_ANY) &&
  		(slot < edma_cc[ctlr]->num_channels ||
  		slot >= edma_cc[ctlr]->num_slots))
  		return -EINVAL;
  
  	/*
  	 * The number of parameter RAM slots requested cannot be less than 1
  	 * and cannot be more than the number of slots minus the number of
  	 * channels
  	 */
  	if (count < 1 || count >
  		(edma_cc[ctlr]->num_slots - edma_cc[ctlr]->num_channels))
  		return -EINVAL;
  
  	switch (id) {
  	case EDMA_CONT_PARAMS_ANY:
  		return reserve_contiguous_slots(ctlr, id, count,
  						 edma_cc[ctlr]->num_channels);
  	case EDMA_CONT_PARAMS_FIXED_EXACT:
  	case EDMA_CONT_PARAMS_FIXED_NOT_EXACT:
  		return reserve_contiguous_slots(ctlr, id, count, slot);
  	default:
  		return -EINVAL;
  	}
  
  }
  EXPORT_SYMBOL(edma_alloc_cont_slots);
  
  /**
   * edma_free_cont_slots - deallocate DMA parameter RAM slots
   * @slot: first parameter RAM of a set of parameter RAM slots to be freed
   * @count: the number of contiguous parameter RAM slots to be freed
   *
   * This deallocates the parameter RAM slots allocated by
   * edma_alloc_cont_slots.
   * Callers/applications need to keep track of sets of contiguous
   * parameter RAM slots that have been allocated using the edma_alloc_cont_slots
   * API.
   * Callers are responsible for ensuring the slots are inactive, and will
   * not be activated.
   */
  int edma_free_cont_slots(unsigned slot, int count)
  {
  	unsigned ctlr, slot_to_free;
  	int i;
  
  	ctlr = EDMA_CTLR(slot);
  	slot = EDMA_CHAN_SLOT(slot);
  
  	if (slot < edma_cc[ctlr]->num_channels ||
  		slot >= edma_cc[ctlr]->num_slots ||
  		count < 1)
  		return -EINVAL;
  
  	for (i = slot; i < slot + count; ++i) {
  		ctlr = EDMA_CTLR(i);
  		slot_to_free = EDMA_CHAN_SLOT(i);
  
  		memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot_to_free),
  			&dummy_paramset, PARM_SIZE);
  		clear_bit(slot_to_free, edma_cc[ctlr]->edma_inuse);
  	}
  
  	return 0;
  }
  EXPORT_SYMBOL(edma_free_cont_slots);
  
  /*-----------------------------------------------------------------------*/
  
  /* Parameter RAM operations (i) -- read/write partial slots */
  
  /**
   * edma_set_src - set initial DMA source address in parameter RAM slot
   * @slot: parameter RAM slot being configured
   * @src_port: physical address of source (memory, controller FIFO, etc)
   * @addressMode: INCR, except in very rare cases
   * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
   *	width to use when addressing the fifo (e.g. W8BIT, W32BIT)
   *
   * Note that the source address is modified during the DMA transfer
   * according to edma_set_src_index().
   */
  void edma_set_src(unsigned slot, dma_addr_t src_port,
  				enum address_mode mode, enum fifo_width width)
  {
  	unsigned ctlr;
  
  	ctlr = EDMA_CTLR(slot);
  	slot = EDMA_CHAN_SLOT(slot);
  
  	if (slot < edma_cc[ctlr]->num_slots) {
  		unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
  
  		if (mode) {
  			/* set SAM and program FWID */
  			i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
  		} else {
  			/* clear SAM */
  			i &= ~SAM;
  		}
  		edma_parm_write(ctlr, PARM_OPT, slot, i);
  
  		/* set the source port address
  		   in source register of param structure */
  		edma_parm_write(ctlr, PARM_SRC, slot, src_port);
  	}
  }
  EXPORT_SYMBOL(edma_set_src);
  
