Blame view

kernel/linux-imx6_3.14.28/fs/ext3/inode.c 106 KB
6b13f685e   김민수   BSP 최초 추가
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
  /*
   *  linux/fs/ext3/inode.c
   *
   * Copyright (C) 1992, 1993, 1994, 1995
   * Remy Card (card@masi.ibp.fr)
   * Laboratoire MASI - Institut Blaise Pascal
   * Universite Pierre et Marie Curie (Paris VI)
   *
   *  from
   *
   *  linux/fs/minix/inode.c
   *
   *  Copyright (C) 1991, 1992  Linus Torvalds
   *
   *  Goal-directed block allocation by Stephen Tweedie
   *	(sct@redhat.com), 1993, 1998
   *  Big-endian to little-endian byte-swapping/bitmaps by
   *        David S. Miller (davem@caip.rutgers.edu), 1995
   *  64-bit file support on 64-bit platforms by Jakub Jelinek
   *	(jj@sunsite.ms.mff.cuni.cz)
   *
   *  Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
   */
  
  #include <linux/highuid.h>
  #include <linux/quotaops.h>
  #include <linux/writeback.h>
  #include <linux/mpage.h>
  #include <linux/namei.h>
  #include <linux/aio.h>
  #include "ext3.h"
  #include "xattr.h"
  #include "acl.h"
  
  static int ext3_writepage_trans_blocks(struct inode *inode);
  static int ext3_block_truncate_page(struct inode *inode, loff_t from);
  
  /*
   * Test whether an inode is a fast symlink.
   */
  static int ext3_inode_is_fast_symlink(struct inode *inode)
  {
  	int ea_blocks = EXT3_I(inode)->i_file_acl ?
  		(inode->i_sb->s_blocksize >> 9) : 0;
  
  	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  }
  
  /*
   * The ext3 forget function must perform a revoke if we are freeing data
   * which has been journaled.  Metadata (eg. indirect blocks) must be
   * revoked in all cases.
   *
   * "bh" may be NULL: a metadata block may have been freed from memory
   * but there may still be a record of it in the journal, and that record
   * still needs to be revoked.
   */
  int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
  			struct buffer_head *bh, ext3_fsblk_t blocknr)
  {
  	int err;
  
  	might_sleep();
  
  	trace_ext3_forget(inode, is_metadata, blocknr);
  	BUFFER_TRACE(bh, "enter");
  
  	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  		  "data mode %lx
  ",
  		  bh, is_metadata, inode->i_mode,
  		  test_opt(inode->i_sb, DATA_FLAGS));
  
  	/* Never use the revoke function if we are doing full data
  	 * journaling: there is no need to, and a V1 superblock won't
  	 * support it.  Otherwise, only skip the revoke on un-journaled
  	 * data blocks. */
  
  	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
  	    (!is_metadata && !ext3_should_journal_data(inode))) {
  		if (bh) {
  			BUFFER_TRACE(bh, "call journal_forget");
  			return ext3_journal_forget(handle, bh);
  		}
  		return 0;
  	}
  
  	/*
  	 * data!=journal && (is_metadata || should_journal_data(inode))
  	 */
  	BUFFER_TRACE(bh, "call ext3_journal_revoke");
  	err = ext3_journal_revoke(handle, blocknr, bh);
  	if (err)
  		ext3_abort(inode->i_sb, __func__,
  			   "error %d when attempting revoke", err);
  	BUFFER_TRACE(bh, "exit");
  	return err;
  }
  
  /*
   * Work out how many blocks we need to proceed with the next chunk of a
   * truncate transaction.
   */
  static unsigned long blocks_for_truncate(struct inode *inode)
  {
  	unsigned long needed;
  
  	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
  
  	/* Give ourselves just enough room to cope with inodes in which
  	 * i_blocks is corrupt: we've seen disk corruptions in the past
  	 * which resulted in random data in an inode which looked enough
  	 * like a regular file for ext3 to try to delete it.  Things
  	 * will go a bit crazy if that happens, but at least we should
  	 * try not to panic the whole kernel. */
  	if (needed < 2)
  		needed = 2;
  
  	/* But we need to bound the transaction so we don't overflow the
  	 * journal. */
  	if (needed > EXT3_MAX_TRANS_DATA)
  		needed = EXT3_MAX_TRANS_DATA;
  
  	return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
  }
  
  /*
   * Truncate transactions can be complex and absolutely huge.  So we need to
   * be able to restart the transaction at a conventient checkpoint to make
   * sure we don't overflow the journal.
   *
   * start_transaction gets us a new handle for a truncate transaction,
   * and extend_transaction tries to extend the existing one a bit.  If
   * extend fails, we need to propagate the failure up and restart the
   * transaction in the top-level truncate loop. --sct
   */
  static handle_t *start_transaction(struct inode *inode)
  {
  	handle_t *result;
  
  	result = ext3_journal_start(inode, blocks_for_truncate(inode));
  	if (!IS_ERR(result))
  		return result;
  
  	ext3_std_error(inode->i_sb, PTR_ERR(result));
  	return result;
  }
  
  /*
   * Try to extend this transaction for the purposes of truncation.
   *
   * Returns 0 if we managed to create more room.  If we can't create more
   * room, and the transaction must be restarted we return 1.
   */
  static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  {
  	if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
  		return 0;
  	if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
  		return 0;
  	return 1;
  }
  
  /*
   * Restart the transaction associated with *handle.  This does a commit,
   * so before we call here everything must be consistently dirtied against
   * this transaction.
   */
  static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
  {
  	int ret;
  
  	jbd_debug(2, "restarting handle %p
  ", handle);
  	/*
  	 * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
  	 * At this moment, get_block can be called only for blocks inside
  	 * i_size since page cache has been already dropped and writes are
  	 * blocked by i_mutex. So we can safely drop the truncate_mutex.
  	 */
  	mutex_unlock(&EXT3_I(inode)->truncate_mutex);
  	ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
  	mutex_lock(&EXT3_I(inode)->truncate_mutex);
  	return ret;
  }
  
  /*
   * Called at inode eviction from icache
   */
  void ext3_evict_inode (struct inode *inode)
  {
  	struct ext3_inode_info *ei = EXT3_I(inode);
  	struct ext3_block_alloc_info *rsv;
  	handle_t *handle;
  	int want_delete = 0;
  
  	trace_ext3_evict_inode(inode);
  	if (!inode->i_nlink && !is_bad_inode(inode)) {
  		dquot_initialize(inode);
  		want_delete = 1;
  	}
  
  	/*
  	 * When journalling data dirty buffers are tracked only in the journal.
  	 * So although mm thinks everything is clean and ready for reaping the
  	 * inode might still have some pages to write in the running
  	 * transaction or waiting to be checkpointed. Thus calling
  	 * journal_invalidatepage() (via truncate_inode_pages()) to discard
  	 * these buffers can cause data loss. Also even if we did not discard
  	 * these buffers, we would have no way to find them after the inode
  	 * is reaped and thus user could see stale data if he tries to read
  	 * them before the transaction is checkpointed. So be careful and
  	 * force everything to disk here... We use ei->i_datasync_tid to
  	 * store the newest transaction containing inode's data.
  	 *
  	 * Note that directories do not have this problem because they don't
  	 * use page cache.
  	 *
  	 * The s_journal check handles the case when ext3_get_journal() fails
  	 * and puts the journal inode.
  	 */
  	if (inode->i_nlink && ext3_should_journal_data(inode) &&
  	    EXT3_SB(inode->i_sb)->s_journal &&
  	    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
  	    inode->i_ino != EXT3_JOURNAL_INO) {
  		tid_t commit_tid = atomic_read(&ei->i_datasync_tid);
  		journal_t *journal = EXT3_SB(inode->i_sb)->s_journal;
  
  		log_start_commit(journal, commit_tid);
  		log_wait_commit(journal, commit_tid);
  		filemap_write_and_wait(&inode->i_data);
  	}
  	truncate_inode_pages(&inode->i_data, 0);
  
  	ext3_discard_reservation(inode);
  	rsv = ei->i_block_alloc_info;
  	ei->i_block_alloc_info = NULL;
  	if (unlikely(rsv))
  		kfree(rsv);
  
  	if (!want_delete)
  		goto no_delete;
  
  	handle = start_transaction(inode);
  	if (IS_ERR(handle)) {
  		/*
  		 * If we're going to skip the normal cleanup, we still need to
  		 * make sure that the in-core orphan linked list is properly
  		 * cleaned up.
  		 */
  		ext3_orphan_del(NULL, inode);
  		goto no_delete;
  	}
  
  	if (IS_SYNC(inode))
  		handle->h_sync = 1;
  	inode->i_size = 0;
  	if (inode->i_blocks)
  		ext3_truncate(inode);
  	/*
  	 * Kill off the orphan record created when the inode lost the last
  	 * link.  Note that ext3_orphan_del() has to be able to cope with the
  	 * deletion of a non-existent orphan - ext3_truncate() could
  	 * have removed the record.
  	 */
  	ext3_orphan_del(handle, inode);
  	ei->i_dtime = get_seconds();
  
  	/*
  	 * One subtle ordering requirement: if anything has gone wrong
  	 * (transaction abort, IO errors, whatever), then we can still
  	 * do these next steps (the fs will already have been marked as
  	 * having errors), but we can't free the inode if the mark_dirty
  	 * fails.
  	 */
  	if (ext3_mark_inode_dirty(handle, inode)) {
  		/* If that failed, just dquot_drop() and be done with that */
  		dquot_drop(inode);
  		clear_inode(inode);
  	} else {
  		ext3_xattr_delete_inode(handle, inode);
  		dquot_free_inode(inode);
  		dquot_drop(inode);
  		clear_inode(inode);
  		ext3_free_inode(handle, inode);
  	}
  	ext3_journal_stop(handle);
  	return;
  no_delete:
  	clear_inode(inode);
  	dquot_drop(inode);
  }
  
  typedef struct {
  	__le32	*p;
  	__le32	key;
  	struct buffer_head *bh;
  } Indirect;
  
  static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  {
  	p->key = *(p->p = v);
  	p->bh = bh;
  }
  
  static int verify_chain(Indirect *from, Indirect *to)
  {
  	while (from <= to && from->key == *from->p)
  		from++;
  	return (from > to);
  }
  
  /**
   *	ext3_block_to_path - parse the block number into array of offsets
   *	@inode: inode in question (we are only interested in its superblock)
   *	@i_block: block number to be parsed
   *	@offsets: array to store the offsets in
   *      @boundary: set this non-zero if the referred-to block is likely to be
   *             followed (on disk) by an indirect block.
   *
   *	To store the locations of file's data ext3 uses a data structure common
   *	for UNIX filesystems - tree of pointers anchored in the inode, with
   *	data blocks at leaves and indirect blocks in intermediate nodes.
   *	This function translates the block number into path in that tree -
   *	return value is the path length and @offsets[n] is the offset of
   *	pointer to (n+1)th node in the nth one. If @block is out of range
   *	(negative or too large) warning is printed and zero returned.
   *
   *	Note: function doesn't find node addresses, so no IO is needed. All
   *	we need to know is the capacity of indirect blocks (taken from the
   *	inode->i_sb).
   */
  
  /*
   * Portability note: the last comparison (check that we fit into triple
   * indirect block) is spelled differently, because otherwise on an
   * architecture with 32-bit longs and 8Kb pages we might get into trouble
   * if our filesystem had 8Kb blocks. We might use long long, but that would
   * kill us on x86. Oh, well, at least the sign propagation does not matter -
   * i_block would have to be negative in the very beginning, so we would not
   * get there at all.
   */
  
  static int ext3_block_to_path(struct inode *inode,
  			long i_block, int offsets[4], int *boundary)
  {
  	int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  	int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
  	const long direct_blocks = EXT3_NDIR_BLOCKS,
  		indirect_blocks = ptrs,
  		double_blocks = (1 << (ptrs_bits * 2));
  	int n = 0;
  	int final = 0;
  
  	if (i_block < 0) {
  		ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
  	} else if (i_block < direct_blocks) {
  		offsets[n++] = i_block;
  		final = direct_blocks;
  	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
  		offsets[n++] = EXT3_IND_BLOCK;
  		offsets[n++] = i_block;
  		final = ptrs;
  	} else if ((i_block -= indirect_blocks) < double_blocks) {
  		offsets[n++] = EXT3_DIND_BLOCK;
  		offsets[n++] = i_block >> ptrs_bits;
  		offsets[n++] = i_block & (ptrs - 1);
  		final = ptrs;
  	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  		offsets[n++] = EXT3_TIND_BLOCK;
  		offsets[n++] = i_block >> (ptrs_bits * 2);
  		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  		offsets[n++] = i_block & (ptrs - 1);
  		final = ptrs;
  	} else {
  		ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
  	}
  	if (boundary)
  		*boundary = final - 1 - (i_block & (ptrs - 1));
  	return n;
  }
  
  /**
   *	ext3_get_branch - read the chain of indirect blocks leading to data
   *	@inode: inode in question
   *	@depth: depth of the chain (1 - direct pointer, etc.)
   *	@offsets: offsets of pointers in inode/indirect blocks
   *	@chain: place to store the result
   *	@err: here we store the error value
   *
   *	Function fills the array of triples <key, p, bh> and returns %NULL
   *	if everything went OK or the pointer to the last filled triple
   *	(incomplete one) otherwise. Upon the return chain[i].key contains
   *	the number of (i+1)-th block in the chain (as it is stored in memory,
   *	i.e. little-endian 32-bit), chain[i].p contains the address of that
   *	number (it points into struct inode for i==0 and into the bh->b_data
   *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
   *	block for i>0 and NULL for i==0. In other words, it holds the block
   *	numbers of the chain, addresses they were taken from (and where we can
   *	verify that chain did not change) and buffer_heads hosting these
   *	numbers.
   *
   *	Function stops when it stumbles upon zero pointer (absent block)
   *		(pointer to last triple returned, *@err == 0)
   *	or when it gets an IO error reading an indirect block
   *		(ditto, *@err == -EIO)
   *	or when it notices that chain had been changed while it was reading
   *		(ditto, *@err == -EAGAIN)
   *	or when it reads all @depth-1 indirect blocks successfully and finds
   *	the whole chain, all way to the data (returns %NULL, *err == 0).
   */
  static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
  				 Indirect chain[4], int *err)
  {
  	struct super_block *sb = inode->i_sb;
  	Indirect *p = chain;
  	struct buffer_head *bh;
  
  	*err = 0;
  	/* i_data is not going away, no lock needed */
  	add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
  	if (!p->key)
  		goto no_block;
  	while (--depth) {
  		bh = sb_bread(sb, le32_to_cpu(p->key));
  		if (!bh)
  			goto failure;
  		/* Reader: pointers */
  		if (!verify_chain(chain, p))
  			goto changed;
  		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
  		/* Reader: end */
  		if (!p->key)
  			goto no_block;
  	}
  	return NULL;
  
  changed:
  	brelse(bh);
  	*err = -EAGAIN;
  	goto no_block;
  failure:
  	*err = -EIO;
  no_block:
  	return p;
  }
  
