Blame view

kernel/linux-imx6_3.14.28/Documentation/DocBook/mtdnand.tmpl 43.4 KB
6b13f685e   김민수   BSP 최초 추가
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
  <?xml version="1.0" encoding="UTF-8"?>
  <!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
  	"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
  
  <book id="MTD-NAND-Guide">
   <bookinfo>
    <title>MTD NAND Driver Programming Interface</title>
    
    <authorgroup>
     <author>
      <firstname>Thomas</firstname>
      <surname>Gleixner</surname>
      <affiliation>
       <address>
        <email>tglx@linutronix.de</email>
       </address>
      </affiliation>
     </author>
    </authorgroup>
  
    <copyright>
     <year>2004</year>
     <holder>Thomas Gleixner</holder>
    </copyright>
  
    <legalnotice>
     <para>
       This documentation is free software; you can redistribute
       it and/or modify it under the terms of the GNU General Public
       License version 2 as published by the Free Software Foundation.
     </para>
        
     <para>
       This program is distributed in the hope that it will be
       useful, but WITHOUT ANY WARRANTY; without even the implied
       warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
       See the GNU General Public License for more details.
     </para>
        
     <para>
       You should have received a copy of the GNU General Public
       License along with this program; if not, write to the Free
       Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
       MA 02111-1307 USA
     </para>
        
     <para>
       For more details see the file COPYING in the source
       distribution of Linux.
     </para>
    </legalnotice>
   </bookinfo>
  
  <toc></toc>
  
    <chapter id="intro">
        <title>Introduction</title>
    <para>
    	The generic NAND driver supports almost all NAND and AG-AND based
  	chips and connects them to the Memory Technology Devices (MTD)
  	subsystem of the Linux Kernel.
    </para>
    <para>
    	This documentation is provided for developers who want to implement
  	board drivers or filesystem drivers suitable for NAND devices.
    </para>
    </chapter>
    
    <chapter id="bugs">
       <title>Known Bugs And Assumptions</title>
    <para>
  	None.	
    </para>
    </chapter>
  
    <chapter id="dochints">
       <title>Documentation hints</title>
       <para>
       The function and structure docs are autogenerated. Each function and 
       struct member has a short description which is marked with an [XXX] identifier.
       The following chapters explain the meaning of those identifiers.
       </para>
       <sect1 id="Function_identifiers_XXX">
  	<title>Function identifiers [XXX]</title>
       	<para>
  	The functions are marked with [XXX] identifiers in the short
  	comment. The identifiers explain the usage and scope of the
  	functions. Following identifiers are used:
       	</para>
  	<itemizedlist>
  		<listitem><para>
  	  	[MTD Interface]</para><para>
  		These functions provide the interface to the MTD kernel API. 
  		They are not replacable and provide functionality
  		which is complete hardware independent.
  		</para></listitem>
  		<listitem><para>
  	  	[NAND Interface]</para><para>
  		These functions are exported and provide the interface to the NAND kernel API. 
  		</para></listitem>
  		<listitem><para>
  	  	[GENERIC]</para><para>
  		Generic functions are not replacable and provide functionality
  		which is complete hardware independent.
  		</para></listitem>
  		<listitem><para>
  	  	[DEFAULT]</para><para>
  		Default functions provide hardware related functionality which is suitable
  		for most of the implementations. These functions can be replaced by the
  		board driver if neccecary. Those functions are called via pointers in the
  		NAND chip description structure. The board driver can set the functions which
  		should be replaced by board dependent functions before calling nand_scan().
  		If the function pointer is NULL on entry to nand_scan() then the pointer
  		is set to the default function which is suitable for the detected chip type.
  		</para></listitem>
  	</itemizedlist>
       </sect1>
       <sect1 id="Struct_member_identifiers_XXX">
  	<title>Struct member identifiers [XXX]</title>
       	<para>
  	The struct members are marked with [XXX] identifiers in the 
  	comment. The identifiers explain the usage and scope of the
  	members. Following identifiers are used:
       	</para>
  	<itemizedlist>
  		<listitem><para>
  	  	[INTERN]</para><para>
  		These members are for NAND driver internal use only and must not be
  		modified. Most of these values are calculated from the chip geometry
  		information which is evaluated during nand_scan().
  		</para></listitem>
  		<listitem><para>
  	  	[REPLACEABLE]</para><para>
  		Replaceable members hold hardware related functions which can be 
  		provided by the board driver. The board driver can set the functions which
  		should be replaced by board dependent functions before calling nand_scan().
  		If the function pointer is NULL on entry to nand_scan() then the pointer
  		is set to the default function which is suitable for the detected chip type.
  		</para></listitem>
  		<listitem><para>
  	  	[BOARDSPECIFIC]</para><para>
  		Board specific members hold hardware related information which must
  		be provided by the board driver. The board driver must set the function
  		pointers and datafields before calling nand_scan().
  		</para></listitem>
  		<listitem><para>
  	  	[OPTIONAL]</para><para>
  		Optional members can hold information relevant for the board driver. The
  		generic NAND driver code does not use this information.
  		</para></listitem>
  	</itemizedlist>
       </sect1>
    </chapter>   
  
