Blame view

kernel/linux-imx6_3.14.28/arch/arm/vfp/vfp.h 9.42 KB
6b13f685e   김민수   BSP 최초 추가
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
  /*
   *  linux/arch/arm/vfp/vfp.h
   *
   *  Copyright (C) 2004 ARM Limited.
   *  Written by Deep Blue Solutions Limited.
   *
   * This program is free software; you can redistribute it and/or modify
   * it under the terms of the GNU General Public License version 2 as
   * published by the Free Software Foundation.
   */
  
  static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift)
  {
  	if (shift) {
  		if (shift < 32)
  			val = val >> shift | ((val << (32 - shift)) != 0);
  		else
  			val = val != 0;
  	}
  	return val;
  }
  
  static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift)
  {
  	if (shift) {
  		if (shift < 64)
  			val = val >> shift | ((val << (64 - shift)) != 0);
  		else
  			val = val != 0;
  	}
  	return val;
  }
  
  static inline u32 vfp_hi64to32jamming(u64 val)
  {
  	u32 v;
  
  	asm(
  	"cmp	%Q1, #1		@ vfp_hi64to32jamming
  \t"
  	"movcc	%0, %R1
  \t"
  	"orrcs	%0, %R1, #1"
  	: "=r" (v) : "r" (val) : "cc");
  
  	return v;
  }
  
  static inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
  {
  	asm(	"adds	%Q0, %Q2, %Q4
  \t"
  		"adcs	%R0, %R2, %R4
  \t"
  		"adcs	%Q1, %Q3, %Q5
  \t"
  		"adc	%R1, %R3, %R5"
  	    : "=r" (nl), "=r" (nh)
  	    : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
  	    : "cc");
  	*resh = nh;
  	*resl = nl;
  }
  
  static inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
  {
  	asm(	"subs	%Q0, %Q2, %Q4
  \t"
  		"sbcs	%R0, %R2, %R4
  \t"
  		"sbcs	%Q1, %Q3, %Q5
  \t"
  		"sbc	%R1, %R3, %R5
  \t"
  	    : "=r" (nl), "=r" (nh)
  	    : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
  	    : "cc");
  	*resh = nh;
  	*resl = nl;
  }
  
  static inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m)
  {
  	u32 nh, nl, mh, ml;
  	u64 rh, rma, rmb, rl;
  
  	nl = n;
  	ml = m;
  	rl = (u64)nl * ml;
  
  	nh = n >> 32;
  	rma = (u64)nh * ml;
  
  	mh = m >> 32;
  	rmb = (u64)nl * mh;
  	rma += rmb;
  
  	rh = (u64)nh * mh;
  	rh += ((u64)(rma < rmb) << 32) + (rma >> 32);
  
  	rma <<= 32;
  	rl += rma;
  	rh += (rl < rma);
  
  	*resl = rl;
  	*resh = rh;
  }
  
  static inline void shift64left(u64 *resh, u64 *resl, u64 n)
  {
  	*resh = n >> 63;
  	*resl = n << 1;
  }
  
  static inline u64 vfp_hi64multiply64(u64 n, u64 m)
  {
  	u64 rh, rl;
  	mul64to128(&rh, &rl, n, m);
  	return rh | (rl != 0);
  }
  
  static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m)
  {
  	u64 mh, ml, remh, reml, termh, terml, z;
  
  	if (nh >= m)
  		return ~0ULL;
  	mh = m >> 32;
  	if (mh << 32 <= nh) {
  		z = 0xffffffff00000000ULL;
  	} else {
  		z = nh;
  		do_div(z, mh);
  		z <<= 32;
  	}
  	mul64to128(&termh, &terml, m, z);
  	sub128(&remh, &reml, nh, nl, termh, terml);
  	ml = m << 32;
  	while ((s64)remh < 0) {
  		z -= 0x100000000ULL;
  		add128(&remh, &reml, remh, reml, mh, ml);
  	}
  	remh = (remh << 32) | (reml >> 32);
  	if (mh << 32 <= remh) {
  		z |= 0xffffffff;
  	} else {
  		do_div(remh, mh);
  		z |= remh;
  	}
  	return z;
  }
  
