Blame view

kernel/linux-imx6_3.14.28/Documentation/vfio.txt 15.9 KB
6b13f685e   김민수   BSP 최초 추가
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
  VFIO - "Virtual Function I/O"[1]
  -------------------------------------------------------------------------------
  Many modern system now provide DMA and interrupt remapping facilities
  to help ensure I/O devices behave within the boundaries they've been
  allotted.  This includes x86 hardware with AMD-Vi and Intel VT-d,
  POWER systems with Partitionable Endpoints (PEs) and embedded PowerPC
  systems such as Freescale PAMU.  The VFIO driver is an IOMMU/device
  agnostic framework for exposing direct device access to userspace, in
  a secure, IOMMU protected environment.  In other words, this allows
  safe[2], non-privileged, userspace drivers.
  
  Why do we want that?  Virtual machines often make use of direct device
  access ("device assignment") when configured for the highest possible
  I/O performance.  From a device and host perspective, this simply
  turns the VM into a userspace driver, with the benefits of
  significantly reduced latency, higher bandwidth, and direct use of
  bare-metal device drivers[3].
  
  Some applications, particularly in the high performance computing
  field, also benefit from low-overhead, direct device access from
  userspace.  Examples include network adapters (often non-TCP/IP based)
  and compute accelerators.  Prior to VFIO, these drivers had to either
  go through the full development cycle to become proper upstream
  driver, be maintained out of tree, or make use of the UIO framework,
  which has no notion of IOMMU protection, limited interrupt support,
  and requires root privileges to access things like PCI configuration
  space.
  
  The VFIO driver framework intends to unify these, replacing both the
  KVM PCI specific device assignment code as well as provide a more
  secure, more featureful userspace driver environment than UIO.
  
  Groups, Devices, and IOMMUs
  -------------------------------------------------------------------------------
  
  Devices are the main target of any I/O driver.  Devices typically
  create a programming interface made up of I/O access, interrupts,
  and DMA.  Without going into the details of each of these, DMA is
  by far the most critical aspect for maintaining a secure environment
  as allowing a device read-write access to system memory imposes the
  greatest risk to the overall system integrity.
  
  To help mitigate this risk, many modern IOMMUs now incorporate
  isolation properties into what was, in many cases, an interface only
  meant for translation (ie. solving the addressing problems of devices
  with limited address spaces).  With this, devices can now be isolated
  from each other and from arbitrary memory access, thus allowing
  things like secure direct assignment of devices into virtual machines.
  
  This isolation is not always at the granularity of a single device
  though.  Even when an IOMMU is capable of this, properties of devices,
  interconnects, and IOMMU topologies can each reduce this isolation.
  For instance, an individual device may be part of a larger multi-
  function enclosure.  While the IOMMU may be able to distinguish
  between devices within the enclosure, the enclosure may not require
  transactions between devices to reach the IOMMU.  Examples of this
  could be anything from a multi-function PCI device with backdoors
  between functions to a non-PCI-ACS (Access Control Services) capable
  bridge allowing redirection without reaching the IOMMU.  Topology
  can also play a factor in terms of hiding devices.  A PCIe-to-PCI
  bridge masks the devices behind it, making transaction appear as if
  from the bridge itself.  Obviously IOMMU design plays a major factor
  as well.
  
  Therefore, while for the most part an IOMMU may have device level
  granularity, any system is susceptible to reduced granularity.  The
  IOMMU API therefore supports a notion of IOMMU groups.  A group is
  a set of devices which is isolatable from all other devices in the
  system.  Groups are therefore the unit of ownership used by VFIO.
  
  While the group is the minimum granularity that must be used to
  ensure secure user access, it's not necessarily the preferred
  granularity.  In IOMMUs which make use of page tables, it may be
  possible to share a set of page tables between different groups,
  reducing the overhead both to the platform (reduced TLB thrashing,
  reduced duplicate page tables), and to the user (programming only
  a single set of translations).  For this reason, VFIO makes use of
  a container class, which may hold one or more groups.  A container
  is created by simply opening the /dev/vfio/vfio character device.
  