    <chapter id="basicboarddriver">
       	<title>Basic board driver</title>
  	<para>
  		For most boards it will be sufficient to provide just the
  		basic functions and fill out some really board dependent
  		members in the nand chip description structure.
  	</para>
  	<sect1 id="Basic_defines">
  		<title>Basic defines</title>
  		<para>
  			At least you have to provide a mtd structure and
  			a storage for the ioremap'ed chip address.
  			You can allocate the mtd structure using kmalloc
  			or you can allocate it statically.
  			In case of static allocation you have to allocate
  			a nand_chip structure too.
  		</para>
  		<para>
  			Kmalloc based example
  		</para>
  		<programlisting>
  static struct mtd_info *board_mtd;
  static void __iomem *baseaddr;
  		</programlisting>
  		<para>
  			Static example
  		</para>
  		<programlisting>
  static struct mtd_info board_mtd;
  static struct nand_chip board_chip;
  static void __iomem *baseaddr;
  		</programlisting>
  	</sect1>
  	<sect1 id="Partition_defines">
  		<title>Partition defines</title>
  		<para>
  			If you want to divide your device into partitions, then
  			define a partitioning scheme suitable to your board.
  		</para>
  		<programlisting>
  #define NUM_PARTITIONS 2
  static struct mtd_partition partition_info[] = {
  	{ .name = "Flash partition 1",
  	  .offset =  0,
  	  .size =    8 * 1024 * 1024 },
  	{ .name = "Flash partition 2",
  	  .offset =  MTDPART_OFS_NEXT,
  	  .size =    MTDPART_SIZ_FULL },
  };
  		</programlisting>
  	</sect1>
  	<sect1 id="Hardware_control_functions">
  		<title>Hardware control function</title>
  		<para>
  			The hardware control function provides access to the 
  			control pins of the NAND chip(s). 
  			The access can be done by GPIO pins or by address lines.
  			If you use address lines, make sure that the timing
  			requirements are met.
  		</para>
  		<para>
  			<emphasis>GPIO based example</emphasis>
  		</para>
  		<programlisting>
  static void board_hwcontrol(struct mtd_info *mtd, int cmd)
  {
  	switch(cmd){
  		case NAND_CTL_SETCLE: /* Set CLE pin high */ break;
  		case NAND_CTL_CLRCLE: /* Set CLE pin low */ break;
  		case NAND_CTL_SETALE: /* Set ALE pin high */ break;
  		case NAND_CTL_CLRALE: /* Set ALE pin low */ break;
  		case NAND_CTL_SETNCE: /* Set nCE pin low */ break;
  		case NAND_CTL_CLRNCE: /* Set nCE pin high */ break;
  	}
  }
  		</programlisting>
  		<para>
  			<emphasis>Address lines based example.</emphasis> It's assumed that the
  			nCE pin is driven by a chip select decoder.
  		</para>
  		<programlisting>
  static void board_hwcontrol(struct mtd_info *mtd, int cmd)
  {
  	struct nand_chip *this = (struct nand_chip *) mtd->priv;
  	switch(cmd){
  		case NAND_CTL_SETCLE: this->IO_ADDR_W |= CLE_ADRR_BIT;  break;
  		case NAND_CTL_CLRCLE: this->IO_ADDR_W &amp;= ~CLE_ADRR_BIT; break;
  		case NAND_CTL_SETALE: this->IO_ADDR_W |= ALE_ADRR_BIT;  break;
  		case NAND_CTL_CLRALE: this->IO_ADDR_W &amp;= ~ALE_ADRR_BIT; break;
  	}
  }
  		</programlisting>
  	</sect1>
  	<sect1 id="Device_ready_function">
  		<title>Device ready function</title>
  		<para>
  			If the hardware interface has the ready busy pin of the NAND chip connected to a
  			GPIO or other accessible I/O pin, this function is used to read back the state of the
  			pin. The function has no arguments and should return 0, if the device is busy (R/B pin 
  			is low) and 1, if the device is ready (R/B pin is high).
  			If the hardware interface does not give access to the ready busy pin, then
  			the function must not be defined and the function pointer this->dev_ready is set to NULL.		
  		</para>
  	</sect1>
  	<sect1 id="Init_function">
  		<title>Init function</title>
  		<para>
  			The init function allocates memory and sets up all the board
  			specific parameters and function pointers. When everything
  			is set up nand_scan() is called. This function tries to
  			detect and identify then chip. If a chip is found all the
  			internal data fields are initialized accordingly.
  			The structure(s) have to be zeroed out first and then filled with the neccecary 
  			information about the device.
  		</para>
  		<programlisting>
  static int __init board_init (void)
  {
  	struct nand_chip *this;
  	int err = 0;
  
  	/* Allocate memory for MTD device structure and private data */
  	board_mtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
  	if (!board_mtd) {
  		printk ("Unable to allocate NAND MTD device structure.
  ");
  		err = -ENOMEM;
  		goto out;
  	}
  
  	/* map physical address */
  	baseaddr = ioremap(CHIP_PHYSICAL_ADDRESS, 1024);
  	if (!baseaddr) {
  		printk("Ioremap to access NAND chip failed
  ");
  		err = -EIO;
  		goto out_mtd;
  	}
  
  	/* Get pointer to private data */
  	this = (struct nand_chip *) ();
  	/* Link the private data with the MTD structure */
  	board_mtd->priv = this;
  
  	/* Set address of NAND IO lines */
  	this->IO_ADDR_R = baseaddr;
  	this->IO_ADDR_W = baseaddr;
  	/* Reference hardware control function */
  	this->hwcontrol = board_hwcontrol;
  	/* Set command delay time, see datasheet for correct value */
  	this->chip_delay = CHIP_DEPENDEND_COMMAND_DELAY;
  	/* Assign the device ready function, if available */
  	this->dev_ready = board_dev_ready;
  	this->eccmode = NAND_ECC_SOFT;
  