  /**
   * edma_set_dest - set initial DMA destination address in parameter RAM slot
   * @slot: parameter RAM slot being configured
   * @dest_port: physical address of destination (memory, controller FIFO, etc)
   * @addressMode: INCR, except in very rare cases
   * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
   *	width to use when addressing the fifo (e.g. W8BIT, W32BIT)
   *
   * Note that the destination address is modified during the DMA transfer
   * according to edma_set_dest_index().
   */
  void edma_set_dest(unsigned slot, dma_addr_t dest_port,
  				 enum address_mode mode, enum fifo_width width)
  {
  	unsigned ctlr;
  
  	ctlr = EDMA_CTLR(slot);
  	slot = EDMA_CHAN_SLOT(slot);
  
  	if (slot < edma_cc[ctlr]->num_slots) {
  		unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
  
  		if (mode) {
  			/* set DAM and program FWID */
  			i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
  		} else {
  			/* clear DAM */
  			i &= ~DAM;
  		}
  		edma_parm_write(ctlr, PARM_OPT, slot, i);
  		/* set the destination port address
  		   in dest register of param structure */
  		edma_parm_write(ctlr, PARM_DST, slot, dest_port);
  	}
  }
  EXPORT_SYMBOL(edma_set_dest);
  
  /**
   * edma_get_position - returns the current transfer points
   * @slot: parameter RAM slot being examined
   * @src: pointer to source port position
   * @dst: pointer to destination port position
   *
   * Returns current source and destination addresses for a particular
   * parameter RAM slot.  Its channel should not be active when this is called.
   */
  void edma_get_position(unsigned slot, dma_addr_t *src, dma_addr_t *dst)
  {
  	struct edmacc_param temp;
  	unsigned ctlr;
  
  	ctlr = EDMA_CTLR(slot);
  	slot = EDMA_CHAN_SLOT(slot);
  
  	edma_read_slot(EDMA_CTLR_CHAN(ctlr, slot), &temp);
  	if (src != NULL)
  		*src = temp.src;
  	if (dst != NULL)
  		*dst = temp.dst;
  }
  EXPORT_SYMBOL(edma_get_position);
  
  /**
   * edma_set_src_index - configure DMA source address indexing
   * @slot: parameter RAM slot being configured
   * @src_bidx: byte offset between source arrays in a frame
   * @src_cidx: byte offset between source frames in a block
   *
   * Offsets are specified to support either contiguous or discontiguous
   * memory transfers, or repeated access to a hardware register, as needed.
   * When accessing hardware registers, both offsets are normally zero.
   */
  void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx)
  {
  	unsigned ctlr;
  
  	ctlr = EDMA_CTLR(slot);
  	slot = EDMA_CHAN_SLOT(slot);
  
  	if (slot < edma_cc[ctlr]->num_slots) {
  		edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
  				0xffff0000, src_bidx);
  		edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
  				0xffff0000, src_cidx);
  	}
  }
  EXPORT_SYMBOL(edma_set_src_index);
  
  /**
   * edma_set_dest_index - configure DMA destination address indexing
   * @slot: parameter RAM slot being configured
   * @dest_bidx: byte offset between destination arrays in a frame
   * @dest_cidx: byte offset between destination frames in a block
   *
   * Offsets are specified to support either contiguous or discontiguous
   * memory transfers, or repeated access to a hardware register, as needed.
   * When accessing hardware registers, both offsets are normally zero.
   */
  void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx)
  {
  	unsigned ctlr;
  
  	ctlr = EDMA_CTLR(slot);
  	slot = EDMA_CHAN_SLOT(slot);
  
  	if (slot < edma_cc[ctlr]->num_slots) {
  		edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
  				0x0000ffff, dest_bidx << 16);
  		edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
  				0x0000ffff, dest_cidx << 16);
  	}
  }
  EXPORT_SYMBOL(edma_set_dest_index);
  