  On its own, the container provides little functionality, with all
  but a couple version and extension query interfaces locked away.
  The user needs to add a group into the container for the next level
  of functionality.  To do this, the user first needs to identify the
  group associated with the desired device.  This can be done using
  the sysfs links described in the example below.  By unbinding the
  device from the host driver and binding it to a VFIO driver, a new
  VFIO group will appear for the group as /dev/vfio/$GROUP, where
  $GROUP is the IOMMU group number of which the device is a member.
  If the IOMMU group contains multiple devices, each will need to
  be bound to a VFIO driver before operations on the VFIO group
  are allowed (it's also sufficient to only unbind the device from
  host drivers if a VFIO driver is unavailable; this will make the
  group available, but not that particular device).  TBD - interface
  for disabling driver probing/locking a device.
  
  Once the group is ready, it may be added to the container by opening
  the VFIO group character device (/dev/vfio/$GROUP) and using the
  VFIO_GROUP_SET_CONTAINER ioctl, passing the file descriptor of the
  previously opened container file.  If desired and if the IOMMU driver
  supports sharing the IOMMU context between groups, multiple groups may
  be set to the same container.  If a group fails to set to a container
  with existing groups, a new empty container will need to be used
  instead.
  
  With a group (or groups) attached to a container, the remaining
  ioctls become available, enabling access to the VFIO IOMMU interfaces.
  Additionally, it now becomes possible to get file descriptors for each
  device within a group using an ioctl on the VFIO group file descriptor.
  
  The VFIO device API includes ioctls for describing the device, the I/O
  regions and their read/write/mmap offsets on the device descriptor, as
  well as mechanisms for describing and registering interrupt
  notifications.
  
  VFIO Usage Example
  -------------------------------------------------------------------------------
  
  Assume user wants to access PCI device 0000:06:0d.0
  
  $ readlink /sys/bus/pci/devices/0000:06:0d.0/iommu_group
  ../../../../kernel/iommu_groups/26
  
  This device is therefore in IOMMU group 26.  This device is on the
  pci bus, therefore the user will make use of vfio-pci to manage the
  group:
  
  # modprobe vfio-pci
  
  Binding this device to the vfio-pci driver creates the VFIO group
  character devices for this group:
  
  $ lspci -n -s 0000:06:0d.0
  06:0d.0 0401: 1102:0002 (rev 08)
  # echo 0000:06:0d.0 > /sys/bus/pci/devices/0000:06:0d.0/driver/unbind
  # echo 1102 0002 > /sys/bus/pci/drivers/vfio-pci/new_id
  
  Now we need to look at what other devices are in the group to free
  it for use by VFIO:
  
  $ ls -l /sys/bus/pci/devices/0000:06:0d.0/iommu_group/devices
  total 0
  lrwxrwxrwx. 1 root root 0 Apr 23 16:13 0000:00:1e.0 ->
  	../../../../devices/pci0000:00/0000:00:1e.0
  lrwxrwxrwx. 1 root root 0 Apr 23 16:13 0000:06:0d.0 ->
  	../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
  lrwxrwxrwx. 1 root root 0 Apr 23 16:13 0000:06:0d.1 ->
  	../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
  
  This device is behind a PCIe-to-PCI bridge[4], therefore we also
  need to add device 0000:06:0d.1 to the group following the same
  procedure as above.  Device 0000:00:1e.0 is a bridge that does
  not currently have a host driver, therefore it's not required to
  bind this device to the vfio-pci driver (vfio-pci does not currently
  support PCI bridges).
  
  The final step is to provide the user with access to the group if
  unprivileged operation is desired (note that /dev/vfio/vfio provides
  no capabilities on its own and is therefore expected to be set to
  mode 0666 by the system).
  
  # chown user:user /dev/vfio/26
  
  The user now has full access to all the devices and the iommu for this
  group and can access them as follows:
  
  	int container, group, device, i;
  	struct vfio_group_status group_status =
  					{ .argsz = sizeof(group_status) };
  	struct vfio_iommu_type1_info iommu_info = { .argsz = sizeof(iommu_info) };
  	struct vfio_iommu_type1_dma_map dma_map = { .argsz = sizeof(dma_map) };
  	struct vfio_device_info device_info = { .argsz = sizeof(device_info) };
  
