Blame view

kernel/linux-imx6_3.14.28/arch/x86/crypto/sha512-ssse3-asm.S 12.7 KB
6b13f685e   김민수   BSP 최초 추가
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
  ########################################################################
  # Implement fast SHA-512 with SSSE3 instructions. (x86_64)
  #
  # Copyright (C) 2013 Intel Corporation.
  #
  # Authors:
  #     James Guilford <james.guilford@intel.com>
  #     Kirk Yap <kirk.s.yap@intel.com>
  #     David Cote <david.m.cote@intel.com>
  #     Tim Chen <tim.c.chen@linux.intel.com>
  #
  # This software is available to you under a choice of one of two
  # licenses.  You may choose to be licensed under the terms of the GNU
  # General Public License (GPL) Version 2, available from the file
  # COPYING in the main directory of this source tree, or the
  # OpenIB.org BSD license below:
  #
  #     Redistribution and use in source and binary forms, with or
  #     without modification, are permitted provided that the following
  #     conditions are met:
  #
  #      - Redistributions of source code must retain the above
  #        copyright notice, this list of conditions and the following
  #        disclaimer.
  #
  #      - Redistributions in binary form must reproduce the above
  #        copyright notice, this list of conditions and the following
  #        disclaimer in the documentation and/or other materials
  #        provided with the distribution.
  #
  # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  # SOFTWARE.
  #
  ########################################################################
  #
  # This code is described in an Intel White-Paper:
  # "Fast SHA-512 Implementations on Intel Architecture Processors"
  #
  # To find it, surf to http://www.intel.com/p/en_US/embedded
  # and search for that title.
  #
  ########################################################################
  
  #include <linux/linkage.h>
  
  .text
  
  # Virtual Registers
  # ARG1
  msg =		%rdi
  # ARG2
  digest =	%rsi
  # ARG3
  msglen =	%rdx
  T1 =		%rcx
  T2 =		%r8
  a_64 =		%r9
  b_64 =		%r10
  c_64 =		%r11
  d_64 =		%r12
  e_64 =		%r13
  f_64 =		%r14
  g_64 =		%r15
  h_64 =		%rbx
  tmp0 =		%rax
  
  # Local variables (stack frame)
  
  W_SIZE = 80*8
  WK_SIZE = 2*8
  RSPSAVE_SIZE = 1*8
  GPRSAVE_SIZE = 5*8
  
  frame_W = 0
  frame_WK = frame_W + W_SIZE
  frame_RSPSAVE = frame_WK + WK_SIZE
  frame_GPRSAVE = frame_RSPSAVE + RSPSAVE_SIZE
  frame_size = frame_GPRSAVE + GPRSAVE_SIZE
  
  # Useful QWORD "arrays" for simpler memory references
  # MSG, DIGEST, K_t, W_t are arrays
  # WK_2(t) points to 1 of 2 qwords at frame.WK depdending on t being odd/even
  
  # Input message (arg1)
  #define MSG(i)    8*i(msg)
  
  # Output Digest (arg2)
  #define DIGEST(i) 8*i(digest)
  
  # SHA Constants (static mem)
  #define K_t(i)    8*i+K512(%rip)
  
  # Message Schedule (stack frame)
  #define W_t(i)    8*i+frame_W(%rsp)
  
  # W[t]+K[t] (stack frame)
  #define WK_2(i)   8*((i%2))+frame_WK(%rsp)
  
  .macro RotateState
  	# Rotate symbols a..h right
  	TMP   = h_64
  	h_64  = g_64
  	g_64  = f_64
  	f_64  = e_64
  	e_64  = d_64
  	d_64  = c_64
  	c_64  = b_64
  	b_64  = a_64
  	a_64  = TMP
  .endm
  
