Blame view

kernel/linux-imx6_3.14.28/Documentation/trace/events-kmem.txt 5.26 KB
6b13f685e   김민수   BSP 최초 추가
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
  			Subsystem Trace Points: kmem
  
  The kmem tracing system captures events related to object and page allocation
  within the kernel. Broadly speaking there are five major subheadings.
  
    o Slab allocation of small objects of unknown type (kmalloc)
    o Slab allocation of small objects of known type
    o Page allocation
    o Per-CPU Allocator Activity
    o External Fragmentation
  
  This document describes what each of the tracepoints is and why they
  might be useful.
  
  1. Slab allocation of small objects of unknown type
  ===================================================
  kmalloc		call_site=%lx ptr=%p bytes_req=%zu bytes_alloc=%zu gfp_flags=%s
  kmalloc_node	call_site=%lx ptr=%p bytes_req=%zu bytes_alloc=%zu gfp_flags=%s node=%d
  kfree		call_site=%lx ptr=%p
  
  Heavy activity for these events may indicate that a specific cache is
  justified, particularly if kmalloc slab pages are getting significantly
  internal fragmented as a result of the allocation pattern. By correlating
  kmalloc with kfree, it may be possible to identify memory leaks and where
  the allocation sites were.
  
  
  2. Slab allocation of small objects of known type
  =================================================
  kmem_cache_alloc	call_site=%lx ptr=%p bytes_req=%zu bytes_alloc=%zu gfp_flags=%s
  kmem_cache_alloc_node	call_site=%lx ptr=%p bytes_req=%zu bytes_alloc=%zu gfp_flags=%s node=%d
  kmem_cache_free		call_site=%lx ptr=%p
  
  These events are similar in usage to the kmalloc-related events except that
  it is likely easier to pin the event down to a specific cache. At the time
  of writing, no information is available on what slab is being allocated from,
  but the call_site can usually be used to extrapolate that information.
  
  3. Page allocation
  ==================
  mm_page_alloc		  page=%p pfn=%lu order=%d migratetype=%d gfp_flags=%s
  mm_page_alloc_zone_locked page=%p pfn=%lu order=%u migratetype=%d cpu=%d percpu_refill=%d
  mm_page_free		  page=%p pfn=%lu order=%d
  mm_page_free_batched	  page=%p pfn=%lu order=%d cold=%d
  
  These four events deal with page allocation and freeing. mm_page_alloc is
  a simple indicator of page allocator activity. Pages may be allocated from
  the per-CPU allocator (high performance) or the buddy allocator.
  
  If pages are allocated directly from the buddy allocator, the
  mm_page_alloc_zone_locked event is triggered. This event is important as high
  amounts of activity imply high activity on the zone->lock. Taking this lock
  impairs performance by disabling interrupts, dirtying cache lines between
  CPUs and serialising many CPUs.
  
  When a page is freed directly by the caller, the only mm_page_free event
  is triggered. Significant amounts of activity here could indicate that the
  callers should be batching their activities.
  
  When pages are freed in batch, the also mm_page_free_batched is triggered.
  Broadly speaking, pages are taken off the LRU lock in bulk and
  freed in batch with a page list. Significant amounts of activity here could
  indicate that the system is under memory pressure and can also indicate
  contention on the zone->lru_lock.
  
  4. Per-CPU Allocator Activity
  =============================
  mm_page_alloc_zone_locked	page=%p pfn=%lu order=%u migratetype=%d cpu=%d percpu_refill=%d
  mm_page_pcpu_drain		page=%p pfn=%lu order=%d cpu=%d migratetype=%d
  
  In front of the page allocator is a per-cpu page allocator. It exists only
  for order-0 pages, reduces contention on the zone->lock and reduces the
  amount of writing on struct page.
  
  When a per-CPU list is empty or pages of the wrong type are allocated,
  the zone->lock will be taken once and the per-CPU list refilled. The event
  triggered is mm_page_alloc_zone_locked for each page allocated with the
  event indicating whether it is for a percpu_refill or not.
  
  When the per-CPU list is too full, a number of pages are freed, each one
  which triggers a mm_page_pcpu_drain event.
  
  The individual nature of the events is so that pages can be tracked
  between allocation and freeing. A number of drain or refill pages that occur
  consecutively imply the zone->lock being taken once. Large amounts of per-CPU
  refills and drains could imply an imbalance between CPUs where too much work
  is being concentrated in one place. It could also indicate that the per-CPU
  lists should be a larger size. Finally, large amounts of refills on one CPU
  and drains on another could be a factor in causing large amounts of cache
  line bounces due to writes between CPUs and worth investigating if pages
  can be allocated and freed on the same CPU through some algorithm change.
  
  5. External Fragmentation
  =========================
  mm_page_alloc_extfrag		page=%p pfn=%lu alloc_order=%d fallback_order=%d pageblock_order=%d alloc_migratetype=%d fallback_migratetype=%d fragmenting=%d change_ownership=%d
  
  External fragmentation affects whether a high-order allocation will be
  successful or not. For some types of hardware, this is important although
  it is avoided where possible. If the system is using huge pages and needs
  to be able to resize the pool over the lifetime of the system, this value
  is important.
  
  Large numbers of this event implies that memory is fragmenting and
  high-order allocations will start failing at some time in the future. One
  means of reducing the occurrence of this event is to increase the size of
  min_free_kbytes in increments of 3*pageblock_size*nr_online_nodes where
  pageblock_size is usually the size of the default hugepage size.