  /**
   *	ext3_find_near - find a place for allocation with sufficient locality
   *	@inode: owner
   *	@ind: descriptor of indirect block.
   *
   *	This function returns the preferred place for block allocation.
   *	It is used when heuristic for sequential allocation fails.
   *	Rules are:
   *	  + if there is a block to the left of our position - allocate near it.
   *	  + if pointer will live in indirect block - allocate near that block.
   *	  + if pointer will live in inode - allocate in the same
   *	    cylinder group.
   *
   * In the latter case we colour the starting block by the callers PID to
   * prevent it from clashing with concurrent allocations for a different inode
   * in the same block group.   The PID is used here so that functionally related
   * files will be close-by on-disk.
   *
   *	Caller must make sure that @ind is valid and will stay that way.
   */
  static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
  {
  	struct ext3_inode_info *ei = EXT3_I(inode);
  	__le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
  	__le32 *p;
  	ext3_fsblk_t bg_start;
  	ext3_grpblk_t colour;
  
  	/* Try to find previous block */
  	for (p = ind->p - 1; p >= start; p--) {
  		if (*p)
  			return le32_to_cpu(*p);
  	}
  
  	/* No such thing, so let's try location of indirect block */
  	if (ind->bh)
  		return ind->bh->b_blocknr;
  
  	/*
  	 * It is going to be referred to from the inode itself? OK, just put it
  	 * into the same cylinder group then.
  	 */
  	bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
  	colour = (current->pid % 16) *
  			(EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
  	return bg_start + colour;
  }
  
  /**
   *	ext3_find_goal - find a preferred place for allocation.
   *	@inode: owner
   *	@block:  block we want
   *	@partial: pointer to the last triple within a chain
   *
   *	Normally this function find the preferred place for block allocation,
   *	returns it.
   */
  
  static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
  				   Indirect *partial)
  {
  	struct ext3_block_alloc_info *block_i;
  
  	block_i =  EXT3_I(inode)->i_block_alloc_info;
  
  	/*
  	 * try the heuristic for sequential allocation,
  	 * failing that at least try to get decent locality.
  	 */
  	if (block_i && (block == block_i->last_alloc_logical_block + 1)
  		&& (block_i->last_alloc_physical_block != 0)) {
  		return block_i->last_alloc_physical_block + 1;
  	}
  
  	return ext3_find_near(inode, partial);
  }
  
  /**
   *	ext3_blks_to_allocate - Look up the block map and count the number
   *	of direct blocks need to be allocated for the given branch.
   *
   *	@branch: chain of indirect blocks
   *	@k: number of blocks need for indirect blocks
   *	@blks: number of data blocks to be mapped.
   *	@blocks_to_boundary:  the offset in the indirect block
   *
   *	return the total number of blocks to be allocate, including the
   *	direct and indirect blocks.
   */
  static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
  		int blocks_to_boundary)
  {
  	unsigned long count = 0;
  
  	/*
  	 * Simple case, [t,d]Indirect block(s) has not allocated yet
  	 * then it's clear blocks on that path have not allocated
  	 */
  	if (k > 0) {
  		/* right now we don't handle cross boundary allocation */
  		if (blks < blocks_to_boundary + 1)
  			count += blks;
  		else
  			count += blocks_to_boundary + 1;
  		return count;
  	}
  
  	count++;
  	while (count < blks && count <= blocks_to_boundary &&
  		le32_to_cpu(*(branch[0].p + count)) == 0) {
  		count++;
  	}
  	return count;
  }
  
  /**
   *	ext3_alloc_blocks - multiple allocate blocks needed for a branch
   *	@handle: handle for this transaction
   *	@inode: owner
   *	@goal: preferred place for allocation
   *	@indirect_blks: the number of blocks need to allocate for indirect
   *			blocks
   *	@blks:	number of blocks need to allocated for direct blocks
   *	@new_blocks: on return it will store the new block numbers for
   *	the indirect blocks(if needed) and the first direct block,
   *	@err: here we store the error value
   *
   *	return the number of direct blocks allocated
   */
  static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
  			ext3_fsblk_t goal, int indirect_blks, int blks,
  			ext3_fsblk_t new_blocks[4], int *err)
  {
  	int target, i;
  	unsigned long count = 0;
  	int index = 0;
  	ext3_fsblk_t current_block = 0;
  	int ret = 0;
  
  	/*
  	 * Here we try to allocate the requested multiple blocks at once,
  	 * on a best-effort basis.
  	 * To build a branch, we should allocate blocks for
  	 * the indirect blocks(if not allocated yet), and at least
  	 * the first direct block of this branch.  That's the
  	 * minimum number of blocks need to allocate(required)
  	 */
  	target = blks + indirect_blks;
  
  	while (1) {
  		count = target;
  		/* allocating blocks for indirect blocks and direct blocks */
  		current_block = ext3_new_blocks(handle,inode,goal,&count,err);
  		if (*err)
  			goto failed_out;
  
  		target -= count;
  		/* allocate blocks for indirect blocks */
  		while (index < indirect_blks && count) {
  			new_blocks[index++] = current_block++;
  			count--;
  		}
  
  		if (count > 0)
  			break;
  	}
  
  	/* save the new block number for the first direct block */
  	new_blocks[index] = current_block;
  
  	/* total number of blocks allocated for direct blocks */
  	ret = count;
  	*err = 0;
  	return ret;
  failed_out:
  	for (i = 0; i <index; i++)
  		ext3_free_blocks(handle, inode, new_blocks[i], 1);
  	return ret;
  }
  
  /**
   *	ext3_alloc_branch - allocate and set up a chain of blocks.
   *	@handle: handle for this transaction
   *	@inode: owner
   *	@indirect_blks: number of allocated indirect blocks
   *	@blks: number of allocated direct blocks
   *	@goal: preferred place for allocation
   *	@offsets: offsets (in the blocks) to store the pointers to next.
   *	@branch: place to store the chain in.
   *
   *	This function allocates blocks, zeroes out all but the last one,
   *	links them into chain and (if we are synchronous) writes them to disk.
   *	In other words, it prepares a branch that can be spliced onto the
   *	inode. It stores the information about that chain in the branch[], in
   *	the same format as ext3_get_branch() would do. We are calling it after
   *	we had read the existing part of chain and partial points to the last
   *	triple of that (one with zero ->key). Upon the exit we have the same
   *	picture as after the successful ext3_get_block(), except that in one
   *	place chain is disconnected - *branch->p is still zero (we did not
   *	set the last link), but branch->key contains the number that should
   *	be placed into *branch->p to fill that gap.
   *
   *	If allocation fails we free all blocks we've allocated (and forget
   *	their buffer_heads) and return the error value the from failed
   *	ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
   *	as described above and return 0.
   */
  static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
  			int indirect_blks, int *blks, ext3_fsblk_t goal,
  			int *offsets, Indirect *branch)
  {
  	int blocksize = inode->i_sb->s_blocksize;
  	int i, n = 0;
  	int err = 0;
  	struct buffer_head *bh;
  	int num;
  	ext3_fsblk_t new_blocks[4];
  	ext3_fsblk_t current_block;
  
  	num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
  				*blks, new_blocks, &err);
  	if (err)
  		return err;
  
  	branch[0].key = cpu_to_le32(new_blocks[0]);
  	/*
  	 * metadata blocks and data blocks are allocated.
  	 */
  	for (n = 1; n <= indirect_blks;  n++) {
  		/*
  		 * Get buffer_head for parent block, zero it out
  		 * and set the pointer to new one, then send
  		 * parent to disk.
  		 */
  		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
  		if (unlikely(!bh)) {
  			err = -ENOMEM;
  			goto failed;
  		}
  		branch[n].bh = bh;
  		lock_buffer(bh);
  		BUFFER_TRACE(bh, "call get_create_access");
  		err = ext3_journal_get_create_access(handle, bh);
  		if (err) {
  			unlock_buffer(bh);
  			brelse(bh);
  			goto failed;
  		}
  
  		memset(bh->b_data, 0, blocksize);
  		branch[n].p = (__le32 *) bh->b_data + offsets[n];
  		branch[n].key = cpu_to_le32(new_blocks[n]);
  		*branch[n].p = branch[n].key;
  		if ( n == indirect_blks) {
  			current_block = new_blocks[n];
  			/*
  			 * End of chain, update the last new metablock of
  			 * the chain to point to the new allocated
  			 * data blocks numbers
  			 */
  			for (i=1; i < num; i++)
  				*(branch[n].p + i) = cpu_to_le32(++current_block);
  		}
  		BUFFER_TRACE(bh, "marking uptodate");
  		set_buffer_uptodate(bh);
  		unlock_buffer(bh);
  
  		BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  		err = ext3_journal_dirty_metadata(handle, bh);
  		if (err)
  			goto failed;
  	}
  	*blks = num;
  	return err;
  failed:
  	/* Allocation failed, free what we already allocated */
  	for (i = 1; i <= n ; i++) {
  		BUFFER_TRACE(branch[i].bh, "call journal_forget");
  		ext3_journal_forget(handle, branch[i].bh);
  	}
  	for (i = 0; i < indirect_blks; i++)
  		ext3_free_blocks(handle, inode, new_blocks[i], 1);
  
  	ext3_free_blocks(handle, inode, new_blocks[i], num);
  
  	return err;
  }
  
  /**
   * ext3_splice_branch - splice the allocated branch onto inode.
   * @handle: handle for this transaction
   * @inode: owner
   * @block: (logical) number of block we are adding
   * @where: location of missing link
   * @num:   number of indirect blocks we are adding
   * @blks:  number of direct blocks we are adding
   *
   * This function fills the missing link and does all housekeeping needed in
   * inode (->i_blocks, etc.). In case of success we end up with the full
   * chain to new block and return 0.
   */
  static int ext3_splice_branch(handle_t *handle, struct inode *inode,
  			long block, Indirect *where, int num, int blks)
  {
  	int i;
  	int err = 0;
  	struct ext3_block_alloc_info *block_i;
  	ext3_fsblk_t current_block;
  	struct ext3_inode_info *ei = EXT3_I(inode);
  	struct timespec now;
  
  	block_i = ei->i_block_alloc_info;
  	/*
  	 * If we're splicing into a [td]indirect block (as opposed to the
  	 * inode) then we need to get write access to the [td]indirect block
  	 * before the splice.
  	 */
  	if (where->bh) {
  		BUFFER_TRACE(where->bh, "get_write_access");
  		err = ext3_journal_get_write_access(handle, where->bh);
  		if (err)
  			goto err_out;
  	}
  	/* That's it */
  
  	*where->p = where->key;
  
  	/*
  	 * Update the host buffer_head or inode to point to more just allocated
  	 * direct blocks blocks
  	 */
  	if (num == 0 && blks > 1) {
  		current_block = le32_to_cpu(where->key) + 1;
  		for (i = 1; i < blks; i++)
  			*(where->p + i ) = cpu_to_le32(current_block++);
  	}
  
  	/*
  	 * update the most recently allocated logical & physical block
  	 * in i_block_alloc_info, to assist find the proper goal block for next
  	 * allocation
  	 */
  	if (block_i) {
  		block_i->last_alloc_logical_block = block + blks - 1;
  		block_i->last_alloc_physical_block =
  				le32_to_cpu(where[num].key) + blks - 1;
  	}
  
  	/* We are done with atomic stuff, now do the rest of housekeeping */
  	now = CURRENT_TIME_SEC;
  	if (!timespec_equal(&inode->i_ctime, &now) || !where->bh) {
  		inode->i_ctime = now;
  		ext3_mark_inode_dirty(handle, inode);
  	}
  	/* ext3_mark_inode_dirty already updated i_sync_tid */
  	atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
  
  	/* had we spliced it onto indirect block? */
  	if (where->bh) {
  		/*
  		 * If we spliced it onto an indirect block, we haven't
  		 * altered the inode.  Note however that if it is being spliced
  		 * onto an indirect block at the very end of the file (the
  		 * file is growing) then we *will* alter the inode to reflect
  		 * the new i_size.  But that is not done here - it is done in
  		 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
  		 */
  		jbd_debug(5, "splicing indirect only
  ");
  		BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
  		err = ext3_journal_dirty_metadata(handle, where->bh);
  		if (err)
  			goto err_out;
  	} else {
  		/*
  		 * OK, we spliced it into the inode itself on a direct block.
  		 * Inode was dirtied above.
  		 */
  		jbd_debug(5, "splicing direct
  ");
  	}
  	return err;
  
  err_out:
  	for (i = 1; i <= num; i++) {
  		BUFFER_TRACE(where[i].bh, "call journal_forget");
  		ext3_journal_forget(handle, where[i].bh);
  		ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
  	}
  	ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
  
  	return err;
  }
  
  /*
   * Allocation strategy is simple: if we have to allocate something, we will
   * have to go the whole way to leaf. So let's do it before attaching anything
   * to tree, set linkage between the newborn blocks, write them if sync is
   * required, recheck the path, free and repeat if check fails, otherwise
   * set the last missing link (that will protect us from any truncate-generated
   * removals - all blocks on the path are immune now) and possibly force the
   * write on the parent block.
   * That has a nice additional property: no special recovery from the failed
   * allocations is needed - we simply release blocks and do not touch anything
   * reachable from inode.
   *
   * `handle' can be NULL if create == 0.
   *
   * The BKL may not be held on entry here.  Be sure to take it early.
   * return > 0, # of blocks mapped or allocated.
   * return = 0, if plain lookup failed.
   * return < 0, error case.
   */
  int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
  		sector_t iblock, unsigned long maxblocks,
  		struct buffer_head *bh_result,
  		int create)
  {
  	int err = -EIO;
  	int offsets[4];
  	Indirect chain[4];
  	Indirect *partial;
  	ext3_fsblk_t goal;
  	int indirect_blks;
  	int blocks_to_boundary = 0;
  	int depth;
  	struct ext3_inode_info *ei = EXT3_I(inode);
  	int count = 0;
  	ext3_fsblk_t first_block = 0;
  
  
  	trace_ext3_get_blocks_enter(inode, iblock, maxblocks, create);
  	J_ASSERT(handle != NULL || create == 0);
  	depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
  
  	if (depth == 0)
  		goto out;
  
  	partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  
  	/* Simplest case - block found, no allocation needed */
  	if (!partial) {
  		first_block = le32_to_cpu(chain[depth - 1].key);
  		clear_buffer_new(bh_result);
  		count++;
  		/*map more blocks*/
  		while (count < maxblocks && count <= blocks_to_boundary) {
  			ext3_fsblk_t blk;
  
  			if (!verify_chain(chain, chain + depth - 1)) {
  				/*
  				 * Indirect block might be removed by
  				 * truncate while we were reading it.
  				 * Handling of that case: forget what we've
  				 * got now. Flag the err as EAGAIN, so it
  				 * will reread.
  				 */
  				err = -EAGAIN;
  				count = 0;
  				break;
  			}
  			blk = le32_to_cpu(*(chain[depth-1].p + count));
  
  			if (blk == first_block + count)
  				count++;
  			else
  				break;
  		}
  		if (err != -EAGAIN)
  			goto got_it;
  	}
  