  /**
   * edma_set_transfer_params - configure DMA transfer parameters
   * @slot: parameter RAM slot being configured
   * @acnt: how many bytes per array (at least one)
   * @bcnt: how many arrays per frame (at least one)
   * @ccnt: how many frames per block (at least one)
   * @bcnt_rld: used only for A-Synchronized transfers; this specifies
   *	the value to reload into bcnt when it decrements to zero
   * @sync_mode: ASYNC or ABSYNC
   *
   * See the EDMA3 documentation to understand how to configure and link
   * transfers using the fields in PaRAM slots.  If you are not doing it
   * all at once with edma_write_slot(), you will use this routine
   * plus two calls each for source and destination, setting the initial
   * address and saying how to index that address.
   *
   * An example of an A-Synchronized transfer is a serial link using a
   * single word shift register.  In that case, @acnt would be equal to
   * that word size; the serial controller issues a DMA synchronization
   * event to transfer each word, and memory access by the DMA transfer
   * controller will be word-at-a-time.
   *
   * An example of an AB-Synchronized transfer is a device using a FIFO.
   * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
   * The controller with the FIFO issues DMA synchronization events when
   * the FIFO threshold is reached, and the DMA transfer controller will
   * transfer one frame to (or from) the FIFO.  It will probably use
   * efficient burst modes to access memory.
   */
  void edma_set_transfer_params(unsigned slot,
  		u16 acnt, u16 bcnt, u16 ccnt,
  		u16 bcnt_rld, enum sync_dimension sync_mode)
  {
  	unsigned ctlr;
  
  	ctlr = EDMA_CTLR(slot);
  	slot = EDMA_CHAN_SLOT(slot);
  
  	if (slot < edma_cc[ctlr]->num_slots) {
  		edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
  				0x0000ffff, bcnt_rld << 16);
  		if (sync_mode == ASYNC)
  			edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
  		else
  			edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
  		/* Set the acount, bcount, ccount registers */
  		edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
  		edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
  	}
  }
  EXPORT_SYMBOL(edma_set_transfer_params);
  
  /**
   * edma_link - link one parameter RAM slot to another
   * @from: parameter RAM slot originating the link
   * @to: parameter RAM slot which is the link target
   *
   * The originating slot should not be part of any active DMA transfer.
   */
  void edma_link(unsigned from, unsigned to)
  {
  	unsigned ctlr_from, ctlr_to;
  
  	ctlr_from = EDMA_CTLR(from);
  	from = EDMA_CHAN_SLOT(from);
  	ctlr_to = EDMA_CTLR(to);
  	to = EDMA_CHAN_SLOT(to);
  
  	if (from >= edma_cc[ctlr_from]->num_slots)
  		return;
  	if (to >= edma_cc[ctlr_to]->num_slots)
  		return;
  	edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
  				PARM_OFFSET(to));
  }
  EXPORT_SYMBOL(edma_link);
  
  /**
   * edma_unlink - cut link from one parameter RAM slot
   * @from: parameter RAM slot originating the link
   *
   * The originating slot should not be part of any active DMA transfer.
   * Its link is set to 0xffff.
   */
  void edma_unlink(unsigned from)
  {
  	unsigned ctlr;
  
  	ctlr = EDMA_CTLR(from);
  	from = EDMA_CHAN_SLOT(from);
  
  	if (from >= edma_cc[ctlr]->num_slots)
  		return;
  	edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
  }
  EXPORT_SYMBOL(edma_unlink);
  
  /*-----------------------------------------------------------------------*/
  
  /* Parameter RAM operations (ii) -- read/write whole parameter sets */
  
  /**
   * edma_write_slot - write parameter RAM data for slot
   * @slot: number of parameter RAM slot being modified
   * @param: data to be written into parameter RAM slot
   *
   * Use this to assign all parameters of a transfer at once.  This
   * allows more efficient setup of transfers than issuing multiple
   * calls to set up those parameters in small pieces, and provides
   * complete control over all transfer options.
   */
  void edma_write_slot(unsigned slot, const struct edmacc_param *param)
  {
  	unsigned ctlr;
  
  	ctlr = EDMA_CTLR(slot);
  	slot = EDMA_CHAN_SLOT(slot);
  
  	if (slot >= edma_cc[ctlr]->num_slots)
  		return;
  	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param,
  			PARM_SIZE);
  }
  EXPORT_SYMBOL(edma_write_slot);
  
