Blame view

kernel/linux-imx6_3.14.28/lib/zlib_deflate/deftree.c 39.6 KB
6b13f685e   김민수   BSP 최초 추가
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
  /* +++ trees.c */
  /* trees.c -- output deflated data using Huffman coding
   * Copyright (C) 1995-1996 Jean-loup Gailly
   * For conditions of distribution and use, see copyright notice in zlib.h 
   */
  
  /*
   *  ALGORITHM
   *
   *      The "deflation" process uses several Huffman trees. The more
   *      common source values are represented by shorter bit sequences.
   *
   *      Each code tree is stored in a compressed form which is itself
   * a Huffman encoding of the lengths of all the code strings (in
   * ascending order by source values).  The actual code strings are
   * reconstructed from the lengths in the inflate process, as described
   * in the deflate specification.
   *
   *  REFERENCES
   *
   *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
   *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
   *
   *      Storer, James A.
   *          Data Compression:  Methods and Theory, pp. 49-50.
   *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
   *
   *      Sedgewick, R.
   *          Algorithms, p290.
   *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
   */
  
  /* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
  
  /* #include "deflate.h" */
  
  #include <linux/zutil.h>
  #include "defutil.h"
  
  #ifdef DEBUG_ZLIB
  #  include <ctype.h>
  #endif
  
  /* ===========================================================================
   * Constants
   */
  
  #define MAX_BL_BITS 7
  /* Bit length codes must not exceed MAX_BL_BITS bits */
  
  #define END_BLOCK 256
  /* end of block literal code */
  
  #define REP_3_6      16
  /* repeat previous bit length 3-6 times (2 bits of repeat count) */
  
  #define REPZ_3_10    17
  /* repeat a zero length 3-10 times  (3 bits of repeat count) */
  
  #define REPZ_11_138  18
  /* repeat a zero length 11-138 times  (7 bits of repeat count) */
  
  static const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
     = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
  
  static const int extra_dbits[D_CODES] /* extra bits for each distance code */
     = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
  
  static const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
     = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
  
  static const uch bl_order[BL_CODES]
     = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
  /* The lengths of the bit length codes are sent in order of decreasing
   * probability, to avoid transmitting the lengths for unused bit length codes.
   */
  
  #define Buf_size (8 * 2*sizeof(char))
  /* Number of bits used within bi_buf. (bi_buf might be implemented on
   * more than 16 bits on some systems.)
   */
  
  /* ===========================================================================
   * Local data. These are initialized only once.
   */
  
  static ct_data static_ltree[L_CODES+2];
  /* The static literal tree. Since the bit lengths are imposed, there is no
   * need for the L_CODES extra codes used during heap construction. However
   * The codes 286 and 287 are needed to build a canonical tree (see zlib_tr_init
   * below).
   */
  
  static ct_data static_dtree[D_CODES];
  /* The static distance tree. (Actually a trivial tree since all codes use
   * 5 bits.)
   */
  
  static uch dist_code[512];
  /* distance codes. The first 256 values correspond to the distances
   * 3 .. 258, the last 256 values correspond to the top 8 bits of
   * the 15 bit distances.
   */
  
  static uch length_code[MAX_MATCH-MIN_MATCH+1];
  /* length code for each normalized match length (0 == MIN_MATCH) */
  
  static int base_length[LENGTH_CODES];
  /* First normalized length for each code (0 = MIN_MATCH) */
  
  static int base_dist[D_CODES];
  /* First normalized distance for each code (0 = distance of 1) */
  
  struct static_tree_desc_s {
      const ct_data *static_tree;  /* static tree or NULL */
      const int *extra_bits;       /* extra bits for each code or NULL */
      int     extra_base;          /* base index for extra_bits */
      int     elems;               /* max number of elements in the tree */
      int     max_length;          /* max bit length for the codes */
  };
  
  static static_tree_desc  static_l_desc =
  {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
  
  static static_tree_desc  static_d_desc =
  {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
  
  static static_tree_desc  static_bl_desc =
  {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
  
  /* ===========================================================================
   * Local (static) routines in this file.
   */
  
  static void tr_static_init (void);
  static void init_block     (deflate_state *s);
  static void pqdownheap     (deflate_state *s, ct_data *tree, int k);
  static void gen_bitlen     (deflate_state *s, tree_desc *desc);
  static void gen_codes      (ct_data *tree, int max_code, ush *bl_count);
  static void build_tree     (deflate_state *s, tree_desc *desc);
  static void scan_tree      (deflate_state *s, ct_data *tree, int max_code);
  static void send_tree      (deflate_state *s, ct_data *tree, int max_code);
  static int  build_bl_tree  (deflate_state *s);
  static void send_all_trees (deflate_state *s, int lcodes, int dcodes,
                             int blcodes);
  static void compress_block (deflate_state *s, ct_data *ltree,
                             ct_data *dtree);
  static void set_data_type  (deflate_state *s);
  static unsigned bi_reverse (unsigned value, int length);
  static void bi_windup      (deflate_state *s);
  static void bi_flush       (deflate_state *s);
  static void copy_block     (deflate_state *s, char *buf, unsigned len,
                             int header);
  