  .macro SHA512_Round rnd
  
  	# Compute Round %%t
  	mov	f_64, T1          # T1 = f
  	mov	e_64, tmp0        # tmp = e
  	xor	g_64, T1          # T1 = f ^ g
  	ror	$23, tmp0 # 41    # tmp = e ror 23
  	and	e_64, T1          # T1 = (f ^ g) & e
  	xor	e_64, tmp0        # tmp = (e ror 23) ^ e
  	xor	g_64, T1          # T1 = ((f ^ g) & e) ^ g = CH(e,f,g)
  	idx = \rnd
  	add	WK_2(idx), T1     # W[t] + K[t] from message scheduler
  	ror	$4, tmp0  # 18    # tmp = ((e ror 23) ^ e) ror 4
  	xor	e_64, tmp0        # tmp = (((e ror 23) ^ e) ror 4) ^ e
  	mov	a_64, T2          # T2 = a
  	add	h_64, T1          # T1 = CH(e,f,g) + W[t] + K[t] + h
  	ror	$14, tmp0 # 14    # tmp = ((((e ror23)^e)ror4)^e)ror14 = S1(e)
  	add	tmp0, T1          # T1 = CH(e,f,g) + W[t] + K[t] + S1(e)
  	mov	a_64, tmp0        # tmp = a
  	xor	c_64, T2          # T2 = a ^ c
  	and	c_64, tmp0        # tmp = a & c
  	and	b_64, T2          # T2 = (a ^ c) & b
  	xor	tmp0, T2          # T2 = ((a ^ c) & b) ^ (a & c) = Maj(a,b,c)
  	mov	a_64, tmp0        # tmp = a
  	ror	$5, tmp0 # 39     # tmp = a ror 5
  	xor	a_64, tmp0        # tmp = (a ror 5) ^ a
  	add	T1, d_64          # e(next_state) = d + T1
  	ror	$6, tmp0 # 34     # tmp = ((a ror 5) ^ a) ror 6
  	xor	a_64, tmp0        # tmp = (((a ror 5) ^ a) ror 6) ^ a
  	lea	(T1, T2), h_64    # a(next_state) = T1 + Maj(a,b,c)
  	ror	$28, tmp0 # 28    # tmp = ((((a ror5)^a)ror6)^a)ror28 = S0(a)
  	add	tmp0, h_64        # a(next_state) = T1 + Maj(a,b,c) S0(a)
  	RotateState
  .endm
  
  .macro SHA512_2Sched_2Round_sse rnd
  
  	# Compute rounds t-2 and t-1
  	# Compute message schedule QWORDS t and t+1
  
  	#   Two rounds are computed based on the values for K[t-2]+W[t-2] and
  	# K[t-1]+W[t-1] which were previously stored at WK_2 by the message
  	# scheduler.
  	#   The two new schedule QWORDS are stored at [W_t(%%t)] and [W_t(%%t+1)].
  	# They are then added to their respective SHA512 constants at
  	# [K_t(%%t)] and [K_t(%%t+1)] and stored at dqword [WK_2(%%t)]
  	#   For brievity, the comments following vectored instructions only refer to
  	# the first of a pair of QWORDS.
  	# Eg. XMM2=W[t-2] really means XMM2={W[t-2]|W[t-1]}
  	#   The computation of the message schedule and the rounds are tightly
  	# stitched to take advantage of instruction-level parallelism.
  	# For clarity, integer instructions (for the rounds calculation) are indented
  	# by one tab. Vectored instructions (for the message scheduler) are indented
  	# by two tabs.
  