  	/* Next simple case - plain lookup or failed read of indirect block */
  	if (!create || err == -EIO)
  		goto cleanup;
  
  	/*
  	 * Block out ext3_truncate while we alter the tree
  	 */
  	mutex_lock(&ei->truncate_mutex);
  
  	/*
  	 * If the indirect block is missing while we are reading
  	 * the chain(ext3_get_branch() returns -EAGAIN err), or
  	 * if the chain has been changed after we grab the semaphore,
  	 * (either because another process truncated this branch, or
  	 * another get_block allocated this branch) re-grab the chain to see if
  	 * the request block has been allocated or not.
  	 *
  	 * Since we already block the truncate/other get_block
  	 * at this point, we will have the current copy of the chain when we
  	 * splice the branch into the tree.
  	 */
  	if (err == -EAGAIN || !verify_chain(chain, partial)) {
  		while (partial > chain) {
  			brelse(partial->bh);
  			partial--;
  		}
  		partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  		if (!partial) {
  			count++;
  			mutex_unlock(&ei->truncate_mutex);
  			if (err)
  				goto cleanup;
  			clear_buffer_new(bh_result);
  			goto got_it;
  		}
  	}
  
  	/*
  	 * Okay, we need to do block allocation.  Lazily initialize the block
  	 * allocation info here if necessary
  	*/
  	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
  		ext3_init_block_alloc_info(inode);
  
  	goal = ext3_find_goal(inode, iblock, partial);
  
  	/* the number of blocks need to allocate for [d,t]indirect blocks */
  	indirect_blks = (chain + depth) - partial - 1;
  
  	/*
  	 * Next look up the indirect map to count the totoal number of
  	 * direct blocks to allocate for this branch.
  	 */
  	count = ext3_blks_to_allocate(partial, indirect_blks,
  					maxblocks, blocks_to_boundary);
  	err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
  				offsets + (partial - chain), partial);
  
  	/*
  	 * The ext3_splice_branch call will free and forget any buffers
  	 * on the new chain if there is a failure, but that risks using
  	 * up transaction credits, especially for bitmaps where the
  	 * credits cannot be returned.  Can we handle this somehow?  We
  	 * may need to return -EAGAIN upwards in the worst case.  --sct
  	 */
  	if (!err)
  		err = ext3_splice_branch(handle, inode, iblock,
  					partial, indirect_blks, count);
  	mutex_unlock(&ei->truncate_mutex);
  	if (err)
  		goto cleanup;
  
  	set_buffer_new(bh_result);
  got_it:
  	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
  	if (count > blocks_to_boundary)
  		set_buffer_boundary(bh_result);
  	err = count;
  	/* Clean up and exit */
  	partial = chain + depth - 1;	/* the whole chain */
  cleanup:
  	while (partial > chain) {
  		BUFFER_TRACE(partial->bh, "call brelse");
  		brelse(partial->bh);
  		partial--;
  	}
  	BUFFER_TRACE(bh_result, "returned");
  out:
  	trace_ext3_get_blocks_exit(inode, iblock,
  				   depth ? le32_to_cpu(chain[depth-1].key) : 0,
  				   count, err);
  	return err;
  }
  
  /* Maximum number of blocks we map for direct IO at once. */
  #define DIO_MAX_BLOCKS 4096
  /*
   * Number of credits we need for writing DIO_MAX_BLOCKS:
   * We need sb + group descriptor + bitmap + inode -> 4
   * For B blocks with A block pointers per block we need:
   * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
   * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
   */
  #define DIO_CREDITS 25
  
  static int ext3_get_block(struct inode *inode, sector_t iblock,
  			struct buffer_head *bh_result, int create)
  {
  	handle_t *handle = ext3_journal_current_handle();
  	int ret = 0, started = 0;
  	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  
  	if (create && !handle) {	/* Direct IO write... */
  		if (max_blocks > DIO_MAX_BLOCKS)
  			max_blocks = DIO_MAX_BLOCKS;
  		handle = ext3_journal_start(inode, DIO_CREDITS +
  				EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
  		if (IS_ERR(handle)) {
  			ret = PTR_ERR(handle);
  			goto out;
  		}
  		started = 1;
  	}
  
  	ret = ext3_get_blocks_handle(handle, inode, iblock,
  					max_blocks, bh_result, create);
  	if (ret > 0) {
  		bh_result->b_size = (ret << inode->i_blkbits);
  		ret = 0;
  	}
  	if (started)
  		ext3_journal_stop(handle);
  out:
  	return ret;
  }
  
  int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
  		u64 start, u64 len)
  {
  	return generic_block_fiemap(inode, fieinfo, start, len,
  				    ext3_get_block);
  }
  
  /*
   * `handle' can be NULL if create is zero
   */
  struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
  				long block, int create, int *errp)
  {
  	struct buffer_head dummy;
  	int fatal = 0, err;
  
  	J_ASSERT(handle != NULL || create == 0);
  
  	dummy.b_state = 0;
  	dummy.b_blocknr = -1000;
  	buffer_trace_init(&dummy.b_history);
  	err = ext3_get_blocks_handle(handle, inode, block, 1,
  					&dummy, create);
  	/*
  	 * ext3_get_blocks_handle() returns number of blocks
  	 * mapped. 0 in case of a HOLE.
  	 */
  	if (err > 0) {
  		WARN_ON(err > 1);
  		err = 0;
  	}
  	*errp = err;
  	if (!err && buffer_mapped(&dummy)) {
  		struct buffer_head *bh;
  		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  		if (unlikely(!bh)) {
  			*errp = -ENOMEM;
  			goto err;
  		}
  		if (buffer_new(&dummy)) {
  			J_ASSERT(create != 0);
  			J_ASSERT(handle != NULL);
  
  			/*
  			 * Now that we do not always journal data, we should
  			 * keep in mind whether this should always journal the
  			 * new buffer as metadata.  For now, regular file
  			 * writes use ext3_get_block instead, so it's not a
  			 * problem.
  			 */
  			lock_buffer(bh);
  			BUFFER_TRACE(bh, "call get_create_access");
  			fatal = ext3_journal_get_create_access(handle, bh);
  			if (!fatal && !buffer_uptodate(bh)) {
  				memset(bh->b_data,0,inode->i_sb->s_blocksize);
  				set_buffer_uptodate(bh);
  			}
  			unlock_buffer(bh);
  			BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  			err = ext3_journal_dirty_metadata(handle, bh);
  			if (!fatal)
  				fatal = err;
  		} else {
  			BUFFER_TRACE(bh, "not a new buffer");
  		}
  		if (fatal) {
  			*errp = fatal;
  			brelse(bh);
  			bh = NULL;
  		}
  		return bh;
  	}
  err:
  	return NULL;
  }
  
  struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
  			       int block, int create, int *err)
  {
  	struct buffer_head * bh;
  
  	bh = ext3_getblk(handle, inode, block, create, err);
  	if (!bh)
  		return bh;
  	if (bh_uptodate_or_lock(bh))
  		return bh;
  	get_bh(bh);
  	bh->b_end_io = end_buffer_read_sync;
  	submit_bh(READ | REQ_META | REQ_PRIO, bh);
  	wait_on_buffer(bh);
  	if (buffer_uptodate(bh))
  		return bh;
  	put_bh(bh);
  	*err = -EIO;
  	return NULL;
  }
  
  static int walk_page_buffers(	handle_t *handle,
  				struct buffer_head *head,
  				unsigned from,
  				unsigned to,
  				int *partial,
  				int (*fn)(	handle_t *handle,
  						struct buffer_head *bh))
  {
  	struct buffer_head *bh;
  	unsigned block_start, block_end;
  	unsigned blocksize = head->b_size;
  	int err, ret = 0;
  	struct buffer_head *next;
  
  	for (	bh = head, block_start = 0;
  		ret == 0 && (bh != head || !block_start);
  		block_start = block_end, bh = next)
  	{
  		next = bh->b_this_page;
  		block_end = block_start + blocksize;
  		if (block_end <= from || block_start >= to) {
  			if (partial && !buffer_uptodate(bh))
  				*partial = 1;
  			continue;
  		}
  		err = (*fn)(handle, bh);
  		if (!ret)
  			ret = err;
  	}
  	return ret;
  }
  
  /*
   * To preserve ordering, it is essential that the hole instantiation and
   * the data write be encapsulated in a single transaction.  We cannot
   * close off a transaction and start a new one between the ext3_get_block()
   * and the commit_write().  So doing the journal_start at the start of
   * prepare_write() is the right place.
   *
   * Also, this function can nest inside ext3_writepage() ->
   * block_write_full_page(). In that case, we *know* that ext3_writepage()
   * has generated enough buffer credits to do the whole page.  So we won't
   * block on the journal in that case, which is good, because the caller may
   * be PF_MEMALLOC.
   *
   * By accident, ext3 can be reentered when a transaction is open via
   * quota file writes.  If we were to commit the transaction while thus
   * reentered, there can be a deadlock - we would be holding a quota
   * lock, and the commit would never complete if another thread had a
   * transaction open and was blocking on the quota lock - a ranking
   * violation.
   *
   * So what we do is to rely on the fact that journal_stop/journal_start
   * will _not_ run commit under these circumstances because handle->h_ref
   * is elevated.  We'll still have enough credits for the tiny quotafile
   * write.
   */
  static int do_journal_get_write_access(handle_t *handle,
  					struct buffer_head *bh)
  {
  	int dirty = buffer_dirty(bh);
  	int ret;
  
  	if (!buffer_mapped(bh) || buffer_freed(bh))
  		return 0;
  	/*
  	 * __block_prepare_write() could have dirtied some buffers. Clean
  	 * the dirty bit as jbd2_journal_get_write_access() could complain
  	 * otherwise about fs integrity issues. Setting of the dirty bit
  	 * by __block_prepare_write() isn't a real problem here as we clear
  	 * the bit before releasing a page lock and thus writeback cannot
  	 * ever write the buffer.
  	 */
  	if (dirty)
  		clear_buffer_dirty(bh);
  	ret = ext3_journal_get_write_access(handle, bh);
  	if (!ret && dirty)
  		ret = ext3_journal_dirty_metadata(handle, bh);
  	return ret;
  }
  
  /*
   * Truncate blocks that were not used by write. We have to truncate the
   * pagecache as well so that corresponding buffers get properly unmapped.
   */
  static void ext3_truncate_failed_write(struct inode *inode)
  {
  	truncate_inode_pages(inode->i_mapping, inode->i_size);
  	ext3_truncate(inode);
  }
  
  /*
   * Truncate blocks that were not used by direct IO write. We have to zero out
   * the last file block as well because direct IO might have written to it.
   */
  static void ext3_truncate_failed_direct_write(struct inode *inode)
  {
  	ext3_block_truncate_page(inode, inode->i_size);
  	ext3_truncate(inode);
  }
  
  static int ext3_write_begin(struct file *file, struct address_space *mapping,
  				loff_t pos, unsigned len, unsigned flags,
  				struct page **pagep, void **fsdata)
  {
  	struct inode *inode = mapping->host;
  	int ret;
  	handle_t *handle;
  	int retries = 0;
  	struct page *page;
  	pgoff_t index;
  	unsigned from, to;
  	/* Reserve one block more for addition to orphan list in case
  	 * we allocate blocks but write fails for some reason */
  	int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
  
  	trace_ext3_write_begin(inode, pos, len, flags);
  
  	index = pos >> PAGE_CACHE_SHIFT;
  	from = pos & (PAGE_CACHE_SIZE - 1);
  	to = from + len;
  
  retry:
  	page = grab_cache_page_write_begin(mapping, index, flags);
  	if (!page)
  		return -ENOMEM;
  	*pagep = page;
  
  	handle = ext3_journal_start(inode, needed_blocks);
  	if (IS_ERR(handle)) {
  		unlock_page(page);
  		page_cache_release(page);
  		ret = PTR_ERR(handle);
  		goto out;
  	}
  	ret = __block_write_begin(page, pos, len, ext3_get_block);
  	if (ret)
  		goto write_begin_failed;
  
  	if (ext3_should_journal_data(inode)) {
  		ret = walk_page_buffers(handle, page_buffers(page),
  				from, to, NULL, do_journal_get_write_access);
  	}
  write_begin_failed:
  	if (ret) {
  		/*
  		 * block_write_begin may have instantiated a few blocks
  		 * outside i_size.  Trim these off again. Don't need
  		 * i_size_read because we hold i_mutex.
  		 *
  		 * Add inode to orphan list in case we crash before truncate
  		 * finishes. Do this only if ext3_can_truncate() agrees so
  		 * that orphan processing code is happy.
  		 */
  		if (pos + len > inode->i_size && ext3_can_truncate(inode))
  			ext3_orphan_add(handle, inode);
  		ext3_journal_stop(handle);
  		unlock_page(page);
  		page_cache_release(page);
  		if (pos + len > inode->i_size)
  			ext3_truncate_failed_write(inode);
  	}
  	if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  		goto retry;
  out:
  	return ret;
  }
  
  
  int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
  {
  	int err = journal_dirty_data(handle, bh);
  	if (err)
  		ext3_journal_abort_handle(__func__, __func__,
  						bh, handle, err);
  	return err;
  }
  
  /* For ordered writepage and write_end functions */
  static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
  {
  	/*
  	 * Write could have mapped the buffer but it didn't copy the data in
  	 * yet. So avoid filing such buffer into a transaction.
  	 */
  	if (buffer_mapped(bh) && buffer_uptodate(bh))
  		return ext3_journal_dirty_data(handle, bh);
  	return 0;
  }
  
  /* For write_end() in data=journal mode */
  static int write_end_fn(handle_t *handle, struct buffer_head *bh)
  {
  	if (!buffer_mapped(bh) || buffer_freed(bh))
  		return 0;
  	set_buffer_uptodate(bh);
  	return ext3_journal_dirty_metadata(handle, bh);
  }
  
  /*
   * This is nasty and subtle: ext3_write_begin() could have allocated blocks
   * for the whole page but later we failed to copy the data in. Update inode
   * size according to what we managed to copy. The rest is going to be
   * truncated in write_end function.
   */
  static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
  {
  	/* What matters to us is i_disksize. We don't write i_size anywhere */
  	if (pos + copied > inode->i_size)
  		i_size_write(inode, pos + copied);
  	if (pos + copied > EXT3_I(inode)->i_disksize) {
  		EXT3_I(inode)->i_disksize = pos + copied;
  		mark_inode_dirty(inode);
  	}
  }
  