  /**
   * edma_read_slot - read parameter RAM data from slot
   * @slot: number of parameter RAM slot being copied
   * @param: where to store copy of parameter RAM data
   *
   * Use this to read data from a parameter RAM slot, perhaps to
   * save them as a template for later reuse.
   */
  void edma_read_slot(unsigned slot, struct edmacc_param *param)
  {
  	unsigned ctlr;
  
  	ctlr = EDMA_CTLR(slot);
  	slot = EDMA_CHAN_SLOT(slot);
  
  	if (slot >= edma_cc[ctlr]->num_slots)
  		return;
  	memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
  			PARM_SIZE);
  }
  EXPORT_SYMBOL(edma_read_slot);
  
  /*-----------------------------------------------------------------------*/
  
  /* Various EDMA channel control operations */
  
  /**
   * edma_pause - pause dma on a channel
   * @channel: on which edma_start() has been called
   *
   * This temporarily disables EDMA hardware events on the specified channel,
   * preventing them from triggering new transfers on its behalf
   */
  void edma_pause(unsigned channel)
  {
  	unsigned ctlr;
  
  	ctlr = EDMA_CTLR(channel);
  	channel = EDMA_CHAN_SLOT(channel);
  
  	if (channel < edma_cc[ctlr]->num_channels) {
  		unsigned int mask = BIT(channel & 0x1f);
  
  		edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
  	}
  }
  EXPORT_SYMBOL(edma_pause);
  
  /**
   * edma_resume - resumes dma on a paused channel
   * @channel: on which edma_pause() has been called
   *
   * This re-enables EDMA hardware events on the specified channel.
   */
  void edma_resume(unsigned channel)
  {
  	unsigned ctlr;
  
  	ctlr = EDMA_CTLR(channel);
  	channel = EDMA_CHAN_SLOT(channel);
  
  	if (channel < edma_cc[ctlr]->num_channels) {
  		unsigned int mask = BIT(channel & 0x1f);
  
  		edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
  	}
  }
  EXPORT_SYMBOL(edma_resume);
  
  int edma_trigger_channel(unsigned channel)
  {
  	unsigned ctlr;
  	unsigned int mask;
  
  	ctlr = EDMA_CTLR(channel);
  	channel = EDMA_CHAN_SLOT(channel);
  	mask = BIT(channel & 0x1f);
  
  	edma_shadow0_write_array(ctlr, SH_ESR, (channel >> 5), mask);
  
  	pr_debug("EDMA: ESR%d %08x
  ", (channel >> 5),
  		 edma_shadow0_read_array(ctlr, SH_ESR, (channel >> 5)));
  	return 0;
  }
  EXPORT_SYMBOL(edma_trigger_channel);
  
  /**
   * edma_start - start dma on a channel
   * @channel: channel being activated
   *
   * Channels with event associations will be triggered by their hardware
   * events, and channels without such associations will be triggered by
   * software.  (At this writing there is no interface for using software
   * triggers except with channels that don't support hardware triggers.)
   *
   * Returns zero on success, else negative errno.
   */
  int edma_start(unsigned channel)
  {
  	unsigned ctlr;
  
  	ctlr = EDMA_CTLR(channel);
  	channel = EDMA_CHAN_SLOT(channel);
  
  	if (channel < edma_cc[ctlr]->num_channels) {
  		int j = channel >> 5;
  		unsigned int mask = BIT(channel & 0x1f);
  
  		/* EDMA channels without event association */
  		if (test_bit(channel, edma_cc[ctlr]->edma_unused)) {
  			pr_debug("EDMA: ESR%d %08x
  ", j,
  				edma_shadow0_read_array(ctlr, SH_ESR, j));
  			edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
  			return 0;
  		}
  
  		/* EDMA channel with event association */
  		pr_debug("EDMA: ER%d %08x
  ", j,
  			edma_shadow0_read_array(ctlr, SH_ER, j));
  		/* Clear any pending event or error */
  		edma_write_array(ctlr, EDMA_ECR, j, mask);
  		edma_write_array(ctlr, EDMA_EMCR, j, mask);
  		/* Clear any SER */
  		edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
  		edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
  		pr_debug("EDMA: EER%d %08x
  ", j,
  			edma_shadow0_read_array(ctlr, SH_EER, j));
  		return 0;
  	}
  
  	return -EINVAL;
  }
  EXPORT_SYMBOL(edma_start);
  
