6b13f685e
김민수
BSP 최초 추가
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|
The Frame Buffer Device
Maintained by Geert Uytterhoeven <geert@linux-m68k.org>
Last revised: May 10, 2001
0. Introduction
The frame buffer device provides an abstraction for the graphics hardware. It
represents the frame buffer of some video hardware and allows application
software to access the graphics hardware through a well-defined interface, so
the software doesn't need to know anything about the low-level (hardware
register) stuff.
The device is accessed through special device nodes, usually located in the
/dev directory, i.e. /dev/fb*.
1. User's View of /dev/fb*
From the user's point of view, the frame buffer device looks just like any
other device in /dev. It's a character device using major 29; the minor
specifies the frame buffer number.
By convention, the following device nodes are used (numbers indicate the device
minor numbers):
0 = /dev/fb0 First frame buffer
1 = /dev/fb1 Second frame buffer
...
31 = /dev/fb31 32nd frame buffer
For backwards compatibility, you may want to create the following symbolic
links:
/dev/fb0current -> fb0
/dev/fb1current -> fb1
and so on...
The frame buffer devices are also `normal' memory devices, this means, you can
read and write their contents. You can, for example, make a screen snapshot by
cp /dev/fb0 myfile
There also can be more than one frame buffer at a time, e.g. if you have a
graphics card in addition to the built-in hardware. The corresponding frame
buffer devices (/dev/fb0 and /dev/fb1 etc.) work independently.
Application software that uses the frame buffer device (e.g. the X server) will
use /dev/fb0 by default (older software uses /dev/fb0current). You can specify
an alternative frame buffer device by setting the environment variable
$FRAMEBUFFER to the path name of a frame buffer device, e.g. (for sh/bash
users):
export FRAMEBUFFER=/dev/fb1
or (for csh users):
setenv FRAMEBUFFER /dev/fb1
After this the X server will use the second frame buffer.
2. Programmer's View of /dev/fb*
As you already know, a frame buffer device is a memory device like /dev/mem and
it has the same features. You can read it, write it, seek to some location in
it and mmap() it (the main usage). The difference is just that the memory that
appears in the special file is not the whole memory, but the frame buffer of
some video hardware.
/dev/fb* also allows several ioctls on it, by which lots of information about
the hardware can be queried and set. The color map handling works via ioctls,
too. Look into <linux/fb.h> for more information on what ioctls exist and on
which data structures they work. Here's just a brief overview:
- You can request unchangeable information about the hardware, like name,
organization of the screen memory (planes, packed pixels, ...) and address
and length of the screen memory.
- You can request and change variable information about the hardware, like
visible and virtual geometry, depth, color map format, timing, and so on.
If you try to change that information, the driver maybe will round up some
values to meet the hardware's capabilities (or return EINVAL if that isn't
possible).
- You can get and set parts of the color map. Communication is done with 16
bits per color part (red, green, blue, transparency) to support all
existing hardware. The driver does all the computations needed to apply
it to the hardware (round it down to less bits, maybe throw away
transparency).
All this hardware abstraction makes the implementation of application programs
easier and more portable. E.g. the X server works completely on /dev/fb* and
thus doesn't need to know, for example, how the color registers of the concrete
hardware are organized. XF68_FBDev is a general X server for bitmapped,
unaccelerated video hardware. The only thing that has to be built into
application programs is the screen organization (bitplanes or chunky pixels
etc.), because it works on the frame buffer image data directly.
For the future it is planned that frame buffer drivers for graphics cards and
the like can be implemented as kernel modules that are loaded at runtime. Such
a driver just has to call register_framebuffer() and supply some functions.
Writing and distributing such drivers independently from the kernel will save
much trouble...
3. Frame Buffer Resolution Maintenance
Frame buffer resolutions are maintained using the utility `fbset'. It can
change the video mode properties of a frame buffer device. Its main usage is
to change the current video mode, e.g. during boot up in one of your /etc/rc.*
or /etc/init.d
|