  /*
   * We need to pick up the new inode size which generic_commit_write gave us
   * `file' can be NULL - eg, when called from page_symlink().
   *
   * ext3 never places buffers on inode->i_mapping->private_list.  metadata
   * buffers are managed internally.
   */
  static int ext3_ordered_write_end(struct file *file,
  				struct address_space *mapping,
  				loff_t pos, unsigned len, unsigned copied,
  				struct page *page, void *fsdata)
  {
  	handle_t *handle = ext3_journal_current_handle();
  	struct inode *inode = file->f_mapping->host;
  	unsigned from, to;
  	int ret = 0, ret2;
  
  	trace_ext3_ordered_write_end(inode, pos, len, copied);
  	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  
  	from = pos & (PAGE_CACHE_SIZE - 1);
  	to = from + copied;
  	ret = walk_page_buffers(handle, page_buffers(page),
  		from, to, NULL, journal_dirty_data_fn);
  
  	if (ret == 0)
  		update_file_sizes(inode, pos, copied);
  	/*
  	 * There may be allocated blocks outside of i_size because
  	 * we failed to copy some data. Prepare for truncate.
  	 */
  	if (pos + len > inode->i_size && ext3_can_truncate(inode))
  		ext3_orphan_add(handle, inode);
  	ret2 = ext3_journal_stop(handle);
  	if (!ret)
  		ret = ret2;
  	unlock_page(page);
  	page_cache_release(page);
  
  	if (pos + len > inode->i_size)
  		ext3_truncate_failed_write(inode);
  	return ret ? ret : copied;
  }
  
  static int ext3_writeback_write_end(struct file *file,
  				struct address_space *mapping,
  				loff_t pos, unsigned len, unsigned copied,
  				struct page *page, void *fsdata)
  {
  	handle_t *handle = ext3_journal_current_handle();
  	struct inode *inode = file->f_mapping->host;
  	int ret;
  
  	trace_ext3_writeback_write_end(inode, pos, len, copied);
  	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  	update_file_sizes(inode, pos, copied);
  	/*
  	 * There may be allocated blocks outside of i_size because
  	 * we failed to copy some data. Prepare for truncate.
  	 */
  	if (pos + len > inode->i_size && ext3_can_truncate(inode))
  		ext3_orphan_add(handle, inode);
  	ret = ext3_journal_stop(handle);
  	unlock_page(page);
  	page_cache_release(page);
  
  	if (pos + len > inode->i_size)
  		ext3_truncate_failed_write(inode);
  	return ret ? ret : copied;
  }
  
  static int ext3_journalled_write_end(struct file *file,
  				struct address_space *mapping,
  				loff_t pos, unsigned len, unsigned copied,
  				struct page *page, void *fsdata)
  {
  	handle_t *handle = ext3_journal_current_handle();
  	struct inode *inode = mapping->host;
  	struct ext3_inode_info *ei = EXT3_I(inode);
  	int ret = 0, ret2;
  	int partial = 0;
  	unsigned from, to;
  
  	trace_ext3_journalled_write_end(inode, pos, len, copied);
  	from = pos & (PAGE_CACHE_SIZE - 1);
  	to = from + len;
  
  	if (copied < len) {
  		if (!PageUptodate(page))
  			copied = 0;
  		page_zero_new_buffers(page, from + copied, to);
  		to = from + copied;
  	}
  
  	ret = walk_page_buffers(handle, page_buffers(page), from,
  				to, &partial, write_end_fn);
  	if (!partial)
  		SetPageUptodate(page);
  
  	if (pos + copied > inode->i_size)
  		i_size_write(inode, pos + copied);
  	/*
  	 * There may be allocated blocks outside of i_size because
  	 * we failed to copy some data. Prepare for truncate.
  	 */
  	if (pos + len > inode->i_size && ext3_can_truncate(inode))
  		ext3_orphan_add(handle, inode);
  	ext3_set_inode_state(inode, EXT3_STATE_JDATA);
  	atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
  	if (inode->i_size > ei->i_disksize) {
  		ei->i_disksize = inode->i_size;
  		ret2 = ext3_mark_inode_dirty(handle, inode);
  		if (!ret)
  			ret = ret2;
  	}
  
  	ret2 = ext3_journal_stop(handle);
  	if (!ret)
  		ret = ret2;
  	unlock_page(page);
  	page_cache_release(page);
  
  	if (pos + len > inode->i_size)
  		ext3_truncate_failed_write(inode);
  	return ret ? ret : copied;
  }
  
  /*
   * bmap() is special.  It gets used by applications such as lilo and by
   * the swapper to find the on-disk block of a specific piece of data.
   *
   * Naturally, this is dangerous if the block concerned is still in the
   * journal.  If somebody makes a swapfile on an ext3 data-journaling
   * filesystem and enables swap, then they may get a nasty shock when the
   * data getting swapped to that swapfile suddenly gets overwritten by
   * the original zero's written out previously to the journal and
   * awaiting writeback in the kernel's buffer cache.
   *
   * So, if we see any bmap calls here on a modified, data-journaled file,
   * take extra steps to flush any blocks which might be in the cache.
   */
  static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
  {
  	struct inode *inode = mapping->host;
  	journal_t *journal;
  	int err;
  
  	if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
  		/*
  		 * This is a REALLY heavyweight approach, but the use of
  		 * bmap on dirty files is expected to be extremely rare:
  		 * only if we run lilo or swapon on a freshly made file
  		 * do we expect this to happen.
  		 *
  		 * (bmap requires CAP_SYS_RAWIO so this does not
  		 * represent an unprivileged user DOS attack --- we'd be
  		 * in trouble if mortal users could trigger this path at
  		 * will.)
  		 *
  		 * NB. EXT3_STATE_JDATA is not set on files other than
  		 * regular files.  If somebody wants to bmap a directory
  		 * or symlink and gets confused because the buffer
  		 * hasn't yet been flushed to disk, they deserve
  		 * everything they get.
  		 */
  
  		ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
  		journal = EXT3_JOURNAL(inode);
  		journal_lock_updates(journal);
  		err = journal_flush(journal);
  		journal_unlock_updates(journal);
  
  		if (err)
  			return 0;
  	}
  
  	return generic_block_bmap(mapping,block,ext3_get_block);
  }
  
  static int bget_one(handle_t *handle, struct buffer_head *bh)
  {
  	get_bh(bh);
  	return 0;
  }
  
  static int bput_one(handle_t *handle, struct buffer_head *bh)
  {
  	put_bh(bh);
  	return 0;
  }
  
  static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
  {
  	return !buffer_mapped(bh);
  }
  
  /*
   * Note that we always start a transaction even if we're not journalling
   * data.  This is to preserve ordering: any hole instantiation within
   * __block_write_full_page -> ext3_get_block() should be journalled
   * along with the data so we don't crash and then get metadata which
   * refers to old data.
   *
   * In all journalling modes block_write_full_page() will start the I/O.
   *
   * Problem:
   *
   *	ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
   *		ext3_writepage()
   *
   * Similar for:
   *
   *	ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
   *
   * Same applies to ext3_get_block().  We will deadlock on various things like
   * lock_journal and i_truncate_mutex.
   *
   * Setting PF_MEMALLOC here doesn't work - too many internal memory
   * allocations fail.
   *
   * 16May01: If we're reentered then journal_current_handle() will be
   *	    non-zero. We simply *return*.
   *
   * 1 July 2001: @@@ FIXME:
   *   In journalled data mode, a data buffer may be metadata against the
   *   current transaction.  But the same file is part of a shared mapping
   *   and someone does a writepage() on it.
   *
   *   We will move the buffer onto the async_data list, but *after* it has
   *   been dirtied. So there's a small window where we have dirty data on
   *   BJ_Metadata.
   *
   *   Note that this only applies to the last partial page in the file.  The
   *   bit which block_write_full_page() uses prepare/commit for.  (That's
   *   broken code anyway: it's wrong for msync()).
   *
   *   It's a rare case: affects the final partial page, for journalled data
   *   where the file is subject to bith write() and writepage() in the same
   *   transction.  To fix it we'll need a custom block_write_full_page().
   *   We'll probably need that anyway for journalling writepage() output.
   *
   * We don't honour synchronous mounts for writepage().  That would be
   * disastrous.  Any write() or metadata operation will sync the fs for
   * us.
   *
   * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
   * we don't need to open a transaction here.
   */
  static int ext3_ordered_writepage(struct page *page,
  				struct writeback_control *wbc)
  {
  	struct inode *inode = page->mapping->host;
  	struct buffer_head *page_bufs;
  	handle_t *handle = NULL;
  	int ret = 0;
  	int err;
  
  	J_ASSERT(PageLocked(page));
  	/*
  	 * We don't want to warn for emergency remount. The condition is
  	 * ordered to avoid dereferencing inode->i_sb in non-error case to
  	 * avoid slow-downs.
  	 */
  	WARN_ON_ONCE(IS_RDONLY(inode) &&
  		     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
  
  	/*
  	 * We give up here if we're reentered, because it might be for a
  	 * different filesystem.
  	 */
  	if (ext3_journal_current_handle())
  		goto out_fail;
  
  	trace_ext3_ordered_writepage(page);
  	if (!page_has_buffers(page)) {
  		create_empty_buffers(page, inode->i_sb->s_blocksize,
  				(1 << BH_Dirty)|(1 << BH_Uptodate));
  		page_bufs = page_buffers(page);
  	} else {
  		page_bufs = page_buffers(page);
  		if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
  				       NULL, buffer_unmapped)) {
  			/* Provide NULL get_block() to catch bugs if buffers
  			 * weren't really mapped */
  			return block_write_full_page(page, NULL, wbc);
  		}
  	}
  	handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  
  	if (IS_ERR(handle)) {
  		ret = PTR_ERR(handle);
  		goto out_fail;
  	}
  
  	walk_page_buffers(handle, page_bufs, 0,
  			PAGE_CACHE_SIZE, NULL, bget_one);
  
  	ret = block_write_full_page(page, ext3_get_block, wbc);
  
  	/*
  	 * The page can become unlocked at any point now, and
  	 * truncate can then come in and change things.  So we
  	 * can't touch *page from now on.  But *page_bufs is
  	 * safe due to elevated refcount.
  	 */
  
  	/*
  	 * And attach them to the current transaction.  But only if
  	 * block_write_full_page() succeeded.  Otherwise they are unmapped,
  	 * and generally junk.
  	 */
  	if (ret == 0) {
  		err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
  					NULL, journal_dirty_data_fn);
  		if (!ret)
  			ret = err;
  	}
  	walk_page_buffers(handle, page_bufs, 0,
  			PAGE_CACHE_SIZE, NULL, bput_one);
  	err = ext3_journal_stop(handle);
  	if (!ret)
  		ret = err;
  	return ret;
  
  out_fail:
  	redirty_page_for_writepage(wbc, page);
  	unlock_page(page);
  	return ret;
  }
  
  static int ext3_writeback_writepage(struct page *page,
  				struct writeback_control *wbc)
  {
  	struct inode *inode = page->mapping->host;
  	handle_t *handle = NULL;
  	int ret = 0;
  	int err;
  
  	J_ASSERT(PageLocked(page));
  	/*
  	 * We don't want to warn for emergency remount. The condition is
  	 * ordered to avoid dereferencing inode->i_sb in non-error case to
  	 * avoid slow-downs.
  	 */
  	WARN_ON_ONCE(IS_RDONLY(inode) &&
  		     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
  
  	if (ext3_journal_current_handle())
  		goto out_fail;
  
  	trace_ext3_writeback_writepage(page);
  	if (page_has_buffers(page)) {
  		if (!walk_page_buffers(NULL, page_buffers(page), 0,
  				      PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
  			/* Provide NULL get_block() to catch bugs if buffers
  			 * weren't really mapped */
  			return block_write_full_page(page, NULL, wbc);
  		}
  	}
  
  	handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  	if (IS_ERR(handle)) {
  		ret = PTR_ERR(handle);
  		goto out_fail;
  	}
  
  	ret = block_write_full_page(page, ext3_get_block, wbc);
  
  	err = ext3_journal_stop(handle);
  	if (!ret)
  		ret = err;
  	return ret;
  
  out_fail:
  	redirty_page_for_writepage(wbc, page);
  	unlock_page(page);
  	return ret;
  }
  
  static int ext3_journalled_writepage(struct page *page,
  				struct writeback_control *wbc)
  {
  	struct inode *inode = page->mapping->host;
  	handle_t *handle = NULL;
  	int ret = 0;
  	int err;
  
  	J_ASSERT(PageLocked(page));
  	/*
  	 * We don't want to warn for emergency remount. The condition is
  	 * ordered to avoid dereferencing inode->i_sb in non-error case to
  	 * avoid slow-downs.
  	 */
  	WARN_ON_ONCE(IS_RDONLY(inode) &&
  		     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
  
  	if (ext3_journal_current_handle())
  		goto no_write;
  
  	trace_ext3_journalled_writepage(page);
  	handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  	if (IS_ERR(handle)) {
  		ret = PTR_ERR(handle);
  		goto no_write;
  	}
  
  	if (!page_has_buffers(page) || PageChecked(page)) {
  		/*
  		 * It's mmapped pagecache.  Add buffers and journal it.  There
  		 * doesn't seem much point in redirtying the page here.
  		 */
  		ClearPageChecked(page);
  		ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE,
  					  ext3_get_block);
  		if (ret != 0) {
  			ext3_journal_stop(handle);
  			goto out_unlock;
  		}
  		ret = walk_page_buffers(handle, page_buffers(page), 0,
  			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
  
  		err = walk_page_buffers(handle, page_buffers(page), 0,
  				PAGE_CACHE_SIZE, NULL, write_end_fn);
  		if (ret == 0)
  			ret = err;
  		ext3_set_inode_state(inode, EXT3_STATE_JDATA);
  		atomic_set(&EXT3_I(inode)->i_datasync_tid,
  			   handle->h_transaction->t_tid);
  		unlock_page(page);
  	} else {
  		/*
  		 * It may be a page full of checkpoint-mode buffers.  We don't
  		 * really know unless we go poke around in the buffer_heads.
  		 * But block_write_full_page will do the right thing.
  		 */
  		ret = block_write_full_page(page, ext3_get_block, wbc);
  	}
  	err = ext3_journal_stop(handle);
  	if (!ret)
  		ret = err;
  out:
  	return ret;
  
  no_write:
  	redirty_page_for_writepage(wbc, page);
  out_unlock:
  	unlock_page(page);
  	goto out;
  }
  
  static int ext3_readpage(struct file *file, struct page *page)
  {
  	trace_ext3_readpage(page);
  	return mpage_readpage(page, ext3_get_block);
  }
  
  static int
  ext3_readpages(struct file *file, struct address_space *mapping,
  		struct list_head *pages, unsigned nr_pages)
  {
  	return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
  }
  
  static void ext3_invalidatepage(struct page *page, unsigned int offset,
  				unsigned int length)
  {
  	journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  
  	trace_ext3_invalidatepage(page, offset, length);
  