  /**
   * edma_stop - stops dma on the channel passed
   * @channel: channel being deactivated
   *
   * When @lch is a channel, any active transfer is paused and
   * all pending hardware events are cleared.  The current transfer
   * may not be resumed, and the channel's Parameter RAM should be
   * reinitialized before being reused.
   */
  void edma_stop(unsigned channel)
  {
  	unsigned ctlr;
  
  	ctlr = EDMA_CTLR(channel);
  	channel = EDMA_CHAN_SLOT(channel);
  
  	if (channel < edma_cc[ctlr]->num_channels) {
  		int j = channel >> 5;
  		unsigned int mask = BIT(channel & 0x1f);
  
  		edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
  		edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
  		edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
  		edma_write_array(ctlr, EDMA_EMCR, j, mask);
  
  		pr_debug("EDMA: EER%d %08x
  ", j,
  				edma_shadow0_read_array(ctlr, SH_EER, j));
  
  		/* REVISIT:  consider guarding against inappropriate event
  		 * chaining by overwriting with dummy_paramset.
  		 */
  	}
  }
  EXPORT_SYMBOL(edma_stop);
  
  /******************************************************************************
   *
   * It cleans ParamEntry qand bring back EDMA to initial state if media has
   * been removed before EDMA has finished.It is usedful for removable media.
   * Arguments:
   *      ch_no     - channel no
   *
   * Return: zero on success, or corresponding error no on failure
   *
   * FIXME this should not be needed ... edma_stop() should suffice.
   *
   *****************************************************************************/
  
  void edma_clean_channel(unsigned channel)
  {
  	unsigned ctlr;
  
  	ctlr = EDMA_CTLR(channel);
  	channel = EDMA_CHAN_SLOT(channel);
  
  	if (channel < edma_cc[ctlr]->num_channels) {
  		int j = (channel >> 5);
  		unsigned int mask = BIT(channel & 0x1f);
  
  		pr_debug("EDMA: EMR%d %08x
  ", j,
  				edma_read_array(ctlr, EDMA_EMR, j));
  		edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
  		/* Clear the corresponding EMR bits */
  		edma_write_array(ctlr, EDMA_EMCR, j, mask);
  		/* Clear any SER */
  		edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
  		edma_write(ctlr, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
  	}
  }
  EXPORT_SYMBOL(edma_clean_channel);
  
  /*
   * edma_clear_event - clear an outstanding event on the DMA channel
   * Arguments:
   *	channel - channel number
   */
  void edma_clear_event(unsigned channel)
  {
  	unsigned ctlr;
  
  	ctlr = EDMA_CTLR(channel);
  	channel = EDMA_CHAN_SLOT(channel);
  
  	if (channel >= edma_cc[ctlr]->num_channels)
  		return;
  	if (channel < 32)
  		edma_write(ctlr, EDMA_ECR, BIT(channel));
  	else
  		edma_write(ctlr, EDMA_ECRH, BIT(channel - 32));
  }
  EXPORT_SYMBOL(edma_clear_event);
  
  #if IS_ENABLED(CONFIG_OF) && IS_ENABLED(CONFIG_DMADEVICES)
  
  static int edma_xbar_event_map(struct device *dev, struct device_node *node,
  			       struct edma_soc_info *pdata, size_t sz)
  {
  	const char pname[] = "ti,edma-xbar-event-map";
  	struct resource res;
  	void __iomem *xbar;
  	s16 (*xbar_chans)[2];
  	size_t nelm = sz / sizeof(s16);
  	u32 shift, offset, mux;
  	int ret, i;
  
  	xbar_chans = devm_kzalloc(dev, (nelm + 2) * sizeof(s16), GFP_KERNEL);
  	if (!xbar_chans)
  		return -ENOMEM;
  
  	ret = of_address_to_resource(node, 1, &res);
  	if (ret)
  		return -ENOMEM;
  
  	xbar = devm_ioremap(dev, res.start, resource_size(&res));
  	if (!xbar)
  		return -ENOMEM;
  
  	ret = of_property_read_u16_array(node, pname, (u16 *)xbar_chans, nelm);
  	if (ret)
  		return -EIO;
  