  	mov	f_64, T1
  	idx = \rnd -2
  	movdqa	W_t(idx), %xmm2		    # XMM2 = W[t-2]
  	xor	g_64, T1
  	and	e_64, T1
  	movdqa	%xmm2, %xmm0	            # XMM0 = W[t-2]
  	xor	g_64, T1
  	idx = \rnd
  	add	WK_2(idx), T1
  	idx = \rnd - 15
  	movdqu	W_t(idx), %xmm5		    # XMM5 = W[t-15]
  	mov	e_64, tmp0
  	ror	$23, tmp0 # 41
  	movdqa	%xmm5, %xmm3	            # XMM3 = W[t-15]
  	xor	e_64, tmp0
  	ror	$4, tmp0 # 18
  	psrlq	$61-19, %xmm0		    # XMM0 = W[t-2] >> 42
  	xor	e_64, tmp0
  	ror	$14, tmp0 # 14
  	psrlq	$(8-7), %xmm3		    # XMM3 = W[t-15] >> 1
  	add	tmp0, T1
  	add	h_64, T1
  	pxor	%xmm2, %xmm0                # XMM0 = (W[t-2] >> 42) ^ W[t-2]
  	mov	a_64, T2
  	xor	c_64, T2
  	pxor	%xmm5, %xmm3                # XMM3 = (W[t-15] >> 1) ^ W[t-15]
  	and	b_64, T2
  	mov	a_64, tmp0
  	psrlq	$(19-6), %xmm0		    # XMM0 = ((W[t-2]>>42)^W[t-2])>>13
  	and	c_64, tmp0
  	xor	tmp0, T2
  	psrlq	$(7-1), %xmm3		    # XMM3 = ((W[t-15]>>1)^W[t-15])>>6
  	mov	a_64, tmp0
  	ror	$5, tmp0 # 39
  	pxor	%xmm2, %xmm0	            # XMM0 = (((W[t-2]>>42)^W[t-2])>>13)^W[t-2]
  	xor	a_64, tmp0
  	ror	$6, tmp0 # 34
  	pxor	%xmm5, %xmm3                # XMM3 = (((W[t-15]>>1)^W[t-15])>>6)^W[t-15]
  	xor	a_64, tmp0
  	ror	$28, tmp0 # 28
  	psrlq	$6, %xmm0                   # XMM0 = ((((W[t-2]>>42)^W[t-2])>>13)^W[t-2])>>6
  	add	tmp0, T2
  	add	T1, d_64
  	psrlq	$1, %xmm3                   # XMM3 = (((W[t-15]>>1)^W[t-15])>>6)^W[t-15]>>1
  	lea	(T1, T2), h_64
  	RotateState
  	movdqa	%xmm2, %xmm1	            # XMM1 = W[t-2]
  	mov	f_64, T1
  	xor	g_64, T1
  	movdqa	%xmm5, %xmm4		    # XMM4 = W[t-15]
  	and	e_64, T1
  	xor	g_64, T1
  	psllq	$(64-19)-(64-61) , %xmm1    # XMM1 = W[t-2] << 42
  	idx = \rnd + 1
  	add	WK_2(idx), T1
  	mov	e_64, tmp0
  	psllq	$(64-1)-(64-8), %xmm4	    # XMM4 = W[t-15] << 7
  	ror	$23, tmp0 # 41
  	xor	e_64, tmp0
  	pxor	%xmm2, %xmm1		    # XMM1 = (W[t-2] << 42)^W[t-2]
  	ror	$4, tmp0 # 18
  	xor	e_64, tmp0
  	pxor	%xmm5, %xmm4		    # XMM4 = (W[t-15]<<7)^W[t-15]
  	ror	$14, tmp0 # 14
  	add	tmp0, T1
  	psllq	$(64-61), %xmm1		    # XMM1 = ((W[t-2] << 42)^W[t-2])<<3
  	add	h_64, T1
  	mov	a_64, T2
  	psllq	$(64-8), %xmm4		    # XMM4 = ((W[t-15]<<7)^W[t-15])<<56
  	xor	c_64, T2
  	and	b_64, T2
  	pxor	%xmm1, %xmm0		    # XMM0 = s1(W[t-2])
  	mov	a_64, tmp0
  	and	c_64, tmp0
  	idx = \rnd - 7
  	movdqu	W_t(idx), %xmm1		    # XMM1 = W[t-7]
  	xor	tmp0, T2
  	pxor	%xmm4, %xmm3                # XMM3 = s0(W[t-15])
  	mov	a_64, tmp0
  	paddq	%xmm3, %xmm0		    # XMM0 = s1(W[t-2]) + s0(W[t-15])
  	ror	$5, tmp0 # 39
  	idx =\rnd-16
  	paddq	W_t(idx), %xmm0		    # XMM0 = s1(W[t-2]) + s0(W[t-15]) + W[t-16]
  	xor	a_64, tmp0
  	paddq	%xmm1, %xmm0	            # XMM0 = s1(W[t-2]) + W[t-7] + s0(W[t-15]) + W[t-16]
  	ror	$6, tmp0 # 34
  	movdqa	%xmm0, W_t(\rnd)	    # Store scheduled qwords
  	xor	a_64, tmp0
  	paddq	K_t(\rnd), %xmm0	    # Compute W[t]+K[t]
  	ror	$28, tmp0 # 28
  	idx = \rnd
  	movdqa	%xmm0, WK_2(idx)	    # Store W[t]+K[t] for next rounds
  	add	tmp0, T2
  	add	T1, d_64
  	lea	(T1, T2), h_64
  	RotateState
  .endm
  
  ########################################################################
  # void sha512_transform_ssse3(const void* M, void* D, u64 L)#
  # Purpose: Updates the SHA512 digest stored at D with the message stored in M.
  # The size of the message pointed to by M must be an integer multiple of SHA512
  #   message blocks.
  # L is the message length in SHA512 blocks.
  ########################################################################
  ENTRY(sha512_transform_ssse3)
  
  	cmp $0, msglen
  	je nowork
  
  	# Allocate Stack Space
  	mov	%rsp, %rax
  	sub	$frame_size, %rsp
  	and	$~(0x20 - 1), %rsp
  	mov	%rax, frame_RSPSAVE(%rsp)
  
  	# Save GPRs
  	mov	%rbx, frame_GPRSAVE(%rsp)
  	mov	%r12, frame_GPRSAVE +8*1(%rsp)
  	mov	%r13, frame_GPRSAVE +8*2(%rsp)
  	mov	%r14, frame_GPRSAVE +8*3(%rsp)
  	mov	%r15, frame_GPRSAVE +8*4(%rsp)
  
  updateblock:
  