  	/*
  	 * If it's a full truncate we just forget about the pending dirtying
  	 */
  	if (offset == 0 && length == PAGE_CACHE_SIZE)
  		ClearPageChecked(page);
  
  	journal_invalidatepage(journal, page, offset, length);
  }
  
  static int ext3_releasepage(struct page *page, gfp_t wait)
  {
  	journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  
  	trace_ext3_releasepage(page);
  	WARN_ON(PageChecked(page));
  	if (!page_has_buffers(page))
  		return 0;
  	return journal_try_to_free_buffers(journal, page, wait);
  }
  
  /*
   * If the O_DIRECT write will extend the file then add this inode to the
   * orphan list.  So recovery will truncate it back to the original size
   * if the machine crashes during the write.
   *
   * If the O_DIRECT write is intantiating holes inside i_size and the machine
   * crashes then stale disk data _may_ be exposed inside the file. But current
   * VFS code falls back into buffered path in that case so we are safe.
   */
  static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
  			const struct iovec *iov, loff_t offset,
  			unsigned long nr_segs)
  {
  	struct file *file = iocb->ki_filp;
  	struct inode *inode = file->f_mapping->host;
  	struct ext3_inode_info *ei = EXT3_I(inode);
  	handle_t *handle;
  	ssize_t ret;
  	int orphan = 0;
  	size_t count = iov_length(iov, nr_segs);
  	int retries = 0;
  
  	trace_ext3_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
  
  	if (rw == WRITE) {
  		loff_t final_size = offset + count;
  
  		if (final_size > inode->i_size) {
  			/* Credits for sb + inode write */
  			handle = ext3_journal_start(inode, 2);
  			if (IS_ERR(handle)) {
  				ret = PTR_ERR(handle);
  				goto out;
  			}
  			ret = ext3_orphan_add(handle, inode);
  			if (ret) {
  				ext3_journal_stop(handle);
  				goto out;
  			}
  			orphan = 1;
  			ei->i_disksize = inode->i_size;
  			ext3_journal_stop(handle);
  		}
  	}
  
  retry:
  	ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
  				 ext3_get_block);
  	/*
  	 * In case of error extending write may have instantiated a few
  	 * blocks outside i_size. Trim these off again.
  	 */
  	if (unlikely((rw & WRITE) && ret < 0)) {
  		loff_t isize = i_size_read(inode);
  		loff_t end = offset + iov_length(iov, nr_segs);
  
  		if (end > isize)
  			ext3_truncate_failed_direct_write(inode);
  	}
  	if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  		goto retry;
  
  	if (orphan) {
  		int err;
  
  		/* Credits for sb + inode write */
  		handle = ext3_journal_start(inode, 2);
  		if (IS_ERR(handle)) {
  			/* This is really bad luck. We've written the data
  			 * but cannot extend i_size. Truncate allocated blocks
  			 * and pretend the write failed... */
  			ext3_truncate_failed_direct_write(inode);
  			ret = PTR_ERR(handle);
  			goto out;
  		}
  		if (inode->i_nlink)
  			ext3_orphan_del(handle, inode);
  		if (ret > 0) {
  			loff_t end = offset + ret;
  			if (end > inode->i_size) {
  				ei->i_disksize = end;
  				i_size_write(inode, end);
  				/*
  				 * We're going to return a positive `ret'
  				 * here due to non-zero-length I/O, so there's
  				 * no way of reporting error returns from
  				 * ext3_mark_inode_dirty() to userspace.  So
  				 * ignore it.
  				 */
  				ext3_mark_inode_dirty(handle, inode);
  			}
  		}
  		err = ext3_journal_stop(handle);
  		if (ret == 0)
  			ret = err;
  	}
  out:
  	trace_ext3_direct_IO_exit(inode, offset,
  				iov_length(iov, nr_segs), rw, ret);
  	return ret;
  }
  
  /*
   * Pages can be marked dirty completely asynchronously from ext3's journalling
   * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
   * much here because ->set_page_dirty is called under VFS locks.  The page is
   * not necessarily locked.
   *
   * We cannot just dirty the page and leave attached buffers clean, because the
   * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
   * or jbddirty because all the journalling code will explode.
   *
   * So what we do is to mark the page "pending dirty" and next time writepage
   * is called, propagate that into the buffers appropriately.
   */
  static int ext3_journalled_set_page_dirty(struct page *page)
  {
  	SetPageChecked(page);
  	return __set_page_dirty_nobuffers(page);
  }
  
  static const struct address_space_operations ext3_ordered_aops = {
  	.readpage		= ext3_readpage,
  	.readpages		= ext3_readpages,
  	.writepage		= ext3_ordered_writepage,
  	.write_begin		= ext3_write_begin,
  	.write_end		= ext3_ordered_write_end,
  	.bmap			= ext3_bmap,
  	.invalidatepage		= ext3_invalidatepage,
  	.releasepage		= ext3_releasepage,
  	.direct_IO		= ext3_direct_IO,
  	.migratepage		= buffer_migrate_page,
  	.is_partially_uptodate  = block_is_partially_uptodate,
  	.is_dirty_writeback	= buffer_check_dirty_writeback,
  	.error_remove_page	= generic_error_remove_page,
  };
  
  static const struct address_space_operations ext3_writeback_aops = {
  	.readpage		= ext3_readpage,
  	.readpages		= ext3_readpages,
  	.writepage		= ext3_writeback_writepage,
  	.write_begin		= ext3_write_begin,
  	.write_end		= ext3_writeback_write_end,
  	.bmap			= ext3_bmap,
  	.invalidatepage		= ext3_invalidatepage,
  	.releasepage		= ext3_releasepage,
  	.direct_IO		= ext3_direct_IO,
  	.migratepage		= buffer_migrate_page,
  	.is_partially_uptodate  = block_is_partially_uptodate,
  	.error_remove_page	= generic_error_remove_page,
  };
  
  static const struct address_space_operations ext3_journalled_aops = {
  	.readpage		= ext3_readpage,
  	.readpages		= ext3_readpages,
  	.writepage		= ext3_journalled_writepage,
  	.write_begin		= ext3_write_begin,
  	.write_end		= ext3_journalled_write_end,
  	.set_page_dirty		= ext3_journalled_set_page_dirty,
  	.bmap			= ext3_bmap,
  	.invalidatepage		= ext3_invalidatepage,
  	.releasepage		= ext3_releasepage,
  	.is_partially_uptodate  = block_is_partially_uptodate,
  	.error_remove_page	= generic_error_remove_page,
  };
  
  void ext3_set_aops(struct inode *inode)
  {
  	if (ext3_should_order_data(inode))
  		inode->i_mapping->a_ops = &ext3_ordered_aops;
  	else if (ext3_should_writeback_data(inode))
  		inode->i_mapping->a_ops = &ext3_writeback_aops;
  	else
  		inode->i_mapping->a_ops = &ext3_journalled_aops;
  }
  
  /*
   * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
   * up to the end of the block which corresponds to `from'.
   * This required during truncate. We need to physically zero the tail end
   * of that block so it doesn't yield old data if the file is later grown.
   */
  static int ext3_block_truncate_page(struct inode *inode, loff_t from)
  {
  	ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  	unsigned offset = from & (PAGE_CACHE_SIZE - 1);
  	unsigned blocksize, iblock, length, pos;
  	struct page *page;
  	handle_t *handle = NULL;
  	struct buffer_head *bh;
  	int err = 0;
  
  	/* Truncated on block boundary - nothing to do */
  	blocksize = inode->i_sb->s_blocksize;
  	if ((from & (blocksize - 1)) == 0)
  		return 0;
  
  	page = grab_cache_page(inode->i_mapping, index);
  	if (!page)
  		return -ENOMEM;
  	length = blocksize - (offset & (blocksize - 1));
  	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  
  	if (!page_has_buffers(page))
  		create_empty_buffers(page, blocksize, 0);
  
  	/* Find the buffer that contains "offset" */
  	bh = page_buffers(page);
  	pos = blocksize;
  	while (offset >= pos) {
  		bh = bh->b_this_page;
  		iblock++;
  		pos += blocksize;
  	}
  
  	err = 0;
  	if (buffer_freed(bh)) {
  		BUFFER_TRACE(bh, "freed: skip");
  		goto unlock;
  	}
  
  	if (!buffer_mapped(bh)) {
  		BUFFER_TRACE(bh, "unmapped");
  		ext3_get_block(inode, iblock, bh, 0);
  		/* unmapped? It's a hole - nothing to do */
  		if (!buffer_mapped(bh)) {
  			BUFFER_TRACE(bh, "still unmapped");
  			goto unlock;
  		}
  	}
  
  	/* Ok, it's mapped. Make sure it's up-to-date */
  	if (PageUptodate(page))
  		set_buffer_uptodate(bh);
  
  	if (!bh_uptodate_or_lock(bh)) {
  		err = bh_submit_read(bh);
  		/* Uhhuh. Read error. Complain and punt. */
  		if (err)
  			goto unlock;
  	}
  
  	/* data=writeback mode doesn't need transaction to zero-out data */
  	if (!ext3_should_writeback_data(inode)) {
  		/* We journal at most one block */
  		handle = ext3_journal_start(inode, 1);
  		if (IS_ERR(handle)) {
  			clear_highpage(page);
  			flush_dcache_page(page);
  			err = PTR_ERR(handle);
  			goto unlock;
  		}
  	}
  
  	if (ext3_should_journal_data(inode)) {
  		BUFFER_TRACE(bh, "get write access");
  		err = ext3_journal_get_write_access(handle, bh);
  		if (err)
  			goto stop;
  	}
  
  	zero_user(page, offset, length);
  	BUFFER_TRACE(bh, "zeroed end of block");
  
  	err = 0;
  	if (ext3_should_journal_data(inode)) {
  		err = ext3_journal_dirty_metadata(handle, bh);
  	} else {
  		if (ext3_should_order_data(inode))
  			err = ext3_journal_dirty_data(handle, bh);
  		mark_buffer_dirty(bh);
  	}
  stop:
  	if (handle)
  		ext3_journal_stop(handle);
  
  unlock:
  	unlock_page(page);
  	page_cache_release(page);
  	return err;
  }
  
  /*
   * Probably it should be a library function... search for first non-zero word
   * or memcmp with zero_page, whatever is better for particular architecture.
   * Linus?
   */
  static inline int all_zeroes(__le32 *p, __le32 *q)
  {
  	while (p < q)
  		if (*p++)
  			return 0;
  	return 1;
  }
  
  /**
   *	ext3_find_shared - find the indirect blocks for partial truncation.
   *	@inode:	  inode in question
   *	@depth:	  depth of the affected branch
   *	@offsets: offsets of pointers in that branch (see ext3_block_to_path)
   *	@chain:	  place to store the pointers to partial indirect blocks
   *	@top:	  place to the (detached) top of branch
   *
   *	This is a helper function used by ext3_truncate().
   *
   *	When we do truncate() we may have to clean the ends of several
   *	indirect blocks but leave the blocks themselves alive. Block is
   *	partially truncated if some data below the new i_size is referred
   *	from it (and it is on the path to the first completely truncated
   *	data block, indeed).  We have to free the top of that path along
   *	with everything to the right of the path. Since no allocation
   *	past the truncation point is possible until ext3_truncate()
   *	finishes, we may safely do the latter, but top of branch may
   *	require special attention - pageout below the truncation point
   *	might try to populate it.
   *
   *	We atomically detach the top of branch from the tree, store the
   *	block number of its root in *@top, pointers to buffer_heads of
   *	partially truncated blocks - in @chain[].bh and pointers to
   *	their last elements that should not be removed - in
   *	@chain[].p. Return value is the pointer to last filled element
   *	of @chain.
   *
   *	The work left to caller to do the actual freeing of subtrees:
   *		a) free the subtree starting from *@top
   *		b) free the subtrees whose roots are stored in
   *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
   *		c) free the subtrees growing from the inode past the @chain[0].
   *			(no partially truncated stuff there).  */
  
  static Indirect *ext3_find_shared(struct inode *inode, int depth,
  			int offsets[4], Indirect chain[4], __le32 *top)
  {
  	Indirect *partial, *p;
  	int k, err;
  
  	*top = 0;
  	/* Make k index the deepest non-null offset + 1 */
  	for (k = depth; k > 1 && !offsets[k-1]; k--)
  		;
  	partial = ext3_get_branch(inode, k, offsets, chain, &err);
  	/* Writer: pointers */
  	if (!partial)
  		partial = chain + k-1;
  	/*
  	 * If the branch acquired continuation since we've looked at it -
  	 * fine, it should all survive and (new) top doesn't belong to us.
  	 */
  	if (!partial->key && *partial->p)
  		/* Writer: end */
  		goto no_top;
  	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
  		;
  	/*
  	 * OK, we've found the last block that must survive. The rest of our
  	 * branch should be detached before unlocking. However, if that rest
  	 * of branch is all ours and does not grow immediately from the inode
  	 * it's easier to cheat and just decrement partial->p.
  	 */
  	if (p == chain + k - 1 && p > chain) {
  		p->p--;
  	} else {
  		*top = *p->p;
  		/* Nope, don't do this in ext3.  Must leave the tree intact */
  #if 0
  		*p->p = 0;
  #endif
  	}
  	/* Writer: end */
  
  	while(partial > p) {
  		brelse(partial->bh);
  		partial--;
  	}
  no_top:
  	return partial;
  }
  
  /*
   * Zero a number of block pointers in either an inode or an indirect block.
   * If we restart the transaction we must again get write access to the
   * indirect block for further modification.
   *
   * We release `count' blocks on disk, but (last - first) may be greater
   * than `count' because there can be holes in there.
   */
  static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
  		struct buffer_head *bh, ext3_fsblk_t block_to_free,
  		unsigned long count, __le32 *first, __le32 *last)
  {
  	__le32 *p;
  	if (try_to_extend_transaction(handle, inode)) {
  		if (bh) {
  			BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  			if (ext3_journal_dirty_metadata(handle, bh))
  				return;
  		}
  		ext3_mark_inode_dirty(handle, inode);
  		truncate_restart_transaction(handle, inode);
  		if (bh) {
  			BUFFER_TRACE(bh, "retaking write access");
  			if (ext3_journal_get_write_access(handle, bh))
  				return;
  		}
  	}
  