  #ifndef DEBUG_ZLIB
  #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
     /* Send a code of the given tree. c and tree must not have side effects */
  
  #else /* DEBUG_ZLIB */
  #  define send_code(s, c, tree) \
       { if (z_verbose>2) fprintf(stderr,"
  cd %3d ",(c)); \
         send_bits(s, tree[c].Code, tree[c].Len); }
  #endif
  
  #define d_code(dist) \
     ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
  /* Mapping from a distance to a distance code. dist is the distance - 1 and
   * must not have side effects. dist_code[256] and dist_code[257] are never
   * used.
   */
  
  /* ===========================================================================
   * Send a value on a given number of bits.
   * IN assertion: length <= 16 and value fits in length bits.
   */
  #ifdef DEBUG_ZLIB
  static void send_bits      (deflate_state *s, int value, int length);
  
  static void send_bits(
  	deflate_state *s,
  	int value,  /* value to send */
  	int length  /* number of bits */
  )
  {
      Tracevv((stderr," l %2d v %4x ", length, value));
      Assert(length > 0 && length <= 15, "invalid length");
      s->bits_sent += (ulg)length;
  
      /* If not enough room in bi_buf, use (valid) bits from bi_buf and
       * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
       * unused bits in value.
       */
      if (s->bi_valid > (int)Buf_size - length) {
          s->bi_buf |= (value << s->bi_valid);
          put_short(s, s->bi_buf);
          s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
          s->bi_valid += length - Buf_size;
      } else {
          s->bi_buf |= value << s->bi_valid;
          s->bi_valid += length;
      }
  }
  #else /* !DEBUG_ZLIB */
  
  #define send_bits(s, value, length) \
  { int len = length;\
    if (s->bi_valid > (int)Buf_size - len) {\
      int val = value;\
      s->bi_buf |= (val << s->bi_valid);\
      put_short(s, s->bi_buf);\
      s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
      s->bi_valid += len - Buf_size;\
    } else {\
      s->bi_buf |= (value) << s->bi_valid;\
      s->bi_valid += len;\
    }\
  }
  #endif /* DEBUG_ZLIB */
  
  /* ===========================================================================
   * Initialize the various 'constant' tables. In a multi-threaded environment,
   * this function may be called by two threads concurrently, but this is
   * harmless since both invocations do exactly the same thing.
   */
  static void tr_static_init(void)
  {
      static int static_init_done;
      int n;        /* iterates over tree elements */
      int bits;     /* bit counter */
      int length;   /* length value */
      int code;     /* code value */
      int dist;     /* distance index */
      ush bl_count[MAX_BITS+1];
      /* number of codes at each bit length for an optimal tree */
  
      if (static_init_done) return;
  
      /* Initialize the mapping length (0..255) -> length code (0..28) */
      length = 0;
      for (code = 0; code < LENGTH_CODES-1; code++) {
          base_length[code] = length;
          for (n = 0; n < (1<<extra_lbits[code]); n++) {
              length_code[length++] = (uch)code;
          }
      }
      Assert (length == 256, "tr_static_init: length != 256");
      /* Note that the length 255 (match length 258) can be represented
       * in two different ways: code 284 + 5 bits or code 285, so we
       * overwrite length_code[255] to use the best encoding:
       */
      length_code[length-1] = (uch)code;
  
      /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
      dist = 0;
      for (code = 0 ; code < 16; code++) {
          base_dist[code] = dist;
          for (n = 0; n < (1<<extra_dbits[code]); n++) {
              dist_code[dist++] = (uch)code;
          }
      }
      Assert (dist == 256, "tr_static_init: dist != 256");
      dist >>= 7; /* from now on, all distances are divided by 128 */
      for ( ; code < D_CODES; code++) {
          base_dist[code] = dist << 7;
          for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
              dist_code[256 + dist++] = (uch)code;
          }
      }
      Assert (dist == 256, "tr_static_init: 256+dist != 512");
  