  # Load state variables
  	mov	DIGEST(0), a_64
  	mov	DIGEST(1), b_64
  	mov	DIGEST(2), c_64
  	mov	DIGEST(3), d_64
  	mov	DIGEST(4), e_64
  	mov	DIGEST(5), f_64
  	mov	DIGEST(6), g_64
  	mov	DIGEST(7), h_64
  
  	t = 0
  	.rept 80/2 + 1
  	# (80 rounds) / (2 rounds/iteration) + (1 iteration)
  	# +1 iteration because the scheduler leads hashing by 1 iteration
  		.if t < 2
  			# BSWAP 2 QWORDS
  			movdqa	XMM_QWORD_BSWAP(%rip), %xmm1
  			movdqu	MSG(t), %xmm0
  			pshufb	%xmm1, %xmm0	# BSWAP
  			movdqa	%xmm0, W_t(t)	# Store Scheduled Pair
  			paddq	K_t(t), %xmm0	# Compute W[t]+K[t]
  			movdqa	%xmm0, WK_2(t)	# Store into WK for rounds
  		.elseif t < 16
  			# BSWAP 2 QWORDS# Compute 2 Rounds
  			movdqu	MSG(t), %xmm0
  			pshufb	%xmm1, %xmm0	# BSWAP
  			SHA512_Round t-2	# Round t-2
  			movdqa	%xmm0, W_t(t)	# Store Scheduled Pair
  			paddq	K_t(t), %xmm0	# Compute W[t]+K[t]
  			SHA512_Round t-1	# Round t-1
  			movdqa	%xmm0, WK_2(t)	# Store W[t]+K[t] into WK
  		.elseif t < 79
  			# Schedule 2 QWORDS# Compute 2 Rounds
  			SHA512_2Sched_2Round_sse t
  		.else
  			# Compute 2 Rounds
  			SHA512_Round t-2
  			SHA512_Round t-1
  		.endif
  		t = t+2
  	.endr
  
  	# Update digest
  	add	a_64, DIGEST(0)
  	add	b_64, DIGEST(1)
  	add	c_64, DIGEST(2)
  	add	d_64, DIGEST(3)
  	add	e_64, DIGEST(4)
  	add	f_64, DIGEST(5)
  	add	g_64, DIGEST(6)
  	add	h_64, DIGEST(7)
  
  	# Advance to next message block
  	add	$16*8, msg
  	dec	msglen
  	jnz	updateblock
  
  	# Restore GPRs
  	mov	frame_GPRSAVE(%rsp),      %rbx
  	mov	frame_GPRSAVE +8*1(%rsp), %r12
  	mov	frame_GPRSAVE +8*2(%rsp), %r13
  	mov	frame_GPRSAVE +8*3(%rsp), %r14
  	mov	frame_GPRSAVE +8*4(%rsp), %r15
  
  	# Restore Stack Pointer
  	mov	frame_RSPSAVE(%rsp), %rsp
  
  nowork:
  	ret
  ENDPROC(sha512_transform_ssse3)
  
  ########################################################################
  ### Binary Data
  
  .data
  
  .align 16
  
  # Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
  XMM_QWORD_BSWAP:
  	.octa 0x08090a0b0c0d0e0f0001020304050607
  
  # K[t] used in SHA512 hashing
  K512:
  	.quad 0x428a2f98d728ae22,0x7137449123ef65cd
  	.quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
  	.quad 0x3956c25bf348b538,0x59f111f1b605d019
  	.quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
  	.quad 0xd807aa98a3030242,0x12835b0145706fbe
  	.quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
  	.quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
  	.quad 0x9bdc06a725c71235,0xc19bf174cf692694
  	.quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
  	.quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
  	.quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
  	.quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
  	.quad 0x983e5152ee66dfab,0xa831c66d2db43210
  	.quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
  	.quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
  	.quad 0x06ca6351e003826f,0x142929670a0e6e70
  	.quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
  	.quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
  	.quad 0x650a73548baf63de,0x766a0abb3c77b2a8
  	.quad 0x81c2c92e47edaee6,0x92722c851482353b
  	.quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
  	.quad 0xc24b8b70d0f89791,0xc76c51a30654be30
  	.quad 0xd192e819d6ef5218,0xd69906245565a910
  	.quad 0xf40e35855771202a,0x106aa07032bbd1b8
  	.quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
  	.quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
  	.quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
  	.quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
  	.quad 0x748f82ee5defb2fc,0x78a5636f43172f60
  	.quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
  	.quad 0x90befffa23631e28,0xa4506cebde82bde9
  	.quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
  	.quad 0xca273eceea26619c,0xd186b8c721c0c207
  	.quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
  	.quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
  	.quad 0x113f9804bef90dae,0x1b710b35131c471b
  	.quad 0x28db77f523047d84,0x32caab7b40c72493
  	.quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
  	.quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
  	.quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817