  	/*
  	 * Any buffers which are on the journal will be in memory. We find
  	 * them on the hash table so journal_revoke() will run journal_forget()
  	 * on them.  We've already detached each block from the file, so
  	 * bforget() in journal_forget() should be safe.
  	 *
  	 * AKPM: turn on bforget in journal_forget()!!!
  	 */
  	for (p = first; p < last; p++) {
  		u32 nr = le32_to_cpu(*p);
  		if (nr) {
  			struct buffer_head *bh;
  
  			*p = 0;
  			bh = sb_find_get_block(inode->i_sb, nr);
  			ext3_forget(handle, 0, inode, bh, nr);
  		}
  	}
  
  	ext3_free_blocks(handle, inode, block_to_free, count);
  }
  
  /**
   * ext3_free_data - free a list of data blocks
   * @handle:	handle for this transaction
   * @inode:	inode we are dealing with
   * @this_bh:	indirect buffer_head which contains *@first and *@last
   * @first:	array of block numbers
   * @last:	points immediately past the end of array
   *
   * We are freeing all blocks referred from that array (numbers are stored as
   * little-endian 32-bit) and updating @inode->i_blocks appropriately.
   *
   * We accumulate contiguous runs of blocks to free.  Conveniently, if these
   * blocks are contiguous then releasing them at one time will only affect one
   * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
   * actually use a lot of journal space.
   *
   * @this_bh will be %NULL if @first and @last point into the inode's direct
   * block pointers.
   */
  static void ext3_free_data(handle_t *handle, struct inode *inode,
  			   struct buffer_head *this_bh,
  			   __le32 *first, __le32 *last)
  {
  	ext3_fsblk_t block_to_free = 0;    /* Starting block # of a run */
  	unsigned long count = 0;	    /* Number of blocks in the run */
  	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
  					       corresponding to
  					       block_to_free */
  	ext3_fsblk_t nr;		    /* Current block # */
  	__le32 *p;			    /* Pointer into inode/ind
  					       for current block */
  	int err;
  
  	if (this_bh) {				/* For indirect block */
  		BUFFER_TRACE(this_bh, "get_write_access");
  		err = ext3_journal_get_write_access(handle, this_bh);
  		/* Important: if we can't update the indirect pointers
  		 * to the blocks, we can't free them. */
  		if (err)
  			return;
  	}
  
  	for (p = first; p < last; p++) {
  		nr = le32_to_cpu(*p);
  		if (nr) {
  			/* accumulate blocks to free if they're contiguous */
  			if (count == 0) {
  				block_to_free = nr;
  				block_to_free_p = p;
  				count = 1;
  			} else if (nr == block_to_free + count) {
  				count++;
  			} else {
  				ext3_clear_blocks(handle, inode, this_bh,
  						  block_to_free,
  						  count, block_to_free_p, p);
  				block_to_free = nr;
  				block_to_free_p = p;
  				count = 1;
  			}
  		}
  	}
  
  	if (count > 0)
  		ext3_clear_blocks(handle, inode, this_bh, block_to_free,
  				  count, block_to_free_p, p);
  
  	if (this_bh) {
  		BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
  
  		/*
  		 * The buffer head should have an attached journal head at this
  		 * point. However, if the data is corrupted and an indirect
  		 * block pointed to itself, it would have been detached when
  		 * the block was cleared. Check for this instead of OOPSing.
  		 */
  		if (bh2jh(this_bh))
  			ext3_journal_dirty_metadata(handle, this_bh);
  		else
  			ext3_error(inode->i_sb, "ext3_free_data",
  				   "circular indirect block detected, "
  				   "inode=%lu, block=%llu",
  				   inode->i_ino,
  				   (unsigned long long)this_bh->b_blocknr);
  	}
  }
  
  /**
   *	ext3_free_branches - free an array of branches
   *	@handle: JBD handle for this transaction
   *	@inode:	inode we are dealing with
   *	@parent_bh: the buffer_head which contains *@first and *@last
   *	@first:	array of block numbers
   *	@last:	pointer immediately past the end of array
   *	@depth:	depth of the branches to free
   *
   *	We are freeing all blocks referred from these branches (numbers are
   *	stored as little-endian 32-bit) and updating @inode->i_blocks
   *	appropriately.
   */
  static void ext3_free_branches(handle_t *handle, struct inode *inode,
  			       struct buffer_head *parent_bh,
  			       __le32 *first, __le32 *last, int depth)
  {
  	ext3_fsblk_t nr;
  	__le32 *p;
  
  	if (is_handle_aborted(handle))
  		return;
  
  	if (depth--) {
  		struct buffer_head *bh;
  		int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  		p = last;
  		while (--p >= first) {
  			nr = le32_to_cpu(*p);
  			if (!nr)
  				continue;		/* A hole */
  
  			/* Go read the buffer for the next level down */
  			bh = sb_bread(inode->i_sb, nr);
  
  			/*
  			 * A read failure? Report error and clear slot
  			 * (should be rare).
  			 */
  			if (!bh) {
  				ext3_error(inode->i_sb, "ext3_free_branches",
  					   "Read failure, inode=%lu, block="E3FSBLK,
  					   inode->i_ino, nr);
  				continue;
  			}
  
  			/* This zaps the entire block.  Bottom up. */
  			BUFFER_TRACE(bh, "free child branches");
  			ext3_free_branches(handle, inode, bh,
  					   (__le32*)bh->b_data,
  					   (__le32*)bh->b_data + addr_per_block,
  					   depth);
  
  			/*
  			 * Everything below this this pointer has been
  			 * released.  Now let this top-of-subtree go.
  			 *
  			 * We want the freeing of this indirect block to be
  			 * atomic in the journal with the updating of the
  			 * bitmap block which owns it.  So make some room in
  			 * the journal.
  			 *
  			 * We zero the parent pointer *after* freeing its
  			 * pointee in the bitmaps, so if extend_transaction()
  			 * for some reason fails to put the bitmap changes and
  			 * the release into the same transaction, recovery
  			 * will merely complain about releasing a free block,
  			 * rather than leaking blocks.
  			 */
  			if (is_handle_aborted(handle))
  				return;
  			if (try_to_extend_transaction(handle, inode)) {
  				ext3_mark_inode_dirty(handle, inode);
  				truncate_restart_transaction(handle, inode);
  			}
  
  			/*
  			 * We've probably journalled the indirect block several
  			 * times during the truncate.  But it's no longer
  			 * needed and we now drop it from the transaction via
  			 * journal_revoke().
  			 *
  			 * That's easy if it's exclusively part of this
  			 * transaction.  But if it's part of the committing
  			 * transaction then journal_forget() will simply
  			 * brelse() it.  That means that if the underlying
  			 * block is reallocated in ext3_get_block(),
  			 * unmap_underlying_metadata() will find this block
  			 * and will try to get rid of it.  damn, damn. Thus
  			 * we don't allow a block to be reallocated until
  			 * a transaction freeing it has fully committed.
  			 *
  			 * We also have to make sure journal replay after a
  			 * crash does not overwrite non-journaled data blocks
  			 * with old metadata when the block got reallocated for
  			 * data.  Thus we have to store a revoke record for a
  			 * block in the same transaction in which we free the
  			 * block.
  			 */
  			ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
  
  			ext3_free_blocks(handle, inode, nr, 1);
  
  			if (parent_bh) {
  				/*
  				 * The block which we have just freed is
  				 * pointed to by an indirect block: journal it
  				 */
  				BUFFER_TRACE(parent_bh, "get_write_access");
  				if (!ext3_journal_get_write_access(handle,
  								   parent_bh)){
  					*p = 0;
  					BUFFER_TRACE(parent_bh,
  					"call ext3_journal_dirty_metadata");
  					ext3_journal_dirty_metadata(handle,
  								    parent_bh);
  				}
  			}
  		}
  	} else {
  		/* We have reached the bottom of the tree. */
  		BUFFER_TRACE(parent_bh, "free data blocks");
  		ext3_free_data(handle, inode, parent_bh, first, last);
  	}
  }
  
  int ext3_can_truncate(struct inode *inode)
  {
  	if (S_ISREG(inode->i_mode))
  		return 1;
  	if (S_ISDIR(inode->i_mode))
  		return 1;
  	if (S_ISLNK(inode->i_mode))
  		return !ext3_inode_is_fast_symlink(inode);
  	return 0;
  }
  
  /*
   * ext3_truncate()
   *
   * We block out ext3_get_block() block instantiations across the entire
   * transaction, and VFS/VM ensures that ext3_truncate() cannot run
   * simultaneously on behalf of the same inode.
   *
   * As we work through the truncate and commit bits of it to the journal there
   * is one core, guiding principle: the file's tree must always be consistent on
   * disk.  We must be able to restart the truncate after a crash.
   *
   * The file's tree may be transiently inconsistent in memory (although it
   * probably isn't), but whenever we close off and commit a journal transaction,
   * the contents of (the filesystem + the journal) must be consistent and
   * restartable.  It's pretty simple, really: bottom up, right to left (although
   * left-to-right works OK too).
   *
   * Note that at recovery time, journal replay occurs *before* the restart of
   * truncate against the orphan inode list.
   *
   * The committed inode has the new, desired i_size (which is the same as
   * i_disksize in this case).  After a crash, ext3_orphan_cleanup() will see
   * that this inode's truncate did not complete and it will again call
   * ext3_truncate() to have another go.  So there will be instantiated blocks
   * to the right of the truncation point in a crashed ext3 filesystem.  But
   * that's fine - as long as they are linked from the inode, the post-crash
   * ext3_truncate() run will find them and release them.
   */
  void ext3_truncate(struct inode *inode)
  {
  	handle_t *handle;
  	struct ext3_inode_info *ei = EXT3_I(inode);
  	__le32 *i_data = ei->i_data;
  	int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  	int offsets[4];
  	Indirect chain[4];
  	Indirect *partial;
  	__le32 nr = 0;
  	int n;
  	long last_block;
  	unsigned blocksize = inode->i_sb->s_blocksize;
  
  	trace_ext3_truncate_enter(inode);
  
  	if (!ext3_can_truncate(inode))
  		goto out_notrans;
  
  	if (inode->i_size == 0 && ext3_should_writeback_data(inode))
  		ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
  
  	handle = start_transaction(inode);
  	if (IS_ERR(handle))
  		goto out_notrans;
  
  	last_block = (inode->i_size + blocksize-1)
  					>> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
  	n = ext3_block_to_path(inode, last_block, offsets, NULL);
  	if (n == 0)
  		goto out_stop;	/* error */
  
  	/*
  	 * OK.  This truncate is going to happen.  We add the inode to the
  	 * orphan list, so that if this truncate spans multiple transactions,
  	 * and we crash, we will resume the truncate when the filesystem
  	 * recovers.  It also marks the inode dirty, to catch the new size.
  	 *
  	 * Implication: the file must always be in a sane, consistent
  	 * truncatable state while each transaction commits.
  	 */
  	if (ext3_orphan_add(handle, inode))
  		goto out_stop;
  
  	/*
  	 * The orphan list entry will now protect us from any crash which
  	 * occurs before the truncate completes, so it is now safe to propagate
  	 * the new, shorter inode size (held for now in i_size) into the
  	 * on-disk inode. We do this via i_disksize, which is the value which
  	 * ext3 *really* writes onto the disk inode.
  	 */
  	ei->i_disksize = inode->i_size;
  
  	/*
  	 * From here we block out all ext3_get_block() callers who want to
  	 * modify the block allocation tree.
  	 */
  	mutex_lock(&ei->truncate_mutex);
  
  	if (n == 1) {		/* direct blocks */
  		ext3_free_data(handle, inode, NULL, i_data+offsets[0],
  			       i_data + EXT3_NDIR_BLOCKS);
  		goto do_indirects;
  	}
  
  	partial = ext3_find_shared(inode, n, offsets, chain, &nr);
  	/* Kill the top of shared branch (not detached) */
  	if (nr) {
  		if (partial == chain) {
  			/* Shared branch grows from the inode */
  			ext3_free_branches(handle, inode, NULL,
  					   &nr, &nr+1, (chain+n-1) - partial);
  			*partial->p = 0;
  			/*
  			 * We mark the inode dirty prior to restart,
  			 * and prior to stop.  No need for it here.
  			 */
  		} else {
  			/* Shared branch grows from an indirect block */
  			ext3_free_branches(handle, inode, partial->bh,
  					partial->p,
  					partial->p+1, (chain+n-1) - partial);
  		}
  	}
  	/* Clear the ends of indirect blocks on the shared branch */
  	while (partial > chain) {
  		ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
  				   (__le32*)partial->bh->b_data+addr_per_block,
  				   (chain+n-1) - partial);
  		BUFFER_TRACE(partial->bh, "call brelse");
  		brelse (partial->bh);
  		partial--;
  	}
  do_indirects:
  	/* Kill the remaining (whole) subtrees */
  	switch (offsets[0]) {
  	default:
  		nr = i_data[EXT3_IND_BLOCK];
  		if (nr) {
  			ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  			i_data[EXT3_IND_BLOCK] = 0;
  		}
  	case EXT3_IND_BLOCK:
  		nr = i_data[EXT3_DIND_BLOCK];
  		if (nr) {
  			ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  			i_data[EXT3_DIND_BLOCK] = 0;
  		}
  	case EXT3_DIND_BLOCK:
  		nr = i_data[EXT3_TIND_BLOCK];
  		if (nr) {
  			ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  			i_data[EXT3_TIND_BLOCK] = 0;
  		}
  	case EXT3_TIND_BLOCK:
  		;
  	}
  
  	ext3_discard_reservation(inode);
  
  	mutex_unlock(&ei->truncate_mutex);
  	inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
  	ext3_mark_inode_dirty(handle, inode);
  
  	/*
  	 * In a multi-transaction truncate, we only make the final transaction
  	 * synchronous
  	 */
  	if (IS_SYNC(inode))
  		handle->h_sync = 1;
  out_stop:
  	/*
  	 * If this was a simple ftruncate(), and the file will remain alive
  	 * then we need to clear up the orphan record which we created above.
  	 * However, if this was a real unlink then we were called by
  	 * ext3_evict_inode(), and we allow that function to clean up the
  	 * orphan info for us.
  	 */
  	if (inode->i_nlink)
  		ext3_orphan_del(handle, inode);
  
  	ext3_journal_stop(handle);
  	trace_ext3_truncate_exit(inode);
  	return;
  out_notrans:
  	/*
  	 * Delete the inode from orphan list so that it doesn't stay there
  	 * forever and trigger assertion on umount.
  	 */
  	if (inode->i_nlink)
  		ext3_orphan_del(NULL, inode);
  	trace_ext3_truncate_exit(inode);
  }
  
  static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
  		unsigned long ino, struct ext3_iloc *iloc)
  {
  	unsigned long block_group;
  	unsigned long offset;
  	ext3_fsblk_t block;
  	struct ext3_group_desc *gdp;
  
  	if (!ext3_valid_inum(sb, ino)) {
  		/*
  		 * This error is already checked for in namei.c unless we are
  		 * looking at an NFS filehandle, in which case no error
  		 * report is needed
  		 */
  		return 0;
  	}
  
  	block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
  	gdp = ext3_get_group_desc(sb, block_group, NULL);
  	if (!gdp)
  		return 0;
  	/*
  	 * Figure out the offset within the block group inode table
  	 */
  	offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
  		EXT3_INODE_SIZE(sb);
  	block = le32_to_cpu(gdp->bg_inode_table) +
  		(offset >> EXT3_BLOCK_SIZE_BITS(sb));
  
  	iloc->block_group = block_group;
  	iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
  	return block;
  }
  