      /* Construct the codes of the static literal tree */
      for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
      n = 0;
      while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
      while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
      while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
      while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
      /* Codes 286 and 287 do not exist, but we must include them in the
       * tree construction to get a canonical Huffman tree (longest code
       * all ones)
       */
      gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
  
      /* The static distance tree is trivial: */
      for (n = 0; n < D_CODES; n++) {
          static_dtree[n].Len = 5;
          static_dtree[n].Code = bi_reverse((unsigned)n, 5);
      }
      static_init_done = 1;
  }
  
  /* ===========================================================================
   * Initialize the tree data structures for a new zlib stream.
   */
  void zlib_tr_init(
  	deflate_state *s
  )
  {
      tr_static_init();
  
      s->compressed_len = 0L;
  
      s->l_desc.dyn_tree = s->dyn_ltree;
      s->l_desc.stat_desc = &static_l_desc;
  
      s->d_desc.dyn_tree = s->dyn_dtree;
      s->d_desc.stat_desc = &static_d_desc;
  
      s->bl_desc.dyn_tree = s->bl_tree;
      s->bl_desc.stat_desc = &static_bl_desc;
  
      s->bi_buf = 0;
      s->bi_valid = 0;
      s->last_eob_len = 8; /* enough lookahead for inflate */
  #ifdef DEBUG_ZLIB
      s->bits_sent = 0L;
  #endif
  
      /* Initialize the first block of the first file: */
      init_block(s);
  }
  
  /* ===========================================================================
   * Initialize a new block.
   */
  static void init_block(
  	deflate_state *s
  )
  {
      int n; /* iterates over tree elements */
  
      /* Initialize the trees. */
      for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
      for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
      for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
  
      s->dyn_ltree[END_BLOCK].Freq = 1;
      s->opt_len = s->static_len = 0L;
      s->last_lit = s->matches = 0;
  }
  
  #define SMALLEST 1
  /* Index within the heap array of least frequent node in the Huffman tree */
  
  
  /* ===========================================================================
   * Remove the smallest element from the heap and recreate the heap with
   * one less element. Updates heap and heap_len.
   */
  #define pqremove(s, tree, top) \
  {\
      top = s->heap[SMALLEST]; \
      s->heap[SMALLEST] = s->heap[s->heap_len--]; \
      pqdownheap(s, tree, SMALLEST); \
  }
  
  /* ===========================================================================
   * Compares to subtrees, using the tree depth as tie breaker when
   * the subtrees have equal frequency. This minimizes the worst case length.
   */
  #define smaller(tree, n, m, depth) \
     (tree[n].Freq < tree[m].Freq || \
     (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
  
  /* ===========================================================================
   * Restore the heap property by moving down the tree starting at node k,
   * exchanging a node with the smallest of its two sons if necessary, stopping
   * when the heap property is re-established (each father smaller than its
   * two sons).
   */
  static void pqdownheap(
  	deflate_state *s,
  	ct_data *tree,  /* the tree to restore */
  	int k		/* node to move down */
  )
  {
      int v = s->heap[k];
      int j = k << 1;  /* left son of k */
      while (j <= s->heap_len) {
          /* Set j to the smallest of the two sons: */
          if (j < s->heap_len &&
              smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
              j++;
          }
          /* Exit if v is smaller than both sons */
          if (smaller(tree, v, s->heap[j], s->depth)) break;
  
          /* Exchange v with the smallest son */
          s->heap[k] = s->heap[j];  k = j;
  
          /* And continue down the tree, setting j to the left son of k */
          j <<= 1;
      }
      s->heap[k] = v;
  }
  
  /* ===========================================================================
   * Compute the optimal bit lengths for a tree and update the total bit length
   * for the current block.
   * IN assertion: the fields freq and dad are set, heap[heap_max] and
   *    above are the tree nodes sorted by increasing frequency.
   * OUT assertions: the field len is set to the optimal bit length, the
   *     array bl_count contains the frequencies for each bit length.
   *     The length opt_len is updated; static_len is also updated if stree is
   *     not null.
   */
  static void gen_bitlen(
  	deflate_state *s,
  	tree_desc *desc    /* the tree descriptor */
  )
  {
      ct_data *tree        = desc->dyn_tree;
      int max_code         = desc->max_code;
      const ct_data *stree = desc->stat_desc->static_tree;
      const int *extra     = desc->stat_desc->extra_bits;
      int base             = desc->stat_desc->extra_base;
      int max_length       = desc->stat_desc->max_length;
      int h;              /* heap index */
      int n, m;           /* iterate over the tree elements */
      int bits;           /* bit length */
      int xbits;          /* extra bits */
      ush f;              /* frequency */
      int overflow = 0;   /* number of elements with bit length too large */
  