  /*
   * Operations on unpacked elements
   */
  #define vfp_sign_negate(sign)	(sign ^ 0x8000)
  
  /*
   * Single-precision
   */
  struct vfp_single {
  	s16	exponent;
  	u16	sign;
  	u32	significand;
  };
  
  extern s32 vfp_get_float(unsigned int reg);
  extern void vfp_put_float(s32 val, unsigned int reg);
  
  /*
   * VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa
   * VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent
   * VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand
   *  which are not propagated to the float upon packing.
   */
  #define VFP_SINGLE_MANTISSA_BITS	(23)
  #define VFP_SINGLE_EXPONENT_BITS	(8)
  #define VFP_SINGLE_LOW_BITS		(32 - VFP_SINGLE_MANTISSA_BITS - 2)
  #define VFP_SINGLE_LOW_BITS_MASK	((1 << VFP_SINGLE_LOW_BITS) - 1)
  
  /*
   * The bit in an unpacked float which indicates that it is a quiet NaN
   */
  #define VFP_SINGLE_SIGNIFICAND_QNAN	(1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS))
  
  /*
   * Operations on packed single-precision numbers
   */
  #define vfp_single_packed_sign(v)	((v) & 0x80000000)
  #define vfp_single_packed_negate(v)	((v) ^ 0x80000000)
  #define vfp_single_packed_abs(v)	((v) & ~0x80000000)
  #define vfp_single_packed_exponent(v)	(((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1))
  #define vfp_single_packed_mantissa(v)	((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1))
  
  /*
   * Unpack a single-precision float.  Note that this returns the magnitude
   * of the single-precision float mantissa with the 1. if necessary,
   * aligned to bit 30.
   */
  static inline void vfp_single_unpack(struct vfp_single *s, s32 val)
  {
  	u32 significand;
  
  	s->sign = vfp_single_packed_sign(val) >> 16,
  	s->exponent = vfp_single_packed_exponent(val);
  
  	significand = (u32) val;
  	significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2;
  	if (s->exponent && s->exponent != 255)
  		significand |= 0x40000000;
  	s->significand = significand;
  }
  
  /*
   * Re-pack a single-precision float.  This assumes that the float is
   * already normalised such that the MSB is bit 30, _not_ bit 31.
   */
  static inline s32 vfp_single_pack(struct vfp_single *s)
  {
  	u32 val;
  	val = (s->sign << 16) +
  	      (s->exponent << VFP_SINGLE_MANTISSA_BITS) +
  	      (s->significand >> VFP_SINGLE_LOW_BITS);
  	return (s32)val;
  }
  
  #define VFP_NUMBER		(1<<0)
  #define VFP_ZERO		(1<<1)
  #define VFP_DENORMAL		(1<<2)
  #define VFP_INFINITY		(1<<3)
  #define VFP_NAN			(1<<4)
  #define VFP_NAN_SIGNAL		(1<<5)
  
  #define VFP_QNAN		(VFP_NAN)
  #define VFP_SNAN		(VFP_NAN|VFP_NAN_SIGNAL)
  
  static inline int vfp_single_type(struct vfp_single *s)
  {
  	int type = VFP_NUMBER;
  	if (s->exponent == 255) {
  		if (s->significand == 0)
  			type = VFP_INFINITY;
  		else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN)
  			type = VFP_QNAN;
  		else
  			type = VFP_SNAN;
  	} else if (s->exponent == 0) {
  		if (s->significand == 0)
  			type |= VFP_ZERO;
  		else
  			type |= VFP_DENORMAL;
  	}
  	return type;
  }
  
  #ifndef DEBUG
  #define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
  u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions);
  #else
  u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func);
  #endif
  
  /*
   * Double-precision
   */
  struct vfp_double {
  	s16	exponent;
  	u16	sign;
  	u64	significand;
  };
  