  	/* Scan to find existence of the device */
  	if (nand_scan (board_mtd, 1)) {
  		err = -ENXIO;
  		goto out_ior;
  	}
  	
  	add_mtd_partitions(board_mtd, partition_info, NUM_PARTITIONS);
  	goto out;
  
  out_ior:
  	iounmap(baseaddr);
  out_mtd:
  	kfree (board_mtd);
  out:
  	return err;
  }
  module_init(board_init);
  		</programlisting>
  	</sect1>
  	<sect1 id="Exit_function">
  		<title>Exit function</title>
  		<para>
  			The exit function is only neccecary if the driver is
  			compiled as a module. It releases all resources which
  			are held by the chip driver and unregisters the partitions
  			in the MTD layer.
  		</para>
  		<programlisting>
  #ifdef MODULE
  static void __exit board_cleanup (void)
  {
  	/* Release resources, unregister device */
  	nand_release (board_mtd);
  
  	/* unmap physical address */
  	iounmap(baseaddr);
  	
  	/* Free the MTD device structure */
  	kfree (board_mtd);
  }
  module_exit(board_cleanup);
  #endif
  		</programlisting>
  	</sect1>
    </chapter>
  
    <chapter id="boarddriversadvanced">
       	<title>Advanced board driver functions</title>
  	<para>
  		This chapter describes the advanced functionality of the NAND
  		driver. For a list of functions which can be overridden by the board
  		driver see the documentation of the nand_chip structure.
  	</para>
  	<sect1 id="Multiple_chip_control">
  		<title>Multiple chip control</title>
  		<para>
  			The nand driver can control chip arrays. Therefore the
  			board driver must provide an own select_chip function. This
  			function must (de)select the requested chip.
  			The function pointer in the nand_chip structure must
  			be set before calling nand_scan(). The maxchip parameter
  			of nand_scan() defines the maximum number of chips to
  			scan for. Make sure that the select_chip function can
  			handle the requested number of chips.
  		</para>
  		<para>
  			The nand driver concatenates the chips to one virtual
  			chip and provides this virtual chip to the MTD layer.
  		</para>
  		<para>
  			<emphasis>Note: The driver can only handle linear chip arrays
  			of equally sized chips. There is no support for
  			parallel arrays which extend the buswidth.</emphasis>
  		</para>
  		<para>
  			<emphasis>GPIO based example</emphasis>
  		</para>
  		<programlisting>
  static void board_select_chip (struct mtd_info *mtd, int chip)
  {
  	/* Deselect all chips, set all nCE pins high */
  	GPIO(BOARD_NAND_NCE) |= 0xff;	
  	if (chip >= 0)
  		GPIO(BOARD_NAND_NCE) &amp;= ~ (1 &lt;&lt; chip);
  }
  		</programlisting>
  		<para>
  			<emphasis>Address lines based example.</emphasis>
  			Its assumed that the nCE pins are connected to an
  			address decoder.
  		</para>
  		<programlisting>
  static void board_select_chip (struct mtd_info *mtd, int chip)
  {
  	struct nand_chip *this = (struct nand_chip *) mtd->priv;
  	