      for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
  
      /* In a first pass, compute the optimal bit lengths (which may
       * overflow in the case of the bit length tree).
       */
      tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
  
      for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
          n = s->heap[h];
          bits = tree[tree[n].Dad].Len + 1;
          if (bits > max_length) bits = max_length, overflow++;
          tree[n].Len = (ush)bits;
          /* We overwrite tree[n].Dad which is no longer needed */
  
          if (n > max_code) continue; /* not a leaf node */
  
          s->bl_count[bits]++;
          xbits = 0;
          if (n >= base) xbits = extra[n-base];
          f = tree[n].Freq;
          s->opt_len += (ulg)f * (bits + xbits);
          if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
      }
      if (overflow == 0) return;
  
      Trace((stderr,"
  bit length overflow
  "));
      /* This happens for example on obj2 and pic of the Calgary corpus */
  
      /* Find the first bit length which could increase: */
      do {
          bits = max_length-1;
          while (s->bl_count[bits] == 0) bits--;
          s->bl_count[bits]--;      /* move one leaf down the tree */
          s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
          s->bl_count[max_length]--;
          /* The brother of the overflow item also moves one step up,
           * but this does not affect bl_count[max_length]
           */
          overflow -= 2;
      } while (overflow > 0);
  
      /* Now recompute all bit lengths, scanning in increasing frequency.
       * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
       * lengths instead of fixing only the wrong ones. This idea is taken
       * from 'ar' written by Haruhiko Okumura.)
       */
      for (bits = max_length; bits != 0; bits--) {
          n = s->bl_count[bits];
          while (n != 0) {
              m = s->heap[--h];
              if (m > max_code) continue;
              if (tree[m].Len != (unsigned) bits) {
                  Trace((stderr,"code %d bits %d->%d
  ", m, tree[m].Len, bits));
                  s->opt_len += ((long)bits - (long)tree[m].Len)
                                *(long)tree[m].Freq;
                  tree[m].Len = (ush)bits;
              }
              n--;
          }
      }
  }
  
  /* ===========================================================================
   * Generate the codes for a given tree and bit counts (which need not be
   * optimal).
   * IN assertion: the array bl_count contains the bit length statistics for
   * the given tree and the field len is set for all tree elements.
   * OUT assertion: the field code is set for all tree elements of non
   *     zero code length.
   */
  static void gen_codes(
  	ct_data *tree,             /* the tree to decorate */
  	int max_code,              /* largest code with non zero frequency */
  	ush *bl_count             /* number of codes at each bit length */
  )
  {
      ush next_code[MAX_BITS+1]; /* next code value for each bit length */
      ush code = 0;              /* running code value */
      int bits;                  /* bit index */
      int n;                     /* code index */
  
      /* The distribution counts are first used to generate the code values
       * without bit reversal.
       */
      for (bits = 1; bits <= MAX_BITS; bits++) {
          next_code[bits] = code = (code + bl_count[bits-1]) << 1;
      }
      /* Check that the bit counts in bl_count are consistent. The last code
       * must be all ones.
       */
      Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
              "inconsistent bit counts");
      Tracev((stderr,"
  gen_codes: max_code %d ", max_code));
  
      for (n = 0;  n <= max_code; n++) {
          int len = tree[n].Len;
          if (len == 0) continue;
          /* Now reverse the bits */
          tree[n].Code = bi_reverse(next_code[len]++, len);
  
          Tracecv(tree != static_ltree, (stderr,"
  n %3d %c l %2d c %4x (%x) ",
               n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
      }
  }
  
  /* ===========================================================================
   * Construct one Huffman tree and assigns the code bit strings and lengths.
   * Update the total bit length for the current block.
   * IN assertion: the field freq is set for all tree elements.
   * OUT assertions: the fields len and code are set to the optimal bit length
   *     and corresponding code. The length opt_len is updated; static_len is
   *     also updated if stree is not null. The field max_code is set.
   */
  static void build_tree(
  	deflate_state *s,
  	tree_desc *desc	 /* the tree descriptor */
  )
  {
      ct_data *tree         = desc->dyn_tree;
      const ct_data *stree  = desc->stat_desc->static_tree;
      int elems             = desc->stat_desc->elems;
      int n, m;          /* iterate over heap elements */
      int max_code = -1; /* largest code with non zero frequency */
      int node;          /* new node being created */
  
      /* Construct the initial heap, with least frequent element in
       * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
       * heap[0] is not used.
       */
      s->heap_len = 0, s->heap_max = HEAP_SIZE;
  
      for (n = 0; n < elems; n++) {
          if (tree[n].Freq != 0) {
              s->heap[++(s->heap_len)] = max_code = n;
              s->depth[n] = 0;
          } else {
              tree[n].Len = 0;
          }
      }
  