  	/* Invalidate last entry for the other user of this mess */
  	nelm >>= 1;
  	xbar_chans[nelm][0] = xbar_chans[nelm][1] = -1;
  
  	for (i = 0; i < nelm; i++) {
  		shift = (xbar_chans[i][1] & 0x03) << 3;
  		offset = xbar_chans[i][1] & 0xfffffffc;
  		mux = readl(xbar + offset);
  		mux &= ~(0xff << shift);
  		mux |= xbar_chans[i][0] << shift;
  		writel(mux, (xbar + offset));
  	}
  
  	pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
  	return 0;
  }
  
  static int edma_of_parse_dt(struct device *dev,
  			    struct device_node *node,
  			    struct edma_soc_info *pdata)
  {
  	int ret = 0, i;
  	u32 value;
  	struct property *prop;
  	size_t sz;
  	struct edma_rsv_info *rsv_info;
  	s8 (*queue_tc_map)[2], (*queue_priority_map)[2];
  
  	memset(pdata, 0, sizeof(struct edma_soc_info));
  
  	ret = of_property_read_u32(node, "dma-channels", &value);
  	if (ret < 0)
  		return ret;
  	pdata->n_channel = value;
  
  	ret = of_property_read_u32(node, "ti,edma-regions", &value);
  	if (ret < 0)
  		return ret;
  	pdata->n_region = value;
  
  	ret = of_property_read_u32(node, "ti,edma-slots", &value);
  	if (ret < 0)
  		return ret;
  	pdata->n_slot = value;
  
  	pdata->n_cc = 1;
  
  	rsv_info = devm_kzalloc(dev, sizeof(struct edma_rsv_info), GFP_KERNEL);
  	if (!rsv_info)
  		return -ENOMEM;
  	pdata->rsv = rsv_info;
  
  	queue_tc_map = devm_kzalloc(dev, 8*sizeof(s8), GFP_KERNEL);
  	if (!queue_tc_map)
  		return -ENOMEM;
  
  	for (i = 0; i < 3; i++) {
  		queue_tc_map[i][0] = i;
  		queue_tc_map[i][1] = i;
  	}
  	queue_tc_map[i][0] = -1;
  	queue_tc_map[i][1] = -1;
  
  	pdata->queue_tc_mapping = queue_tc_map;
  
  	queue_priority_map = devm_kzalloc(dev, 8*sizeof(s8), GFP_KERNEL);
  	if (!queue_priority_map)
  		return -ENOMEM;
  
  	for (i = 0; i < 3; i++) {
  		queue_priority_map[i][0] = i;
  		queue_priority_map[i][1] = i;
  	}
  	queue_priority_map[i][0] = -1;
  	queue_priority_map[i][1] = -1;
  
  	pdata->queue_priority_mapping = queue_priority_map;
  
  	pdata->default_queue = 0;
  
  	prop = of_find_property(node, "ti,edma-xbar-event-map", &sz);
  	if (prop)
  		ret = edma_xbar_event_map(dev, node, pdata, sz);
  
  	return ret;
  }
  
  static struct of_dma_filter_info edma_filter_info = {
  	.filter_fn = edma_filter_fn,
  };
  
  static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
  						      struct device_node *node)
  {
  	struct edma_soc_info *info;
  	int ret;
  
  	info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
  	if (!info)
  		return ERR_PTR(-ENOMEM);
  
  	ret = edma_of_parse_dt(dev, node, info);
  	if (ret)
  		return ERR_PTR(ret);
  
  	dma_cap_set(DMA_SLAVE, edma_filter_info.dma_cap);
  	of_dma_controller_register(dev->of_node, of_dma_simple_xlate,
  				   &edma_filter_info);
  