  	/* Deselect all chips */
  	this->IO_ADDR_R &amp;= ~BOARD_NAND_ADDR_MASK;
  	this->IO_ADDR_W &amp;= ~BOARD_NAND_ADDR_MASK;
  	switch (chip) {
  	case 0:
  		this->IO_ADDR_R |= BOARD_NAND_ADDR_CHIP0;
  		this->IO_ADDR_W |= BOARD_NAND_ADDR_CHIP0;
  		break;
  	....	
  	case n:
  		this->IO_ADDR_R |= BOARD_NAND_ADDR_CHIPn;
  		this->IO_ADDR_W |= BOARD_NAND_ADDR_CHIPn;
  		break;
  	}	
  }
  		</programlisting>
  	</sect1>
  	<sect1 id="Hardware_ECC_support">
  		<title>Hardware ECC support</title>
  		<sect2 id="Functions_and_constants">
  			<title>Functions and constants</title>
  			<para>
  				The nand driver supports three different types of
  				hardware ECC.
  				<itemizedlist>
  				<listitem><para>NAND_ECC_HW3_256</para><para>
  				Hardware ECC generator providing 3 bytes ECC per
  				256 byte.
  				</para>	</listitem>
  				<listitem><para>NAND_ECC_HW3_512</para><para>
  				Hardware ECC generator providing 3 bytes ECC per
  				512 byte.
  				</para>	</listitem>
  				<listitem><para>NAND_ECC_HW6_512</para><para>
  				Hardware ECC generator providing 6 bytes ECC per
  				512 byte.
  				</para>	</listitem>
  				<listitem><para>NAND_ECC_HW8_512</para><para>
  				Hardware ECC generator providing 6 bytes ECC per
  				512 byte.
  				</para>	</listitem>
  				</itemizedlist>
  				If your hardware generator has a different functionality
  				add it at the appropriate place in nand_base.c
  			</para>
  			<para>
  				The board driver must provide following functions:
  				<itemizedlist>
  				<listitem><para>enable_hwecc</para><para>
  				This function is called before reading / writing to
  				the chip. Reset or initialize the hardware generator
  				in this function. The function is called with an
  				argument which let you distinguish between read 
  				and write operations.
  				</para>	</listitem>
  				<listitem><para>calculate_ecc</para><para>
  				This function is called after read / write from / to
  				the chip. Transfer the ECC from the hardware to
  				the buffer. If the option NAND_HWECC_SYNDROME is set
  				then the function is only called on write. See below.
  				</para>	</listitem>
  				<listitem><para>correct_data</para><para>
  				In case of an ECC error this function is called for
  				error detection and correction. Return 1 respectively 2
  				in case the error can be corrected. If the error is
  				not correctable return -1. If your hardware generator
  				matches the default algorithm of the nand_ecc software
  				generator then use the correction function provided
  				by nand_ecc instead of implementing duplicated code.
  				</para>	</listitem>
  				</itemizedlist>
  			</para>
  		</sect2>
  		<sect2 id="Hardware_ECC_with_syndrome_calculation">
  		<title>Hardware ECC with syndrome calculation</title>
  			<para>
  				Many hardware ECC implementations provide Reed-Solomon
  				codes and calculate an error syndrome on read. The syndrome
  				must be converted to a standard Reed-Solomon syndrome
  				before calling the error correction code in the generic
  				Reed-Solomon library.
  			</para>
  			<para>
  				The ECC bytes must be placed immediately after the data
  				bytes in order to make the syndrome generator work. This
  				is contrary to the usual layout used by software ECC. The
  				separation of data and out of band area is not longer
  				possible. The nand driver code handles this layout and
  				the remaining free bytes in the oob area are managed by 
  				the autoplacement code. Provide a matching oob-layout
  				in this case. See rts_from4.c and diskonchip.c for 
  				implementation reference. In those cases we must also
  				use bad block tables on FLASH, because the ECC layout is
  				interferring with the bad block marker positions.
  				See bad block table support for details.
  			</para>
  		</sect2>
  	</sect1>
  	<sect1 id="Bad_Block_table_support">
  		<title>Bad block table support</title>
  		<para>
  			Most NAND chips mark the bad blocks at a defined
  			position in the spare area. Those blocks must 
  			not be erased under any circumstances as the bad 
  			block information would be lost.
  			It is possible to check the bad block mark each
  			time when the blocks are accessed by reading the
  			spare area of the first page in the block. This
  			is time consuming so a bad block table is used.
  		</para>
  		<para>
  			The nand driver supports various types of bad block
  			tables.
  			<itemizedlist>
  			<listitem><para>Per device</para><para>
  			The bad block table contains all bad block information
  			of the device which can consist of multiple chips.
  			</para>	</listitem>
  			<listitem><para>Per chip</para><para>
  			A bad block table is used per chip and contains the
  			bad block information for this particular chip.
  			</para>	</listitem>
  			<listitem><para>Fixed offset</para><para>
  			The bad block table is located at a fixed offset
  			in the chip (device). This applies to various
  			DiskOnChip devices.
  			</para>	</listitem>
  			<listitem><para>Automatic placed</para><para>
  			The bad block table is automatically placed and
  			detected either at the end or at the beginning
  			of a chip (device)
  			</para>	</listitem>
  			<listitem><para>Mirrored tables</para><para>
  			The bad block table is mirrored on the chip (device) to
  			allow updates of the bad block table without data loss.
  			</para>	</listitem>
  			</itemizedlist>
  		</para>
  		<para>	
  			nand_scan() calls the function nand_default_bbt(). 
  			nand_default_bbt() selects appropriate default
  			bad block table desriptors depending on the chip information
  			which was retrieved by nand_scan().
  		</para>
  		<para>
  			The standard policy is scanning the device for bad 
  			blocks and build a ram based bad block table which
  			allows faster access than always checking the
  			bad block information on the flash chip itself.
  		</para>
  		<sect2 id="Flash_based_tables">
  			<title>Flash based tables</title>
  			<para>
  				It may be desired or neccecary to keep a bad block table in FLASH. 
  				For AG-AND chips this is mandatory, as they have no factory marked
  				bad blocks. They have factory marked good blocks. The marker pattern
  				is erased when the block is erased to be reused. So in case of
  				powerloss before writing the pattern back to the chip this block 
  				would be lost and added to the bad blocks. Therefore we scan the 
  				chip(s) when we detect them the first time for good blocks and 
  				store this information in a bad block table before erasing any 
  				of the blocks.
  			</para>
  			<para>
  				The blocks in which the tables are stored are procteted against
  				accidental access by marking them bad in the memory bad block
  				table. The bad block table management functions are allowed
  				to circumvernt this protection.
  			</para>
  			<para>
  				The simplest way to activate the FLASH based bad block table support 
  				is to set the option NAND_BBT_USE_FLASH in the bbt_option field of
  				the nand chip structure before calling nand_scan(). For AG-AND
  				chips is this done by default.
  				This activates the default FLASH based bad block table functionality 
  				of the NAND driver. The default bad block table options are
  				<itemizedlist>
  				<listitem><para>Store bad block table per chip</para></listitem>
  				<listitem><para>Use 2 bits per block</para></listitem>
  				<listitem><para>Automatic placement at the end of the chip</para></listitem>
  				<listitem><para>Use mirrored tables with version numbers</para></listitem>
  				<listitem><para>Reserve 4 blocks at the end of the chip</para></listitem>
  				</itemizedlist>
  			</para>
  		</sect2>
  		<sect2 id="User_defined_tables">
  			<title>User defined tables</title>
  			<para>
  				User defined tables are created by filling out a 
  				nand_bbt_descr structure and storing the pointer in the
  				nand_chip structure member bbt_td before calling nand_scan(). 
  				If a mirror table is neccecary a second structure must be
  				created and a pointer to this structure must be stored
  				in bbt_md inside the nand_chip structure. If the bbt_md 
  				member is set to NULL then only the main table is used
  				and no scan for the mirrored table is performed.
  			</para>
  			<para>
  				The most important field in the nand_bbt_descr structure
  				is the options field. The options define most of the 
  				table properties. Use the predefined constants from
  				nand.h to define the options.
  				<itemizedlist>
  				<listitem><para>Number of bits per block</para>
  				<para>The supported number of bits is 1, 2, 4, 8.</para></listitem>
  				<listitem><para>Table per chip</para>
  				<para>Setting the constant NAND_BBT_PERCHIP selects that
  				a bad block table is managed for each chip in a chip array.
  				If this option is not set then a per device bad block table
  				is used.</para></listitem>
  				<listitem><para>Table location is absolute</para>
  				<para>Use the option constant NAND_BBT_ABSPAGE and
  				define the absolute page number where the bad block
  				table starts in the field pages. If you have selected bad block
  				tables per chip and you have a multi chip array then the start page
  				must be given for each chip in the chip array. Note: there is no scan
  				for a table ident pattern performed, so the fields 
  				pattern, veroffs, offs, len can be left uninitialized</para></listitem>
  				<listitem><para>Table location is automatically detected</para>
  				<para>The table can either be located in the first or the last good
  				blocks of the chip (device). Set NAND_BBT_LASTBLOCK to place
  				the bad block table at the end of the chip (device). The
  				bad block tables are marked and identified by a pattern which
  				is stored in the spare area of the first page in the block which
  				holds the bad block table. Store a pointer to the pattern  
  				in the pattern field. Further the length of the pattern has to be 
  				stored in len and the offset in the spare area must be given
  				in the offs member of the nand_bbt_descr structure. For mirrored
  				bad block tables different patterns are mandatory.</para></listitem>
  				<listitem><para>Table creation</para>
  				<para>Set the option NAND_BBT_CREATE to enable the table creation
  				if no table can be found during the scan. Usually this is done only 
  				once if a new chip is found. </para></listitem>
  				<listitem><para>Table write support</para>
  				<para>Set the option NAND_BBT_WRITE to enable the table write support.
  				This allows the update of the bad block table(s) in case a block has
  				to be marked bad due to wear. The MTD interface function block_markbad
  				is calling the update function of the bad block table. If the write
  				support is enabled then the table is updated on FLASH.</para>
  				<para>
  				Note: Write support should only be enabled for mirrored tables with
  				version control.
  				</para></listitem>
  				<listitem><para>Table version control</para>
  				<para>Set the option NAND_BBT_VERSION to enable the table version control.
  				It's highly recommended to enable this for mirrored tables with write
  				support. It makes sure that the risk of losing the bad block
  				table information is reduced to the loss of the information about the
  				one worn out block which should be marked bad. The version is stored in
  				4 consecutive bytes in the spare area of the device. The position of
  				the version number is defined by the member veroffs in the bad block table
  				descriptor.</para></listitem>
  				<listitem><para>Save block contents on write</para>
  				<para>
  				In case that the block which holds the bad block table does contain
  				other useful information, set the option NAND_BBT_SAVECONTENT. When
  				the bad block table is written then the whole block is read the bad
  				block table is updated and the block is erased and everything is 
  				written back. If this option is not set only the bad block table