      /* The pkzip format requires that at least one distance code exists,
       * and that at least one bit should be sent even if there is only one
       * possible code. So to avoid special checks later on we force at least
       * two codes of non zero frequency.
       */
      while (s->heap_len < 2) {
          node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
          tree[node].Freq = 1;
          s->depth[node] = 0;
          s->opt_len--; if (stree) s->static_len -= stree[node].Len;
          /* node is 0 or 1 so it does not have extra bits */
      }
      desc->max_code = max_code;
  
      /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
       * establish sub-heaps of increasing lengths:
       */
      for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
  
      /* Construct the Huffman tree by repeatedly combining the least two
       * frequent nodes.
       */
      node = elems;              /* next internal node of the tree */
      do {
          pqremove(s, tree, n);  /* n = node of least frequency */
          m = s->heap[SMALLEST]; /* m = node of next least frequency */
  
          s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
          s->heap[--(s->heap_max)] = m;
  
          /* Create a new node father of n and m */
          tree[node].Freq = tree[n].Freq + tree[m].Freq;
          s->depth[node] = (uch) (max(s->depth[n], s->depth[m]) + 1);
          tree[n].Dad = tree[m].Dad = (ush)node;
  #ifdef DUMP_BL_TREE
          if (tree == s->bl_tree) {
              fprintf(stderr,"
  node %d(%d), sons %d(%d) %d(%d)",
                      node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
          }
  #endif
          /* and insert the new node in the heap */
          s->heap[SMALLEST] = node++;
          pqdownheap(s, tree, SMALLEST);
  
      } while (s->heap_len >= 2);
  
      s->heap[--(s->heap_max)] = s->heap[SMALLEST];
  
      /* At this point, the fields freq and dad are set. We can now
       * generate the bit lengths.
       */
      gen_bitlen(s, (tree_desc *)desc);
  
      /* The field len is now set, we can generate the bit codes */
      gen_codes ((ct_data *)tree, max_code, s->bl_count);
  }
  
  /* ===========================================================================
   * Scan a literal or distance tree to determine the frequencies of the codes
   * in the bit length tree.
   */
  static void scan_tree(
  	deflate_state *s,
  	ct_data *tree,   /* the tree to be scanned */
  	int max_code     /* and its largest code of non zero frequency */
  )
  {
      int n;                     /* iterates over all tree elements */
      int prevlen = -1;          /* last emitted length */
      int curlen;                /* length of current code */
      int nextlen = tree[0].Len; /* length of next code */
      int count = 0;             /* repeat count of the current code */
      int max_count = 7;         /* max repeat count */
      int min_count = 4;         /* min repeat count */
  
      if (nextlen == 0) max_count = 138, min_count = 3;
      tree[max_code+1].Len = (ush)0xffff; /* guard */
  
      for (n = 0; n <= max_code; n++) {
          curlen = nextlen; nextlen = tree[n+1].Len;
          if (++count < max_count && curlen == nextlen) {
              continue;
          } else if (count < min_count) {
              s->bl_tree[curlen].Freq += count;
          } else if (curlen != 0) {
              if (curlen != prevlen) s->bl_tree[curlen].Freq++;
              s->bl_tree[REP_3_6].Freq++;
          } else if (count <= 10) {
              s->bl_tree[REPZ_3_10].Freq++;
          } else {
              s->bl_tree[REPZ_11_138].Freq++;
          }
          count = 0; prevlen = curlen;
          if (nextlen == 0) {
              max_count = 138, min_count = 3;
          } else if (curlen == nextlen) {
              max_count = 6, min_count = 3;
          } else {
              max_count = 7, min_count = 4;
          }
      }
  }
  
  /* ===========================================================================
   * Send a literal or distance tree in compressed form, using the codes in
   * bl_tree.
   */
  static void send_tree(
  	deflate_state *s,
  	ct_data *tree, /* the tree to be scanned */
  	int max_code   /* and its largest code of non zero frequency */
  )
  {
      int n;                     /* iterates over all tree elements */
      int prevlen = -1;          /* last emitted length */
      int curlen;                /* length of current code */
      int nextlen = tree[0].Len; /* length of next code */
      int count = 0;             /* repeat count of the current code */
      int max_count = 7;         /* max repeat count */
      int min_count = 4;         /* min repeat count */
  