  /*
   * ext3_get_inode_loc returns with an extra refcount against the inode's
   * underlying buffer_head on success. If 'in_mem' is true, we have all
   * data in memory that is needed to recreate the on-disk version of this
   * inode.
   */
  static int __ext3_get_inode_loc(struct inode *inode,
  				struct ext3_iloc *iloc, int in_mem)
  {
  	ext3_fsblk_t block;
  	struct buffer_head *bh;
  
  	block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
  	if (!block)
  		return -EIO;
  
  	bh = sb_getblk(inode->i_sb, block);
  	if (unlikely(!bh)) {
  		ext3_error (inode->i_sb, "ext3_get_inode_loc",
  				"unable to read inode block - "
  				"inode=%lu, block="E3FSBLK,
  				 inode->i_ino, block);
  		return -ENOMEM;
  	}
  	if (!buffer_uptodate(bh)) {
  		lock_buffer(bh);
  
  		/*
  		 * If the buffer has the write error flag, we have failed
  		 * to write out another inode in the same block.  In this
  		 * case, we don't have to read the block because we may
  		 * read the old inode data successfully.
  		 */
  		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
  			set_buffer_uptodate(bh);
  
  		if (buffer_uptodate(bh)) {
  			/* someone brought it uptodate while we waited */
  			unlock_buffer(bh);
  			goto has_buffer;
  		}
  
  		/*
  		 * If we have all information of the inode in memory and this
  		 * is the only valid inode in the block, we need not read the
  		 * block.
  		 */
  		if (in_mem) {
  			struct buffer_head *bitmap_bh;
  			struct ext3_group_desc *desc;
  			int inodes_per_buffer;
  			int inode_offset, i;
  			int block_group;
  			int start;
  
  			block_group = (inode->i_ino - 1) /
  					EXT3_INODES_PER_GROUP(inode->i_sb);
  			inodes_per_buffer = bh->b_size /
  				EXT3_INODE_SIZE(inode->i_sb);
  			inode_offset = ((inode->i_ino - 1) %
  					EXT3_INODES_PER_GROUP(inode->i_sb));
  			start = inode_offset & ~(inodes_per_buffer - 1);
  
  			/* Is the inode bitmap in cache? */
  			desc = ext3_get_group_desc(inode->i_sb,
  						block_group, NULL);
  			if (!desc)
  				goto make_io;
  
  			bitmap_bh = sb_getblk(inode->i_sb,
  					le32_to_cpu(desc->bg_inode_bitmap));
  			if (unlikely(!bitmap_bh))
  				goto make_io;
  
  			/*
  			 * If the inode bitmap isn't in cache then the
  			 * optimisation may end up performing two reads instead
  			 * of one, so skip it.
  			 */
  			if (!buffer_uptodate(bitmap_bh)) {
  				brelse(bitmap_bh);
  				goto make_io;
  			}
  			for (i = start; i < start + inodes_per_buffer; i++) {
  				if (i == inode_offset)
  					continue;
  				if (ext3_test_bit(i, bitmap_bh->b_data))
  					break;
  			}
  			brelse(bitmap_bh);
  			if (i == start + inodes_per_buffer) {
  				/* all other inodes are free, so skip I/O */
  				memset(bh->b_data, 0, bh->b_size);
  				set_buffer_uptodate(bh);
  				unlock_buffer(bh);
  				goto has_buffer;
  			}
  		}
  
  make_io:
  		/*
  		 * There are other valid inodes in the buffer, this inode
  		 * has in-inode xattrs, or we don't have this inode in memory.
  		 * Read the block from disk.
  		 */
  		trace_ext3_load_inode(inode);
  		get_bh(bh);
  		bh->b_end_io = end_buffer_read_sync;
  		submit_bh(READ | REQ_META | REQ_PRIO, bh);
  		wait_on_buffer(bh);
  		if (!buffer_uptodate(bh)) {
  			ext3_error(inode->i_sb, "ext3_get_inode_loc",
  					"unable to read inode block - "
  					"inode=%lu, block="E3FSBLK,
  					inode->i_ino, block);
  			brelse(bh);
  			return -EIO;
  		}
  	}
  has_buffer:
  	iloc->bh = bh;
  	return 0;
  }
  
  int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
  {
  	/* We have all inode data except xattrs in memory here. */
  	return __ext3_get_inode_loc(inode, iloc,
  		!ext3_test_inode_state(inode, EXT3_STATE_XATTR));
  }
  
  void ext3_set_inode_flags(struct inode *inode)
  {
  	unsigned int flags = EXT3_I(inode)->i_flags;
  
  	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  	if (flags & EXT3_SYNC_FL)
  		inode->i_flags |= S_SYNC;
  	if (flags & EXT3_APPEND_FL)
  		inode->i_flags |= S_APPEND;
  	if (flags & EXT3_IMMUTABLE_FL)
  		inode->i_flags |= S_IMMUTABLE;
  	if (flags & EXT3_NOATIME_FL)
  		inode->i_flags |= S_NOATIME;
  	if (flags & EXT3_DIRSYNC_FL)
  		inode->i_flags |= S_DIRSYNC;
  }
  
  /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
  void ext3_get_inode_flags(struct ext3_inode_info *ei)
  {
  	unsigned int flags = ei->vfs_inode.i_flags;
  
  	ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
  			EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
  	if (flags & S_SYNC)
  		ei->i_flags |= EXT3_SYNC_FL;
  	if (flags & S_APPEND)
  		ei->i_flags |= EXT3_APPEND_FL;
  	if (flags & S_IMMUTABLE)
  		ei->i_flags |= EXT3_IMMUTABLE_FL;
  	if (flags & S_NOATIME)
  		ei->i_flags |= EXT3_NOATIME_FL;
  	if (flags & S_DIRSYNC)
  		ei->i_flags |= EXT3_DIRSYNC_FL;
  }
  
  struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
  {
  	struct ext3_iloc iloc;
  	struct ext3_inode *raw_inode;
  	struct ext3_inode_info *ei;
  	struct buffer_head *bh;
  	struct inode *inode;
  	journal_t *journal = EXT3_SB(sb)->s_journal;
  	transaction_t *transaction;
  	long ret;
  	int block;
  	uid_t i_uid;
  	gid_t i_gid;
  
  	inode = iget_locked(sb, ino);
  	if (!inode)
  		return ERR_PTR(-ENOMEM);
  	if (!(inode->i_state & I_NEW))
  		return inode;
  
  	ei = EXT3_I(inode);
  	ei->i_block_alloc_info = NULL;
  
  	ret = __ext3_get_inode_loc(inode, &iloc, 0);
  	if (ret < 0)
  		goto bad_inode;
  	bh = iloc.bh;
  	raw_inode = ext3_raw_inode(&iloc);
  	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  	if(!(test_opt (inode->i_sb, NO_UID32))) {
  		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  	}
  	i_uid_write(inode, i_uid);
  	i_gid_write(inode, i_gid);
  	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
  	inode->i_size = le32_to_cpu(raw_inode->i_size);
  	inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
  	inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
  	inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
  	inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
  
  	ei->i_state_flags = 0;
  	ei->i_dir_start_lookup = 0;
  	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  	/* We now have enough fields to check if the inode was active or not.
  	 * This is needed because nfsd might try to access dead inodes
  	 * the test is that same one that e2fsck uses
  	 * NeilBrown 1999oct15
  	 */
  	if (inode->i_nlink == 0) {
  		if (inode->i_mode == 0 ||
  		    !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
  			/* this inode is deleted */
  			brelse (bh);
  			ret = -ESTALE;
  			goto bad_inode;
  		}
  		/* The only unlinked inodes we let through here have
  		 * valid i_mode and are being read by the orphan
  		 * recovery code: that's fine, we're about to complete
  		 * the process of deleting those. */
  	}
  	inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
  	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  #ifdef EXT3_FRAGMENTS
  	ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
  	ei->i_frag_no = raw_inode->i_frag;
  	ei->i_frag_size = raw_inode->i_fsize;
  #endif
  	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
  	if (!S_ISREG(inode->i_mode)) {
  		ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
  	} else {
  		inode->i_size |=
  			((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
  	}
  	ei->i_disksize = inode->i_size;
  	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  	ei->i_block_group = iloc.block_group;
  	/*
  	 * NOTE! The in-memory inode i_data array is in little-endian order
  	 * even on big-endian machines: we do NOT byteswap the block numbers!
  	 */
  	for (block = 0; block < EXT3_N_BLOCKS; block++)
  		ei->i_data[block] = raw_inode->i_block[block];
  	INIT_LIST_HEAD(&ei->i_orphan);
  
  	/*
  	 * Set transaction id's of transactions that have to be committed
  	 * to finish f[data]sync. We set them to currently running transaction
  	 * as we cannot be sure that the inode or some of its metadata isn't
  	 * part of the transaction - the inode could have been reclaimed and
  	 * now it is reread from disk.
  	 */
  	if (journal) {
  		tid_t tid;
  
  		spin_lock(&journal->j_state_lock);
  		if (journal->j_running_transaction)
  			transaction = journal->j_running_transaction;
  		else
  			transaction = journal->j_committing_transaction;
  		if (transaction)
  			tid = transaction->t_tid;
  		else
  			tid = journal->j_commit_sequence;
  		spin_unlock(&journal->j_state_lock);
  		atomic_set(&ei->i_sync_tid, tid);
  		atomic_set(&ei->i_datasync_tid, tid);
  	}
  
  	if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
  	    EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
  		/*
  		 * When mke2fs creates big inodes it does not zero out
  		 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
  		 * so ignore those first few inodes.
  		 */
  		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  		if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  		    EXT3_INODE_SIZE(inode->i_sb)) {
  			brelse (bh);
  			ret = -EIO;
  			goto bad_inode;
  		}
  		if (ei->i_extra_isize == 0) {
  			/* The extra space is currently unused. Use it. */
  			ei->i_extra_isize = sizeof(struct ext3_inode) -
  					    EXT3_GOOD_OLD_INODE_SIZE;
  		} else {
  			__le32 *magic = (void *)raw_inode +
  					EXT3_GOOD_OLD_INODE_SIZE +
  					ei->i_extra_isize;
  			if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
  				 ext3_set_inode_state(inode, EXT3_STATE_XATTR);
  		}
  	} else
  		ei->i_extra_isize = 0;
  
  	if (S_ISREG(inode->i_mode)) {
  		inode->i_op = &ext3_file_inode_operations;
  		inode->i_fop = &ext3_file_operations;
  		ext3_set_aops(inode);
  	} else if (S_ISDIR(inode->i_mode)) {
  		inode->i_op = &ext3_dir_inode_operations;
  		inode->i_fop = &ext3_dir_operations;
  	} else if (S_ISLNK(inode->i_mode)) {
  		if (ext3_inode_is_fast_symlink(inode)) {
  			inode->i_op = &ext3_fast_symlink_inode_operations;
  			nd_terminate_link(ei->i_data, inode->i_size,
  				sizeof(ei->i_data) - 1);
  		} else {
  			inode->i_op = &ext3_symlink_inode_operations;
  			ext3_set_aops(inode);
  		}
  	} else {
  		inode->i_op = &ext3_special_inode_operations;
  		if (raw_inode->i_block[0])
  			init_special_inode(inode, inode->i_mode,
  			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  		else
  			init_special_inode(inode, inode->i_mode,
  			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  	}
  	brelse (iloc.bh);
  	ext3_set_inode_flags(inode);
  	unlock_new_inode(inode);
  	return inode;
  
  bad_inode:
  	iget_failed(inode);
  	return ERR_PTR(ret);
  }
  
  /*
   * Post the struct inode info into an on-disk inode location in the
   * buffer-cache.  This gobbles the caller's reference to the
   * buffer_head in the inode location struct.
   *
   * The caller must have write access to iloc->bh.
   */
  static int ext3_do_update_inode(handle_t *handle,
  				struct inode *inode,
  				struct ext3_iloc *iloc)
  {
  	struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
  	struct ext3_inode_info *ei = EXT3_I(inode);
  	struct buffer_head *bh = iloc->bh;
  	int err = 0, rc, block;
  	int need_datasync = 0;
  	__le32 disksize;
  	uid_t i_uid;
  	gid_t i_gid;
  
  again:
  	/* we can't allow multiple procs in here at once, its a bit racey */
  	lock_buffer(bh);
  