  	return info;
  }
  #else
  static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
  						      struct device_node *node)
  {
  	return ERR_PTR(-ENOSYS);
  }
  #endif
  
  static int edma_probe(struct platform_device *pdev)
  {
  	struct edma_soc_info	**info = pdev->dev.platform_data;
  	struct edma_soc_info    *ninfo[EDMA_MAX_CC] = {NULL};
  	s8		(*queue_priority_mapping)[2];
  	s8		(*queue_tc_mapping)[2];
  	int			i, j, off, ln, found = 0;
  	int			status = -1;
  	const s16		(*rsv_chans)[2];
  	const s16		(*rsv_slots)[2];
  	const s16		(*xbar_chans)[2];
  	int			irq[EDMA_MAX_CC] = {0, 0};
  	int			err_irq[EDMA_MAX_CC] = {0, 0};
  	struct resource		*r[EDMA_MAX_CC] = {NULL};
  	struct resource		res[EDMA_MAX_CC];
  	char			res_name[10];
  	char			irq_name[10];
  	struct device_node	*node = pdev->dev.of_node;
  	struct device		*dev = &pdev->dev;
  	int			ret;
  
  	if (node) {
  		/* Check if this is a second instance registered */
  		if (arch_num_cc) {
  			dev_err(dev, "only one EDMA instance is supported via DT
  ");
  			return -ENODEV;
  		}
  
  		ninfo[0] = edma_setup_info_from_dt(dev, node);
  		if (IS_ERR(ninfo[0])) {
  			dev_err(dev, "failed to get DT data
  ");
  			return PTR_ERR(ninfo[0]);
  		}
  
  		info = ninfo;
  	}
  
  	if (!info)
  		return -ENODEV;
  
  	pm_runtime_enable(dev);
  	ret = pm_runtime_get_sync(dev);
  	if (ret < 0) {
  		dev_err(dev, "pm_runtime_get_sync() failed
  ");
  		return ret;
  	}
  
  	for (j = 0; j < EDMA_MAX_CC; j++) {
  		if (!info[j]) {
  			if (!found)
  				return -ENODEV;
  			break;
  		}
  		if (node) {
  			ret = of_address_to_resource(node, j, &res[j]);
  			if (!ret)
  				r[j] = &res[j];
  		} else {
  			sprintf(res_name, "edma_cc%d", j);
  			r[j] = platform_get_resource_byname(pdev,
  						IORESOURCE_MEM,
  						res_name);
  		}
  		if (!r[j]) {
  			if (found)
  				break;
  			else
  				return -ENODEV;
  		} else {
  			found = 1;
  		}
  
  		edmacc_regs_base[j] = devm_ioremap_resource(&pdev->dev, r[j]);
  		if (IS_ERR(edmacc_regs_base[j]))
  			return PTR_ERR(edmacc_regs_base[j]);
  
  		edma_cc[j] = devm_kzalloc(&pdev->dev, sizeof(struct edma),
  					  GFP_KERNEL);
  		if (!edma_cc[j])
  			return -ENOMEM;
  
  		edma_cc[j]->num_channels = min_t(unsigned, info[j]->n_channel,
  							EDMA_MAX_DMACH);
  		edma_cc[j]->num_slots = min_t(unsigned, info[j]->n_slot,
  							EDMA_MAX_PARAMENTRY);
  		edma_cc[j]->num_cc = min_t(unsigned, info[j]->n_cc,
  							EDMA_MAX_CC);
  
  		edma_cc[j]->default_queue = info[j]->default_queue;
  
  		dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p
  ",
  			edmacc_regs_base[j]);
  
  		for (i = 0; i < edma_cc[j]->num_slots; i++)
  			memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i),
  					&dummy_paramset, PARM_SIZE);
  