  /*
   * VFP_REG_ZERO is a special register number for vfp_get_double
   * which returns (double)0.0.  This is useful for the compare with
   * zero instructions.
   */
  #ifdef CONFIG_VFPv3
  #define VFP_REG_ZERO	32
  #else
  #define VFP_REG_ZERO	16
  #endif
  extern u64 vfp_get_double(unsigned int reg);
  extern void vfp_put_double(u64 val, unsigned int reg);
  
  #define VFP_DOUBLE_MANTISSA_BITS	(52)
  #define VFP_DOUBLE_EXPONENT_BITS	(11)
  #define VFP_DOUBLE_LOW_BITS		(64 - VFP_DOUBLE_MANTISSA_BITS - 2)
  #define VFP_DOUBLE_LOW_BITS_MASK	((1 << VFP_DOUBLE_LOW_BITS) - 1)
  
  /*
   * The bit in an unpacked double which indicates that it is a quiet NaN
   */
  #define VFP_DOUBLE_SIGNIFICAND_QNAN	(1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS))
  
  /*
   * Operations on packed single-precision numbers
   */
  #define vfp_double_packed_sign(v)	((v) & (1ULL << 63))
  #define vfp_double_packed_negate(v)	((v) ^ (1ULL << 63))
  #define vfp_double_packed_abs(v)	((v) & ~(1ULL << 63))
  #define vfp_double_packed_exponent(v)	(((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1))
  #define vfp_double_packed_mantissa(v)	((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1))
  
  /*
   * Unpack a double-precision float.  Note that this returns the magnitude
   * of the double-precision float mantissa with the 1. if necessary,
   * aligned to bit 62.
   */
  static inline void vfp_double_unpack(struct vfp_double *s, s64 val)
  {
  	u64 significand;
  
  	s->sign = vfp_double_packed_sign(val) >> 48;
  	s->exponent = vfp_double_packed_exponent(val);
  
  	significand = (u64) val;
  	significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2;
  	if (s->exponent && s->exponent != 2047)
  		significand |= (1ULL << 62);
  	s->significand = significand;
  }
  
  /*
   * Re-pack a double-precision float.  This assumes that the float is
   * already normalised such that the MSB is bit 30, _not_ bit 31.
   */
  static inline s64 vfp_double_pack(struct vfp_double *s)
  {
  	u64 val;
  	val = ((u64)s->sign << 48) +
  	      ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) +
  	      (s->significand >> VFP_DOUBLE_LOW_BITS);
  	return (s64)val;
  }
  
  static inline int vfp_double_type(struct vfp_double *s)
  {
  	int type = VFP_NUMBER;
  	if (s->exponent == 2047) {
  		if (s->significand == 0)
  			type = VFP_INFINITY;
  		else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN)
  			type = VFP_QNAN;
  		else
  			type = VFP_SNAN;
  	} else if (s->exponent == 0) {
  		if (s->significand == 0)
  			type |= VFP_ZERO;
  		else
  			type |= VFP_DENORMAL;
  	}
  	return type;
  }
  
  u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func);
  
  u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand);
  
  /*
   * A special flag to tell the normalisation code not to normalise.
   */
  #define VFP_NAN_FLAG	0x100
  
  /*
   * A bit pattern used to indicate the initial (unset) value of the
   * exception mask, in case nothing handles an instruction.  This
   * doesn't include the NAN flag, which get masked out before
   * we check for an error.
   */
  #define VFP_EXCEPTION_ERROR	((u32)-1 & ~VFP_NAN_FLAG)
  
  /*
   * A flag to tell vfp instruction type.
   *  OP_SCALAR - this operation always operates in scalar mode
   *  OP_SD - the instruction exceptionally writes to a single precision result.
   *  OP_DD - the instruction exceptionally writes to a double precision result.
   *  OP_SM - the instruction exceptionally reads from a single precision operand.
   */
  #define OP_SCALAR	(1 << 0)
  #define OP_SD		(1 << 1)
  #define OP_DD		(1 << 1)
  #define OP_SM		(1 << 2)
  
  struct op {
  	u32 (* const fn)(int dd, int dn, int dm, u32 fpscr);
  	u32 flags;
  };
  
  extern void vfp_save_state(void *location, u32 fpexc);