  	/* Create a new container */
  	container = open("/dev/vfio/vfio", O_RDWR);
  
  	if (ioctl(container, VFIO_GET_API_VERSION) != VFIO_API_VERSION)
  		/* Unknown API version */
  
  	if (!ioctl(container, VFIO_CHECK_EXTENSION, VFIO_TYPE1_IOMMU))
  		/* Doesn't support the IOMMU driver we want. */
  
  	/* Open the group */
  	group = open("/dev/vfio/26", O_RDWR);
  
  	/* Test the group is viable and available */
  	ioctl(group, VFIO_GROUP_GET_STATUS, &group_status);
  
  	if (!(group_status.flags & VFIO_GROUP_FLAGS_VIABLE))
  		/* Group is not viable (ie, not all devices bound for vfio) */
  
  	/* Add the group to the container */
  	ioctl(group, VFIO_GROUP_SET_CONTAINER, &container);
  
  	/* Enable the IOMMU model we want */
  	ioctl(container, VFIO_SET_IOMMU, VFIO_TYPE1_IOMMU);
  
  	/* Get addition IOMMU info */
  	ioctl(container, VFIO_IOMMU_GET_INFO, &iommu_info);
  
  	/* Allocate some space and setup a DMA mapping */
  	dma_map.vaddr = mmap(0, 1024 * 1024, PROT_READ | PROT_WRITE,
  			     MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
  	dma_map.size = 1024 * 1024;
  	dma_map.iova = 0; /* 1MB starting at 0x0 from device view */
  	dma_map.flags = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE;
  
  	ioctl(container, VFIO_IOMMU_MAP_DMA, &dma_map);
  
  	/* Get a file descriptor for the device */
  	device = ioctl(group, VFIO_GROUP_GET_DEVICE_FD, "0000:06:0d.0");
  
  	/* Test and setup the device */
  	ioctl(device, VFIO_DEVICE_GET_INFO, &device_info);
  
  	for (i = 0; i < device_info.num_regions; i++) {
  		struct vfio_region_info reg = { .argsz = sizeof(reg) };
  
  		reg.index = i;
  
  		ioctl(device, VFIO_DEVICE_GET_REGION_INFO, &reg);
  
  		/* Setup mappings... read/write offsets, mmaps
  		 * For PCI devices, config space is a region */
  	}
  
  	for (i = 0; i < device_info.num_irqs; i++) {
  		struct vfio_irq_info irq = { .argsz = sizeof(irq) };
  
  		irq.index = i;
  
  		ioctl(device, VFIO_DEVICE_GET_IRQ_INFO, &irq);
  
  		/* Setup IRQs... eventfds, VFIO_DEVICE_SET_IRQS */
  	}
  
  	/* Gratuitous device reset and go... */
  	ioctl(device, VFIO_DEVICE_RESET);
  
  VFIO User API
  -------------------------------------------------------------------------------
  
  Please see include/linux/vfio.h for complete API documentation.
  
  VFIO bus driver API
  -------------------------------------------------------------------------------
  
  VFIO bus drivers, such as vfio-pci make use of only a few interfaces
  into VFIO core.  When devices are bound and unbound to the driver,
  the driver should call vfio_add_group_dev() and vfio_del_group_dev()
  respectively:
  
  extern int vfio_add_group_dev(struct iommu_group *iommu_group,
                                struct device *dev,
                                const struct vfio_device_ops *ops,
                                void *device_data);
  
  extern void *vfio_del_group_dev(struct device *dev);
  
  vfio_add_group_dev() indicates to the core to begin tracking the
  specified iommu_group and register the specified dev as owned by
  a VFIO bus driver.  The driver provides an ops structure for callbacks
  similar to a file operations structure:
  
  struct vfio_device_ops {
  	int	(*open)(void *device_data);
  	void	(*release)(void *device_data);
  	ssize_t	(*read)(void *device_data, char __user *buf,
  			size_t count, loff_t *ppos);
  	ssize_t	(*write)(void *device_data, const char __user *buf,
  			 size_t size, loff_t *ppos);
  	long	(*ioctl)(void *device_data, unsigned int cmd,
  			 unsigned long arg);
  	int	(*mmap)(void *device_data, struct vm_area_struct *vma);
  };
  
  Each function is passed the device_data that was originally registered
  in the vfio_add_group_dev() call above.  This allows the bus driver
  an easy place to store its opaque, private data.  The open/release
  callbacks are issued when a new file descriptor is created for a
  device (via VFIO_GROUP_GET_DEVICE_FD).  The ioctl interface provides
  a direct pass through for VFIO_DEVICE_* ioctls.  The read/write/mmap
  interfaces implement the device region access defined by the device's
  own VFIO_DEVICE_GET_REGION_INFO ioctl.
  