  		/* Mark all channels as unused */
  		memset(edma_cc[j]->edma_unused, 0xff,
  			sizeof(edma_cc[j]->edma_unused));
  
  		if (info[j]->rsv) {
  
  			/* Clear the reserved channels in unused list */
  			rsv_chans = info[j]->rsv->rsv_chans;
  			if (rsv_chans) {
  				for (i = 0; rsv_chans[i][0] != -1; i++) {
  					off = rsv_chans[i][0];
  					ln = rsv_chans[i][1];
  					clear_bits(off, ln,
  						  edma_cc[j]->edma_unused);
  				}
  			}
  
  			/* Set the reserved slots in inuse list */
  			rsv_slots = info[j]->rsv->rsv_slots;
  			if (rsv_slots) {
  				for (i = 0; rsv_slots[i][0] != -1; i++) {
  					off = rsv_slots[i][0];
  					ln = rsv_slots[i][1];
  					set_bits(off, ln,
  						edma_cc[j]->edma_inuse);
  				}
  			}
  		}
  
  		/* Clear the xbar mapped channels in unused list */
  		xbar_chans = info[j]->xbar_chans;
  		if (xbar_chans) {
  			for (i = 0; xbar_chans[i][1] != -1; i++) {
  				off = xbar_chans[i][1];
  				clear_bits(off, 1,
  					   edma_cc[j]->edma_unused);
  			}
  		}
  
  		if (node) {
  			irq[j] = irq_of_parse_and_map(node, 0);
  		} else {
  			sprintf(irq_name, "edma%d", j);
  			irq[j] = platform_get_irq_byname(pdev, irq_name);
  		}
  		edma_cc[j]->irq_res_start = irq[j];
  		status = devm_request_irq(&pdev->dev, irq[j],
  					  dma_irq_handler, 0, "edma",
  					  &pdev->dev);
  		if (status < 0) {
  			dev_dbg(&pdev->dev,
  				"devm_request_irq %d failed --> %d
  ",
  				irq[j], status);
  			return status;
  		}
  
  		if (node) {
  			err_irq[j] = irq_of_parse_and_map(node, 2);
  		} else {
  			sprintf(irq_name, "edma%d_err", j);
  			err_irq[j] = platform_get_irq_byname(pdev, irq_name);
  		}
  		edma_cc[j]->irq_res_end = err_irq[j];
  		status = devm_request_irq(&pdev->dev, err_irq[j],
  					  dma_ccerr_handler, 0,
  					  "edma_error", &pdev->dev);
  		if (status < 0) {
  			dev_dbg(&pdev->dev,
  				"devm_request_irq %d failed --> %d
  ",
  				err_irq[j], status);
  			return status;
  		}
  
  		for (i = 0; i < edma_cc[j]->num_channels; i++)
  			map_dmach_queue(j, i, info[j]->default_queue);
  
  		queue_tc_mapping = info[j]->queue_tc_mapping;
  		queue_priority_mapping = info[j]->queue_priority_mapping;
  
  		/* Event queue to TC mapping */
  		for (i = 0; queue_tc_mapping[i][0] != -1; i++)
  			map_queue_tc(j, queue_tc_mapping[i][0],
  					queue_tc_mapping[i][1]);
  
  		/* Event queue priority mapping */
  		for (i = 0; queue_priority_mapping[i][0] != -1; i++)
  			assign_priority_to_queue(j,
  						queue_priority_mapping[i][0],
  						queue_priority_mapping[i][1]);
  
  		/* Map the channel to param entry if channel mapping logic
  		 * exist
  		 */
  		if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
  			map_dmach_param(j);
  
  		for (i = 0; i < info[j]->n_region; i++) {
  			edma_write_array2(j, EDMA_DRAE, i, 0, 0x0);
  			edma_write_array2(j, EDMA_DRAE, i, 1, 0x0);
  			edma_write_array(j, EDMA_QRAE, i, 0x0);
  		}
  		arch_num_cc++;
  	}
  
  	return 0;
  }
  
  static struct platform_driver edma_driver = {
  	.driver = {
  		.name	= "edma",
  		.of_match_table = edma_of_ids,
  	},
  	.probe = edma_probe,
  };
  
  static int __init edma_init(void)
  {
  	return platform_driver_probe(&edma_driver, edma_probe);
  }
  arch_initcall(edma_init);