  	/* For fields not not tracking in the in-memory inode,
  	 * initialise them to zero for new inodes. */
  	if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
  		memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
  
  	ext3_get_inode_flags(ei);
  	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  	i_uid = i_uid_read(inode);
  	i_gid = i_gid_read(inode);
  	if(!(test_opt(inode->i_sb, NO_UID32))) {
  		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
  		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
  /*
   * Fix up interoperability with old kernels. Otherwise, old inodes get
   * re-used with the upper 16 bits of the uid/gid intact
   */
  		if(!ei->i_dtime) {
  			raw_inode->i_uid_high =
  				cpu_to_le16(high_16_bits(i_uid));
  			raw_inode->i_gid_high =
  				cpu_to_le16(high_16_bits(i_gid));
  		} else {
  			raw_inode->i_uid_high = 0;
  			raw_inode->i_gid_high = 0;
  		}
  	} else {
  		raw_inode->i_uid_low =
  			cpu_to_le16(fs_high2lowuid(i_uid));
  		raw_inode->i_gid_low =
  			cpu_to_le16(fs_high2lowgid(i_gid));
  		raw_inode->i_uid_high = 0;
  		raw_inode->i_gid_high = 0;
  	}
  	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  	disksize = cpu_to_le32(ei->i_disksize);
  	if (disksize != raw_inode->i_size) {
  		need_datasync = 1;
  		raw_inode->i_size = disksize;
  	}
  	raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
  	raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
  	raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
  	raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
  	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
  #ifdef EXT3_FRAGMENTS
  	raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
  	raw_inode->i_frag = ei->i_frag_no;
  	raw_inode->i_fsize = ei->i_frag_size;
  #endif
  	raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
  	if (!S_ISREG(inode->i_mode)) {
  		raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
  	} else {
  		disksize = cpu_to_le32(ei->i_disksize >> 32);
  		if (disksize != raw_inode->i_size_high) {
  			raw_inode->i_size_high = disksize;
  			need_datasync = 1;
  		}
  		if (ei->i_disksize > 0x7fffffffULL) {
  			struct super_block *sb = inode->i_sb;
  			if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
  					EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
  			    EXT3_SB(sb)->s_es->s_rev_level ==
  					cpu_to_le32(EXT3_GOOD_OLD_REV)) {
  			       /* If this is the first large file
  				* created, add a flag to the superblock.
  				*/
  				unlock_buffer(bh);
  				err = ext3_journal_get_write_access(handle,
  						EXT3_SB(sb)->s_sbh);
  				if (err)
  					goto out_brelse;
  
  				ext3_update_dynamic_rev(sb);
  				EXT3_SET_RO_COMPAT_FEATURE(sb,
  					EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
  				handle->h_sync = 1;
  				err = ext3_journal_dirty_metadata(handle,
  						EXT3_SB(sb)->s_sbh);
  				/* get our lock and start over */
  				goto again;
  			}
  		}
  	}
  	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  		if (old_valid_dev(inode->i_rdev)) {
  			raw_inode->i_block[0] =
  				cpu_to_le32(old_encode_dev(inode->i_rdev));
  			raw_inode->i_block[1] = 0;
  		} else {
  			raw_inode->i_block[0] = 0;
  			raw_inode->i_block[1] =
  				cpu_to_le32(new_encode_dev(inode->i_rdev));
  			raw_inode->i_block[2] = 0;
  		}
  	} else for (block = 0; block < EXT3_N_BLOCKS; block++)
  		raw_inode->i_block[block] = ei->i_data[block];
  
  	if (ei->i_extra_isize)
  		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  
  	BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  	unlock_buffer(bh);
  	rc = ext3_journal_dirty_metadata(handle, bh);
  	if (!err)
  		err = rc;
  	ext3_clear_inode_state(inode, EXT3_STATE_NEW);
  
  	atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
  	if (need_datasync)
  		atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
  out_brelse:
  	brelse (bh);
  	ext3_std_error(inode->i_sb, err);
  	return err;
  }
  
  /*
   * ext3_write_inode()
   *
   * We are called from a few places:
   *
   * - Within generic_file_write() for O_SYNC files.
   *   Here, there will be no transaction running. We wait for any running
   *   transaction to commit.
   *
   * - Within sys_sync(), kupdate and such.
   *   We wait on commit, if tol to.
   *
   * - Within prune_icache() (PF_MEMALLOC == true)
   *   Here we simply return.  We can't afford to block kswapd on the
   *   journal commit.
   *
   * In all cases it is actually safe for us to return without doing anything,
   * because the inode has been copied into a raw inode buffer in
   * ext3_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
   * knfsd.
   *
   * Note that we are absolutely dependent upon all inode dirtiers doing the
   * right thing: they *must* call mark_inode_dirty() after dirtying info in
   * which we are interested.
   *
   * It would be a bug for them to not do this.  The code:
   *
   *	mark_inode_dirty(inode)
   *	stuff();
   *	inode->i_size = expr;
   *
   * is in error because a kswapd-driven write_inode() could occur while
   * `stuff()' is running, and the new i_size will be lost.  Plus the inode
   * will no longer be on the superblock's dirty inode list.
   */
  int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
  {
  	if (current->flags & PF_MEMALLOC)
  		return 0;
  
  	if (ext3_journal_current_handle()) {
  		jbd_debug(1, "called recursively, non-PF_MEMALLOC!
  ");
  		dump_stack();
  		return -EIO;
  	}
  
  	if (wbc->sync_mode != WB_SYNC_ALL)
  		return 0;
  
  	return ext3_force_commit(inode->i_sb);
  }
  
  /*
   * ext3_setattr()
   *
   * Called from notify_change.
   *
   * We want to trap VFS attempts to truncate the file as soon as
   * possible.  In particular, we want to make sure that when the VFS
   * shrinks i_size, we put the inode on the orphan list and modify
   * i_disksize immediately, so that during the subsequent flushing of
   * dirty pages and freeing of disk blocks, we can guarantee that any
   * commit will leave the blocks being flushed in an unused state on
   * disk.  (On recovery, the inode will get truncated and the blocks will
   * be freed, so we have a strong guarantee that no future commit will
   * leave these blocks visible to the user.)
   *
   * Called with inode->sem down.
   */
  int ext3_setattr(struct dentry *dentry, struct iattr *attr)
  {
  	struct inode *inode = dentry->d_inode;
  	int error, rc = 0;
  	const unsigned int ia_valid = attr->ia_valid;
  
  	error = inode_change_ok(inode, attr);
  	if (error)
  		return error;
  
  	if (is_quota_modification(inode, attr))
  		dquot_initialize(inode);
  	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
  	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
  		handle_t *handle;
  
  		/* (user+group)*(old+new) structure, inode write (sb,
  		 * inode block, ? - but truncate inode update has it) */
  		handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
  					EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
  		if (IS_ERR(handle)) {
  			error = PTR_ERR(handle);
  			goto err_out;
  		}
  		error = dquot_transfer(inode, attr);
  		if (error) {
  			ext3_journal_stop(handle);
  			return error;
  		}
  		/* Update corresponding info in inode so that everything is in
  		 * one transaction */
  		if (attr->ia_valid & ATTR_UID)
  			inode->i_uid = attr->ia_uid;
  		if (attr->ia_valid & ATTR_GID)
  			inode->i_gid = attr->ia_gid;
  		error = ext3_mark_inode_dirty(handle, inode);
  		ext3_journal_stop(handle);
  	}
  
  	if (attr->ia_valid & ATTR_SIZE)
  		inode_dio_wait(inode);
  
  	if (S_ISREG(inode->i_mode) &&
  	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
  		handle_t *handle;
  
  		handle = ext3_journal_start(inode, 3);
  		if (IS_ERR(handle)) {
  			error = PTR_ERR(handle);
  			goto err_out;
  		}
  
  		error = ext3_orphan_add(handle, inode);
  		if (error) {
  			ext3_journal_stop(handle);
  			goto err_out;
  		}
  		EXT3_I(inode)->i_disksize = attr->ia_size;
  		error = ext3_mark_inode_dirty(handle, inode);
  		ext3_journal_stop(handle);
  		if (error) {
  			/* Some hard fs error must have happened. Bail out. */
  			ext3_orphan_del(NULL, inode);
  			goto err_out;
  		}
  		rc = ext3_block_truncate_page(inode, attr->ia_size);
  		if (rc) {
  			/* Cleanup orphan list and exit */
  			handle = ext3_journal_start(inode, 3);
  			if (IS_ERR(handle)) {
  				ext3_orphan_del(NULL, inode);
  				goto err_out;
  			}
  			ext3_orphan_del(handle, inode);
  			ext3_journal_stop(handle);
  			goto err_out;
  		}
  	}
  
  	if ((attr->ia_valid & ATTR_SIZE) &&
  	    attr->ia_size != i_size_read(inode)) {
  		truncate_setsize(inode, attr->ia_size);
  		ext3_truncate(inode);
  	}
  
  	setattr_copy(inode, attr);
  	mark_inode_dirty(inode);
  
  	if (ia_valid & ATTR_MODE)
  		rc = posix_acl_chmod(inode, inode->i_mode);
  
  err_out:
  	ext3_std_error(inode->i_sb, error);
  	if (!error)
  		error = rc;
  	return error;
  }
  
  
  /*
   * How many blocks doth make a writepage()?
   *
   * With N blocks per page, it may be:
   * N data blocks
   * 2 indirect block
   * 2 dindirect
   * 1 tindirect
   * N+5 bitmap blocks (from the above)
   * N+5 group descriptor summary blocks
   * 1 inode block
   * 1 superblock.
   * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
   *
   * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
   *
   * With ordered or writeback data it's the same, less the N data blocks.
   *
   * If the inode's direct blocks can hold an integral number of pages then a
   * page cannot straddle two indirect blocks, and we can only touch one indirect
   * and dindirect block, and the "5" above becomes "3".
   *
   * This still overestimates under most circumstances.  If we were to pass the
   * start and end offsets in here as well we could do block_to_path() on each
   * block and work out the exact number of indirects which are touched.  Pah.
   */
  
  static int ext3_writepage_trans_blocks(struct inode *inode)
  {
  	int bpp = ext3_journal_blocks_per_page(inode);
  	int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
  	int ret;
  
  	if (ext3_should_journal_data(inode))
  		ret = 3 * (bpp + indirects) + 2;
  	else
  		ret = 2 * (bpp + indirects) + indirects + 2;
  
  #ifdef CONFIG_QUOTA
  	/* We know that structure was already allocated during dquot_initialize so
  	 * we will be updating only the data blocks + inodes */
  	ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
  #endif
  
  	return ret;
  }
  
  /*
   * The caller must have previously called ext3_reserve_inode_write().
   * Give this, we know that the caller already has write access to iloc->bh.
   */
  int ext3_mark_iloc_dirty(handle_t *handle,
  		struct inode *inode, struct ext3_iloc *iloc)
  {
  	int err = 0;
  
  	/* the do_update_inode consumes one bh->b_count */
  	get_bh(iloc->bh);
  
  	/* ext3_do_update_inode() does journal_dirty_metadata */
  	err = ext3_do_update_inode(handle, inode, iloc);
  	put_bh(iloc->bh);
  	return err;
  }
  
  /*
   * On success, We end up with an outstanding reference count against
   * iloc->bh.  This _must_ be cleaned up later.
   */
  
  int
  ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
  			 struct ext3_iloc *iloc)
  {
  	int err = 0;
  	if (handle) {
  		err = ext3_get_inode_loc(inode, iloc);
  		if (!err) {
  			BUFFER_TRACE(iloc->bh, "get_write_access");
  			err = ext3_journal_get_write_access(handle, iloc->bh);
  			if (err) {
  				brelse(iloc->bh);
  				iloc->bh = NULL;
  			}
  		}
  	}
  	ext3_std_error(inode->i_sb, err);
  	return err;
  }
  
  /*
   * What we do here is to mark the in-core inode as clean with respect to inode
   * dirtiness (it may still be data-dirty).
   * This means that the in-core inode may be reaped by prune_icache
   * without having to perform any I/O.  This is a very good thing,
   * because *any* task may call prune_icache - even ones which
   * have a transaction open against a different journal.
   *
   * Is this cheating?  Not really.  Sure, we haven't written the
   * inode out, but prune_icache isn't a user-visible syncing function.
   * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
   * we start and wait on commits.
   */
  int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
  {
  	struct ext3_iloc iloc;
  	int err;
  
  	might_sleep();
  	trace_ext3_mark_inode_dirty(inode, _RET_IP_);
  	err = ext3_reserve_inode_write(handle, inode, &iloc);
  	if (!err)
  		err = ext3_mark_iloc_dirty(handle, inode, &iloc);
  	return err;
  }
  
  /*
   * ext3_dirty_inode() is called from __mark_inode_dirty()
   *
   * We're really interested in the case where a file is being extended.
   * i_size has been changed by generic_commit_write() and we thus need
   * to include the updated inode in the current transaction.
   *
   * Also, dquot_alloc_space() will always dirty the inode when blocks
   * are allocated to the file.
   *
   * If the inode is marked synchronous, we don't honour that here - doing
   * so would cause a commit on atime updates, which we don't bother doing.
   * We handle synchronous inodes at the highest possible level.
   */
  void ext3_dirty_inode(struct inode *inode, int flags)
  {
  	handle_t *current_handle = ext3_journal_current_handle();
  	handle_t *handle;
  
  	handle = ext3_journal_start(inode, 2);
  	if (IS_ERR(handle))
  		goto out;
  	if (current_handle &&
  		current_handle->h_transaction != handle->h_transaction) {
  		/* This task has a transaction open against a different fs */
  		printk(KERN_EMERG "%s: transactions do not match!
  ",
  		       __func__);
  	} else {
  		jbd_debug(5, "marking dirty.  outer handle=%p
  ",
  				current_handle);
  		ext3_mark_inode_dirty(handle, inode);
  	}
  	ext3_journal_stop(handle);
  out:
  	return;
  }
  
  #if 0
  /*
   * Bind an inode's backing buffer_head into this transaction, to prevent
   * it from being flushed to disk early.  Unlike
   * ext3_reserve_inode_write, this leaves behind no bh reference and
   * returns no iloc structure, so the caller needs to repeat the iloc
   * lookup to mark the inode dirty later.
   */
  static int ext3_pin_inode(handle_t *handle, struct inode *inode)
  {
  	struct ext3_iloc iloc;
  
  	int err = 0;
  	if (handle) {
  		err = ext3_get_inode_loc(inode, &iloc);
  		if (!err) {
  			BUFFER_TRACE(iloc.bh, "get_write_access");
  			err = journal_get_write_access(handle, iloc.bh);
  			if (!err)
  				err = ext3_journal_dirty_metadata(handle,
  								  iloc.bh);
  			brelse(iloc.bh);
  		}
  	}
  	ext3_std_error(inode->i_sb, err);
  	return err;
  }
  #endif
  
  int ext3_change_inode_journal_flag(struct inode *inode, int val)
  {
  	journal_t *journal;
  	handle_t *handle;
  	int err;
  
  	/*
  	 * We have to be very careful here: changing a data block's
  	 * journaling status dynamically is dangerous.  If we write a
  	 * data block to the journal, change the status and then delete
  	 * that block, we risk forgetting to revoke the old log record
  	 * from the journal and so a subsequent replay can corrupt data.
  	 * So, first we make sure that the journal is empty and that
  	 * nobody is changing anything.
  	 */
  
  	journal = EXT3_JOURNAL(inode);
  	if (is_journal_aborted(journal))
  		return -EROFS;
  
  	journal_lock_updates(journal);
  	journal_flush(journal);
  
  	/*
  	 * OK, there are no updates running now, and all cached data is
  	 * synced to disk.  We are now in a completely consistent state
  	 * which doesn't have anything in the journal, and we know that
  	 * no filesystem updates are running, so it is safe to modify
  	 * the inode's in-core data-journaling state flag now.
  	 */
  
  	if (val)
  		EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
  	else
  		EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
  	ext3_set_aops(inode);
  
  	journal_unlock_updates(journal);
  
  	/* Finally we can mark the inode as dirty. */
  
  	handle = ext3_journal_start(inode, 1);
  	if (IS_ERR(handle))
  		return PTR_ERR(handle);
  
  	err = ext3_mark_inode_dirty(handle, inode);
  	handle->h_sync = 1;
  	ext3_journal_stop(handle);
  	ext3_std_error(inode->i_sb, err);
  
  	return err;
  }