      /* tree[max_code+1].Len = -1; */  /* guard already set */
      if (nextlen == 0) max_count = 138, min_count = 3;
  
      for (n = 0; n <= max_code; n++) {
          curlen = nextlen; nextlen = tree[n+1].Len;
          if (++count < max_count && curlen == nextlen) {
              continue;
          } else if (count < min_count) {
              do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
  
          } else if (curlen != 0) {
              if (curlen != prevlen) {
                  send_code(s, curlen, s->bl_tree); count--;
              }
              Assert(count >= 3 && count <= 6, " 3_6?");
              send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
  
          } else if (count <= 10) {
              send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
  
          } else {
              send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
          }
          count = 0; prevlen = curlen;
          if (nextlen == 0) {
              max_count = 138, min_count = 3;
          } else if (curlen == nextlen) {
              max_count = 6, min_count = 3;
          } else {
              max_count = 7, min_count = 4;
          }
      }
  }
  
  /* ===========================================================================
   * Construct the Huffman tree for the bit lengths and return the index in
   * bl_order of the last bit length code to send.
   */
  static int build_bl_tree(
  	deflate_state *s
  )
  {
      int max_blindex;  /* index of last bit length code of non zero freq */
  
      /* Determine the bit length frequencies for literal and distance trees */
      scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
      scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
  
      /* Build the bit length tree: */
      build_tree(s, (tree_desc *)(&(s->bl_desc)));
      /* opt_len now includes the length of the tree representations, except
       * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
       */
  
      /* Determine the number of bit length codes to send. The pkzip format
       * requires that at least 4 bit length codes be sent. (appnote.txt says
       * 3 but the actual value used is 4.)
       */
      for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
          if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
      }
      /* Update opt_len to include the bit length tree and counts */
      s->opt_len += 3*(max_blindex+1) + 5+5+4;
      Tracev((stderr, "
  dyn trees: dyn %ld, stat %ld",
              s->opt_len, s->static_len));
  
      return max_blindex;
  }
  
  /* ===========================================================================
   * Send the header for a block using dynamic Huffman trees: the counts, the
   * lengths of the bit length codes, the literal tree and the distance tree.
   * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
   */
  static void send_all_trees(
  	deflate_state *s,
  	int lcodes,  /* number of codes for each tree */
  	int dcodes,  /* number of codes for each tree */
  	int blcodes  /* number of codes for each tree */
  )
  {
      int rank;                    /* index in bl_order */
  
      Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
      Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
              "too many codes");
      Tracev((stderr, "
  bl counts: "));
      send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
      send_bits(s, dcodes-1,   5);
      send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
      for (rank = 0; rank < blcodes; rank++) {
          Tracev((stderr, "
  bl code %2d ", bl_order[rank]));
          send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
      }
      Tracev((stderr, "
  bl tree: sent %ld", s->bits_sent));
  
      send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
      Tracev((stderr, "
  lit tree: sent %ld", s->bits_sent));
  
      send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
      Tracev((stderr, "
  dist tree: sent %ld", s->bits_sent));
  }
  
  /* ===========================================================================
   * Send a stored block
   */
  void zlib_tr_stored_block(
  	deflate_state *s,
  	char *buf,        /* input block */
  	ulg stored_len,   /* length of input block */
  	int eof           /* true if this is the last block for a file */
  )
  {
      send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
      s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
      s->compressed_len += (stored_len + 4) << 3;
  
      copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
  }
  
  /* Send just the `stored block' type code without any length bytes or data.
   */
  void zlib_tr_stored_type_only(
  	deflate_state *s
  )
  {
      send_bits(s, (STORED_BLOCK << 1), 3);
      bi_windup(s);
      s->compressed_len = (s->compressed_len + 3) & ~7L;
  }
  
  
  /* ===========================================================================
   * Send one empty static block to give enough lookahead for inflate.
   * This takes 10 bits, of which 7 may remain in the bit buffer.
   * The current inflate code requires 9 bits of lookahead. If the
   * last two codes for the previous block (real code plus EOB) were coded
   * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
   * the last real code. In this case we send two empty static blocks instead
   * of one. (There are no problems if the previous block is stored or fixed.)
   * To simplify the code, we assume the worst case of last real code encoded
   * on one bit only.
   */
  void zlib_tr_align(
  	deflate_state *s
  )
  {
      send_bits(s, STATIC_TREES<<1, 3);
      send_code(s, END_BLOCK, static_ltree);
      s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
      bi_flush(s);
      /* Of the 10 bits for the empty block, we have already sent
       * (10 - bi_valid) bits. The lookahead for the last real code (before
       * the EOB of the previous block) was thus at least one plus the length
       * of the EOB plus what we have just sent of the empty static block.
       */
      if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
          send_bits(s, STATIC_TREES<<1, 3);
          send_code(s, END_BLOCK, static_ltree);
          s->compressed_len += 10L;
          bi_flush(s);
      }
      s->last_eob_len = 7;
  }
  