  				is written and everything else in the block is ignored and erased.
  				</para></listitem>
  				<listitem><para>Number of reserved blocks</para>
  				<para>
  				For automatic placement some blocks must be reserved for
  				bad block table storage. The number of reserved blocks is defined 
  				in the maxblocks member of the babd block table description structure.
  				Reserving 4 blocks for mirrored tables should be a reasonable number. 
  				This also limits the number of blocks which are scanned for the bad
  				block table ident pattern.
  				</para></listitem>
  				</itemizedlist>
  			</para>
  		</sect2>
  	</sect1>
  	<sect1 id="Spare_area_placement">
  		<title>Spare area (auto)placement</title>
  		<para>
  			The nand driver implements different possibilities for
  			placement of filesystem data in the spare area, 
  			<itemizedlist>
  			<listitem><para>Placement defined by fs driver</para></listitem>
  			<listitem><para>Automatic placement</para></listitem>
  			</itemizedlist>
  			The default placement function is automatic placement. The
  			nand driver has built in default placement schemes for the
  			various chiptypes. If due to hardware ECC functionality the
  			default placement does not fit then the board driver can
  			provide a own placement scheme.
  		</para>
  		<para>
  			File system drivers can provide a own placement scheme which
  			is used instead of the default placement scheme.
  		</para>
  		<para>
  			Placement schemes are defined by a nand_oobinfo structure
  	     		<programlisting>
  struct nand_oobinfo {
  	int	useecc;
  	int	eccbytes;
  	int	eccpos[24];
  	int	oobfree[8][2];
  };
  	     		</programlisting>
  			<itemizedlist>
  			<listitem><para>useecc</para><para>
  				The useecc member controls the ecc and placement function. The header
  				file include/mtd/mtd-abi.h contains constants to select ecc and
  				placement. MTD_NANDECC_OFF switches off the ecc complete. This is
  				not recommended and available for testing and diagnosis only.
  				MTD_NANDECC_PLACE selects caller defined placement, MTD_NANDECC_AUTOPLACE
  				selects automatic placement.
  			</para></listitem>
  			<listitem><para>eccbytes</para><para>
  				The eccbytes member defines the number of ecc bytes per page.
  			</para></listitem>
  			<listitem><para>eccpos</para><para>
  				The eccpos array holds the byte offsets in the spare area where
  				the ecc codes are placed.
  			</para></listitem>
  			<listitem><para>oobfree</para><para>
  				The oobfree array defines the areas in the spare area which can be
  				used for automatic placement. The information is given in the format
  				{offset, size}. offset defines the start of the usable area, size the
  				length in bytes. More than one area can be defined. The list is terminated
  				by an {0, 0} entry.
  			</para></listitem>
  			</itemizedlist>
  		</para>
  		<sect2 id="Placement_defined_by_fs_driver">
  			<title>Placement defined by fs driver</title>
  			<para>
  				The calling function provides a pointer to a nand_oobinfo
  				structure which defines the ecc placement. For writes the
  				caller must provide a spare area buffer along with the
  				data buffer. The spare area buffer size is (number of pages) *
  				(size of spare area). For reads the buffer size is
  				(number of pages) * ((size of spare area) + (number of ecc
  				steps per page) * sizeof (int)). The driver stores the
  				result of the ecc check for each tuple in the spare buffer.
  				The storage sequence is 
  			</para>
  			<para>
  				&lt;spare data page 0&gt;&lt;ecc result 0&gt;...&lt;ecc result n&gt;
  			</para>
  			<para>
  				...
  			</para>
  			<para>
  				&lt;spare data page n&gt;&lt;ecc result 0&gt;...&lt;ecc result n&gt;
  			</para>
  			<para>
  				This is a legacy mode used by YAFFS1.
  			</para>
  			<para>
  				If the spare area buffer is NULL then only the ECC placement is
  				done according to the given scheme in the nand_oobinfo structure.
  			</para>
  		</sect2>
  		<sect2 id="Automatic_placement">
  			<title>Automatic placement</title>
  			<para>
  				Automatic placement uses the built in defaults to place the
  				ecc bytes in the spare area. If filesystem data have to be stored /
  				read into the spare area then the calling function must provide a
  				buffer. The buffer size per page is determined by the oobfree array in
  				the nand_oobinfo structure.
  			</para>
  			<para>
  				If the spare area buffer is NULL then only the ECC placement is
  				done according to the default builtin scheme.
  			</para>
  		</sect2>
  	</sect1>	
  	<sect1 id="Spare_area_autoplacement_default">
  		<title>Spare area autoplacement default schemes</title>
  		<sect2 id="pagesize_256">
  			<title>256 byte pagesize</title>
  <informaltable><tgroup cols="3"><tbody>
  <row>
  <entry>Offset</entry>
  <entry>Content</entry>
  <entry>Comment</entry>
  </row>
  <row>
  <entry>0x00</entry>
  <entry>ECC byte 0</entry>
  <entry>Error correction code byte 0</entry>
  </row>
  <row>
  <entry>0x01</entry>
  <entry>ECC byte 1</entry>
  <entry>Error correction code byte 1</entry>
  </row>
  <row>
  <entry>0x02</entry>
  <entry>ECC byte 2</entry>
  <entry>Error correction code byte 2</entry>
  </row>
  <row>
  <entry>0x03</entry>
  <entry>Autoplace 0</entry>
  <entry></entry>
  </row>
  <row>
  <entry>0x04</entry>
  <entry>Autoplace 1</entry>
  <entry></entry>
  </row>
  <row>
  <entry>0x05</entry>
  <entry>Bad block marker</entry>
  <entry>If any bit in this byte is zero, then this block is bad.
  This applies only to the first page in a block. In the remaining
  pages this byte is reserved</entry>
  </row>
  <row>
  <entry>0x06</entry>
  <entry>Autoplace 2</entry>
  <entry></entry>
  </row>
  <row>
  <entry>0x07</entry>
  <entry>Autoplace 3</entry>
  <entry></entry>
  </row>
  </tbody></tgroup></informaltable>
  		</sect2>
  		<sect2 id="pagesize_512">
  			<title>512 byte pagesize</title>
  <informaltable><tgroup cols="3"><tbody>
  <row>
  <entry>Offset</entry>
  <entry>Content</entry>
  <entry>Comment</entry>
  </row>
  <row>
  <entry>0x00</entry>
  <entry>ECC byte 0</entry>
  <entry>Error correction code byte 0 of the lower 256 Byte data in
  this page</entry>
  </row>
  <row>
  <entry>0x01</entry>
  <entry>ECC byte 1</entry>
  <entry>Error correction code byte 1 of the lower 256 Bytes of data
  in this page</entry>
  </row>
  <row>
  <entry>0x02</entry>
  <entry>ECC byte 2</entry>
  <entry>Error correction code byte 2 of the lower 256 Bytes of data
  in this page</entry>
  </row>
  <row>
  <entry>0x03</entry>
  <entry>ECC byte 3</entry>
  <entry>Error correction code byte 0 of the upper 256 Bytes of data
  in this page</entry>
  </row>
  <row>
  <entry>0x04</entry>
  <entry>reserved</entry>
  <entry>reserved</entry>
  </row>
  <row>
  <entry>0x05</entry>
  <entry>Bad block marker</entry>
  <entry>If any bit in this byte is zero, then this block is bad.
  This applies only to the first page in a block. In the remaining
  pages this byte is reserved</entry>
  </row>
  <row>
  <entry>0x06</entry>
  <entry>ECC byte 4</entry>
  <entry>Error correction code byte 1 of the upper 256 Bytes of data
  in this page</entry>
  </row>
  <row>
  <entry>0x07</entry>
  <entry>ECC byte 5</entry>
  <entry>Error correction code byte 2 of the upper 256 Bytes of data
  in this page</entry>
  </row>
  <row>
  <entry>0x08 - 0x0F</entry>
  <entry>Autoplace 0 - 7</entry>
  <entry></entry>
  </row>
  </tbody></tgroup></informaltable>
  		</sect2>
  		<sect2 id="pagesize_2048">
  			<title>2048 byte pagesize</title>
  <informaltable><tgroup cols="3"><tbody>
  <row>
  <entry>Offset</entry>
  <entry>Content</entry>
  <entry>Comment</entry>
  </row>
  <row>
  <entry>0x00</entry>
  <entry>Bad block marker</entry>
  <entry>If any bit in this byte is zero, then this block is bad.
  This applies only to the first page in a block. In the remaining
  pages this byte is reserved</entry>
  </row>
  <row>
  <entry>0x01</entry>
  <entry>Reserved</entry>
  <entry>Reserved</entry>
  </row>
  <row>
  <entry>0x02-0x27</entry>
  <entry>Autoplace 0 - 37</entry>
  <entry></entry>
  </row>
  <row>
  <entry>0x28</entry>
  <entry>ECC byte 0</entry>
  <entry>Error correction code byte 0 of the first 256 Byte data in
  this page</entry>
  </row>
  <row>
  <entry>0x29</entry>
  <entry>ECC byte 1</entry>
  <entry>Error correction code byte 1 of the first 256 Bytes of data
  in this page</entry>
  </row>
  <row>
  <entry>0x2A</entry>
  <entry>ECC byte 2</entry>
  <entry>Error correction code byte 2 of the first 256 Bytes data in
  this page</entry>
  </row>
  <row>
  <entry>0x2B</entry>
  <entry>ECC byte 3</entry>
  <entry>Error correction code byte 0 of the second 256 Bytes of data
  in this page</entry>
  </row>
  <row>
  <entry>0x2C</entry>
  <entry>ECC byte 4</entry>
  <entry>Error correction code byte 1 of the second 256 Bytes of data
  in this page</entry>
  </row>
  <row>
  <entry>0x2D</entry>
  <entry>ECC byte 5</entry>
  <entry>Error correction code byte 2 of the second 256 Bytes of data
  in this page</entry>
  </row>
  <row>
  <entry>0x2E</entry>
  <entry>ECC byte 6</entry>
  <entry>Error correction code byte 0 of the third 256 Bytes of data
  in this page</entry>
  </row>
  <row>
  <entry>0x2F</entry>
  <entry>ECC byte 7</entry>
  <entry>Error correction code byte 1 of the third 256 Bytes of data
  in this page</entry>
  </row>
  <row>
  <entry>0x30</entry>
  <entry>ECC byte 8</entry>
  <entry>Error correction code byte 2 of the third 256 Bytes of data
  in this page</entry>
  </row>
  <row>
  <entry>0x31</entry>
  <entry>ECC byte 9</entry>
  <entry>Error correction code byte 0 of the fourth 256 Bytes of data
  in this page</entry>
  </row>
  <row>
  <entry>0x32</entry>
  <entry>ECC byte 10</entry>
  <entry>Error correction code byte 1 of the fourth 256 Bytes of data
  in this page</entry>
  </row>
  <row>
  <entry>0x33</entry>
  <entry>ECC byte 11</entry>
  <entry>Error correction code byte 2 of the fourth 256 Bytes of data
  in this page</entry>
  </row>
  <row>
  <entry>0x34</entry>
  <entry>ECC byte 12</entry>
  <entry>Error correction code byte 0 of the fifth 256 Bytes of data
  in this page</entry>
  </row>
  <row>
  <entry>0x35</entry>
  <entry>ECC byte 13</entry>
  <entry>Error correction code byte 1 of the fifth 256 Bytes of data
  in this page</entry>
  </row>
  <row>
  <entry>0x36</entry>
  <entry>ECC byte 14</entry>
  <entry>Error correction code byte 2 of the fifth 256 Bytes of data
  in this page</entry>
  </row>
  <row>
  <entry>0x37</entry>
  <entry>ECC byte 15</entry>
  <entry>Error correction code byte 0 of the sixt 256 Bytes of data
  in this page</entry>
  </row>
  <row>
  <entry>0x38</entry>
  <entry>ECC byte 16</entry>
  <entry>Error correction code byte 1 of the sixt 256 Bytes of data
  in this page</entry>
  </row>
  <row>
  <entry>0x39</entry>
  <entry>ECC byte 17</entry>
  <entry>Error correction code byte 2 of the sixt 256 Bytes of data
  in this page</entry>
  </row>
  <row>
  <entry>0x3A</entry>
  <entry>ECC byte 18</entry>
  <entry>Error correction code byte 0 of the seventh 256 Bytes of
  data in this page</entry>
  </row>
  <row>
  <entry>0x3B</entry>
  <entry>ECC byte 19</entry>
  <entry>Error correction code byte 1 of the seventh 256 Bytes of
  data in this page</entry>
  </row>
  <row>
  <entry>0x3C</entry>
  <entry>ECC byte 20</entry>
  <entry>Error correction code byte 2 of the seventh 256 Bytes of
  data in this page</entry>
  </row>
  <row>
  <entry>0x3D</entry>
  <entry>ECC byte 21</entry>
  <entry>Error correction code byte 0 of the eighth 256 Bytes of data
  in this page</entry>
  </row>
  <row>
  <entry>0x3E</entry>
  <entry>ECC byte 22</entry>
  <entry>Error correction code byte 1 of the eighth 256 Bytes of data
  in this page</entry>
  </row>
  <row>
  <entry>0x3F</entry>
  <entry>ECC byte 23</entry>
  <entry>Error correction code byte 2 of the eighth 256 Bytes of data
  in this page</entry>
  </row>
  </tbody></tgroup></informaltable>
  		</sect2>
       	</sect1>
    </chapter>
  