  
  PPC64 sPAPR implementation note
  -------------------------------------------------------------------------------
  
  This implementation has some specifics:
  
  1) Only one IOMMU group per container is supported as an IOMMU group
  represents the minimal entity which isolation can be guaranteed for and
  groups are allocated statically, one per a Partitionable Endpoint (PE)
  (PE is often a PCI domain but not always).
  
  2) The hardware supports so called DMA windows - the PCI address range
  within which DMA transfer is allowed, any attempt to access address space
  out of the window leads to the whole PE isolation.
  
  3) PPC64 guests are paravirtualized but not fully emulated. There is an API
  to map/unmap pages for DMA, and it normally maps 1..32 pages per call and
  currently there is no way to reduce the number of calls. In order to make things
  faster, the map/unmap handling has been implemented in real mode which provides
  an excellent performance which has limitations such as inability to do
  locked pages accounting in real time.
  
  So 3 additional ioctls have been added:
  
  	VFIO_IOMMU_SPAPR_TCE_GET_INFO - returns the size and the start
  		of the DMA window on the PCI bus.
  
  	VFIO_IOMMU_ENABLE - enables the container. The locked pages accounting
  		is done at this point. This lets user first to know what
  		the DMA window is and adjust rlimit before doing any real job.
  
  	VFIO_IOMMU_DISABLE - disables the container.
  
  
  The code flow from the example above should be slightly changed:
  
  	.....
  	/* Add the group to the container */
  	ioctl(group, VFIO_GROUP_SET_CONTAINER, &container);
  
  	/* Enable the IOMMU model we want */
  	ioctl(container, VFIO_SET_IOMMU, VFIO_SPAPR_TCE_IOMMU)
  
  	/* Get addition sPAPR IOMMU info */
  	vfio_iommu_spapr_tce_info spapr_iommu_info;
  	ioctl(container, VFIO_IOMMU_SPAPR_TCE_GET_INFO, &spapr_iommu_info);
  
  	if (ioctl(container, VFIO_IOMMU_ENABLE))
  		/* Cannot enable container, may be low rlimit */
  
  	/* Allocate some space and setup a DMA mapping */
  	dma_map.vaddr = mmap(0, 1024 * 1024, PROT_READ | PROT_WRITE,
  			     MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
  
  	dma_map.size = 1024 * 1024;
  	dma_map.iova = 0; /* 1MB starting at 0x0 from device view */
  	dma_map.flags = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE;
  
  	/* Check here is .iova/.size are within DMA window from spapr_iommu_info */
  
  	ioctl(container, VFIO_IOMMU_MAP_DMA, &dma_map);
  	.....
  
  -------------------------------------------------------------------------------
  
  [1] VFIO was originally an acronym for "Virtual Function I/O" in its
  initial implementation by Tom Lyon while as Cisco.  We've since
  outgrown the acronym, but it's catchy.
  
  [2] "safe" also depends upon a device being "well behaved".  It's
  possible for multi-function devices to have backdoors between
  functions and even for single function devices to have alternative
  access to things like PCI config space through MMIO registers.  To
  guard against the former we can include additional precautions in the
  IOMMU driver to group multi-function PCI devices together
  (iommu=group_mf).  The latter we can't prevent, but the IOMMU should
  still provide isolation.  For PCI, SR-IOV Virtual Functions are the
  best indicator of "well behaved", as these are designed for
  virtualization usage models.
  
  [3] As always there are trade-offs to virtual machine device
  assignment that are beyond the scope of VFIO.  It's expected that
  future IOMMU technologies will reduce some, but maybe not all, of
  these trade-offs.
  
  [4] In this case the device is below a PCI bridge, so transactions
  from either function of the device are indistinguishable to the iommu:
  
  -[0000:00]-+-1e.0-[06]--+-0d.0
                          \-0d.1
  
  00:1e.0 PCI bridge: Intel Corporation 82801 PCI Bridge (rev 90)