  /* ===========================================================================
   * Determine the best encoding for the current block: dynamic trees, static
   * trees or store, and output the encoded block to the zip file. This function
   * returns the total compressed length for the file so far.
   */
  ulg zlib_tr_flush_block(
  	deflate_state *s,
  	char *buf,        /* input block, or NULL if too old */
  	ulg stored_len,   /* length of input block */
  	int eof           /* true if this is the last block for a file */
  )
  {
      ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
      int max_blindex = 0;  /* index of last bit length code of non zero freq */
  
      /* Build the Huffman trees unless a stored block is forced */
      if (s->level > 0) {
  
  	 /* Check if the file is ascii or binary */
  	if (s->data_type == Z_UNKNOWN) set_data_type(s);
  
  	/* Construct the literal and distance trees */
  	build_tree(s, (tree_desc *)(&(s->l_desc)));
  	Tracev((stderr, "
  lit data: dyn %ld, stat %ld", s->opt_len,
  		s->static_len));
  
  	build_tree(s, (tree_desc *)(&(s->d_desc)));
  	Tracev((stderr, "
  dist data: dyn %ld, stat %ld", s->opt_len,
  		s->static_len));
  	/* At this point, opt_len and static_len are the total bit lengths of
  	 * the compressed block data, excluding the tree representations.
  	 */
  
  	/* Build the bit length tree for the above two trees, and get the index
  	 * in bl_order of the last bit length code to send.
  	 */
  	max_blindex = build_bl_tree(s);
  
  	/* Determine the best encoding. Compute first the block length in bytes*/
  	opt_lenb = (s->opt_len+3+7)>>3;
  	static_lenb = (s->static_len+3+7)>>3;
  
  	Tracev((stderr, "
  opt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
  		opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
  		s->last_lit));
  
  	if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
  
      } else {
          Assert(buf != (char*)0, "lost buf");
  	opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
      }
  
      /* If compression failed and this is the first and last block,
       * and if the .zip file can be seeked (to rewrite the local header),
       * the whole file is transformed into a stored file:
       */
  #ifdef STORED_FILE_OK
  #  ifdef FORCE_STORED_FILE
      if (eof && s->compressed_len == 0L) { /* force stored file */
  #  else
      if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) {
  #  endif
          /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
          if (buf == (char*)0) error ("block vanished");
  
          copy_block(s, buf, (unsigned)stored_len, 0); /* without header */
          s->compressed_len = stored_len << 3;
          s->method = STORED;
      } else
  #endif /* STORED_FILE_OK */
  
  #ifdef FORCE_STORED
      if (buf != (char*)0) { /* force stored block */
  #else
      if (stored_len+4 <= opt_lenb && buf != (char*)0) {
                         /* 4: two words for the lengths */
  #endif
          /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
           * Otherwise we can't have processed more than WSIZE input bytes since
           * the last block flush, because compression would have been
           * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
           * transform a block into a stored block.
           */
          zlib_tr_stored_block(s, buf, stored_len, eof);
  
  #ifdef FORCE_STATIC
      } else if (static_lenb >= 0) { /* force static trees */
  #else
      } else if (static_lenb == opt_lenb) {
  #endif
          send_bits(s, (STATIC_TREES<<1)+eof, 3);
          compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
          s->compressed_len += 3 + s->static_len;
      } else {
          send_bits(s, (DYN_TREES<<1)+eof, 3);
          send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
                         max_blindex+1);
          compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
          s->compressed_len += 3 + s->opt_len;
      }
      Assert (s->compressed_len == s->bits_sent, "bad compressed size");
      init_block(s);
  
      if (eof) {
          bi_windup(s);
          s->compressed_len += 7;  /* align on byte boundary */
      }
      Tracev((stderr,"
  comprlen %lu(%lu) ", s->compressed_len>>3,
             s->compressed_len-7*eof));
  
      return s->compressed_len >> 3;
  }
  
  /* ===========================================================================
   * Save the match info and tally the frequency counts. Return true if
   * the current block must be flushed.
   */
  int zlib_tr_tally(
  	deflate_state *s,
  	unsigned dist,  /* distance of matched string */
  	unsigned lc     /* match length-MIN_MATCH or unmatched char (if dist==0) */
  )
  {
      s->d_buf[s->last_lit] = (ush)dist;
      s->l_buf[s->last_lit++] = (uch)lc;
      if (dist == 0) {
          /* lc is the unmatched char */
          s->dyn_ltree[lc].Freq++;
      } else {
          s->matches++;
          /* Here, lc is the match length - MIN_MATCH */
          dist--;             /* dist = match distance - 1 */
          Assert((ush)dist < (ush)MAX_DIST(s) &&
                 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
                 (ush)d_code(dist) < (ush)D_CODES,  "zlib_tr_tally: bad match");
  
          s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
          s->dyn_dtree[d_code(dist)].Freq++;
      }
  