    <chapter id="filesystems">
       	<title>Filesystem support</title>
  	<para>
  		The NAND driver provides all neccecary functions for a
  		filesystem via the MTD interface.
  	</para>
  	<para>
  		Filesystems must be aware of the NAND pecularities and
  		restrictions. One major restrictions of NAND Flash is, that you cannot 
  		write as often as you want to a page. The consecutive writes to a page, 
  		before erasing it again, are restricted to 1-3 writes, depending on the 
  		manufacturers specifications. This applies similar to the spare area. 
  	</para>
  	<para>
  		Therefore NAND aware filesystems must either write in page size chunks
  		or hold a writebuffer to collect smaller writes until they sum up to 
  		pagesize. Available NAND aware filesystems: JFFS2, YAFFS. 		
  	</para>
  	<para>
  		The spare area usage to store filesystem data is controlled by
  		the spare area placement functionality which is described in one
  		of the earlier chapters.
  	</para>
    </chapter>	
    <chapter id="tools">
       	<title>Tools</title>
  	<para>
  		The MTD project provides a couple of helpful tools to handle NAND Flash.
  		<itemizedlist>
  		<listitem><para>flasherase, flasheraseall: Erase and format FLASH partitions</para></listitem>
  		<listitem><para>nandwrite: write filesystem images to NAND FLASH</para></listitem>
  		<listitem><para>nanddump: dump the contents of a NAND FLASH partitions</para></listitem>
  		</itemizedlist>
  	</para>
  	<para>
  		These tools are aware of the NAND restrictions. Please use those tools
  		instead of complaining about errors which are caused by non NAND aware
  		access methods.
  	</para>
    </chapter>	
  