      /* Try to guess if it is profitable to stop the current block here */
      if ((s->last_lit & 0xfff) == 0 && s->level > 2) {
          /* Compute an upper bound for the compressed length */
          ulg out_length = (ulg)s->last_lit*8L;
          ulg in_length = (ulg)((long)s->strstart - s->block_start);
          int dcode;
          for (dcode = 0; dcode < D_CODES; dcode++) {
              out_length += (ulg)s->dyn_dtree[dcode].Freq *
                  (5L+extra_dbits[dcode]);
          }
          out_length >>= 3;
          Tracev((stderr,"
  last_lit %u, in %ld, out ~%ld(%ld%%) ",
                 s->last_lit, in_length, out_length,
                 100L - out_length*100L/in_length));
          if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
      }
      return (s->last_lit == s->lit_bufsize-1);
      /* We avoid equality with lit_bufsize because of wraparound at 64K
       * on 16 bit machines and because stored blocks are restricted to
       * 64K-1 bytes.
       */
  }
  
  /* ===========================================================================
   * Send the block data compressed using the given Huffman trees
   */
  static void compress_block(
  	deflate_state *s,
  	ct_data *ltree, /* literal tree */
  	ct_data *dtree  /* distance tree */
  )
  {
      unsigned dist;      /* distance of matched string */
      int lc;             /* match length or unmatched char (if dist == 0) */
      unsigned lx = 0;    /* running index in l_buf */
      unsigned code;      /* the code to send */
      int extra;          /* number of extra bits to send */
  
      if (s->last_lit != 0) do {
          dist = s->d_buf[lx];
          lc = s->l_buf[lx++];
          if (dist == 0) {
              send_code(s, lc, ltree); /* send a literal byte */
              Tracecv(isgraph(lc), (stderr," '%c' ", lc));
          } else {
              /* Here, lc is the match length - MIN_MATCH */
              code = length_code[lc];
              send_code(s, code+LITERALS+1, ltree); /* send the length code */
              extra = extra_lbits[code];
              if (extra != 0) {
                  lc -= base_length[code];
                  send_bits(s, lc, extra);       /* send the extra length bits */
              }
              dist--; /* dist is now the match distance - 1 */
              code = d_code(dist);
              Assert (code < D_CODES, "bad d_code");
  
              send_code(s, code, dtree);       /* send the distance code */
              extra = extra_dbits[code];
              if (extra != 0) {
                  dist -= base_dist[code];
                  send_bits(s, dist, extra);   /* send the extra distance bits */
              }
          } /* literal or match pair ? */
  
          /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
          Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
  
      } while (lx < s->last_lit);
  
      send_code(s, END_BLOCK, ltree);
      s->last_eob_len = ltree[END_BLOCK].Len;
  }
  
  /* ===========================================================================
   * Set the data type to ASCII or BINARY, using a crude approximation:
   * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
   * IN assertion: the fields freq of dyn_ltree are set and the total of all
   * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
   */
  static void set_data_type(
  	deflate_state *s
  )
  {
      int n = 0;
      unsigned ascii_freq = 0;
      unsigned bin_freq = 0;
      while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
      while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
      while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
      s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
  }
  
  /* ===========================================================================
   * Copy a stored block, storing first the length and its
   * one's complement if requested.
   */
  static void copy_block(
  	deflate_state *s,
  	char    *buf,     /* the input data */
  	unsigned len,     /* its length */
  	int      header   /* true if block header must be written */
  )
  {
      bi_windup(s);        /* align on byte boundary */
      s->last_eob_len = 8; /* enough lookahead for inflate */
  
      if (header) {
          put_short(s, (ush)len);   
          put_short(s, (ush)~len);
  #ifdef DEBUG_ZLIB
          s->bits_sent += 2*16;
  #endif
      }
  #ifdef DEBUG_ZLIB
      s->bits_sent += (ulg)len<<3;
  #endif
      /* bundle up the put_byte(s, *buf++) calls */
      memcpy(&s->pending_buf[s->pending], buf, len);
      s->pending += len;
  }