    <chapter id="defines">
       <title>Constants</title>
       <para>
       This chapter describes the constants which might be relevant for a driver developer.
       </para>
       <sect1 id="Chip_option_constants">
  	<title>Chip option constants</title>
       	<sect2 id="Constants_for_chip_id_table">
  		<title>Constants for chip id table</title>
       		<para>
  		These constants are defined in nand.h. They are ored together to describe
  		the chip functionality.
       		<programlisting>
  /* Buswitdh is 16 bit */
  #define NAND_BUSWIDTH_16	0x00000002
  /* Device supports partial programming without padding */
  #define NAND_NO_PADDING		0x00000004
  /* Chip has cache program function */
  #define NAND_CACHEPRG		0x00000008
  /* Chip has copy back function */
  #define NAND_COPYBACK		0x00000010
  /* AND Chip which has 4 banks and a confusing page / block 
   * assignment. See Renesas datasheet for further information */
  #define NAND_IS_AND		0x00000020
  /* Chip has a array of 4 pages which can be read without
   * additional ready /busy waits */
  #define NAND_4PAGE_ARRAY	0x00000040 
  		</programlisting>
       		</para>
       	</sect2>
       	<sect2 id="Constants_for_runtime_options">
  		<title>Constants for runtime options</title>
       		<para>
  		These constants are defined in nand.h. They are ored together to describe
  		the functionality.
       		<programlisting>
  /* The hw ecc generator provides a syndrome instead a ecc value on read 
   * This can only work if we have the ecc bytes directly behind the 
   * data bytes. Applies for DOC and AG-AND Renesas HW Reed Solomon generators */
  #define NAND_HWECC_SYNDROME	0x00020000
  		</programlisting>
       		</para>
       	</sect2>
       </sect1>	
  
       <sect1 id="EEC_selection_constants">
  	<title>ECC selection constants</title>
  	<para>
  	Use these constants to select the ECC algorithm.
    	<programlisting>
  /* No ECC. Usage is not recommended ! */
  #define NAND_ECC_NONE		0
  /* Software ECC 3 byte ECC per 256 Byte data */
  #define NAND_ECC_SOFT		1
  /* Hardware ECC 3 byte ECC per 256 Byte data */
  #define NAND_ECC_HW3_256	2
  /* Hardware ECC 3 byte ECC per 512 Byte data */
  #define NAND_ECC_HW3_512	3
  /* Hardware ECC 6 byte ECC per 512 Byte data */
  #define NAND_ECC_HW6_512	4
  /* Hardware ECC 6 byte ECC per 512 Byte data */
  #define NAND_ECC_HW8_512	6
  	</programlisting>
  	</para>
       </sect1>	
  
       <sect1 id="Hardware_control_related_constants">
  	<title>Hardware control related constants</title>
  	<para>
  	These constants describe the requested hardware access function when
  	the boardspecific hardware control function is called
    	<programlisting>
  /* Select the chip by setting nCE to low */
  #define NAND_CTL_SETNCE 	1
  /* Deselect the chip by setting nCE to high */
  #define NAND_CTL_CLRNCE		2
  /* Select the command latch by setting CLE to high */
  #define NAND_CTL_SETCLE		3
  /* Deselect the command latch by setting CLE to low */
  #define NAND_CTL_CLRCLE		4
  /* Select the address latch by setting ALE to high */
  #define NAND_CTL_SETALE		5
  /* Deselect the address latch by setting ALE to low */
  #define NAND_CTL_CLRALE		6
  /* Set write protection by setting WP to high. Not used! */
  #define NAND_CTL_SETWP		7
  /* Clear write protection by setting WP to low. Not used! */
  #define NAND_CTL_CLRWP		8
  	</programlisting>
  	</para>
       </sect1>	
  
       <sect1 id="Bad_block_table_constants">
  	<title>Bad block table related constants</title>
  	<para>
  	These constants describe the options used for bad block
  	table descriptors.
    	<programlisting>
  /* Options for the bad block table descriptors */
  
  /* The number of bits used per block in the bbt on the device */
  #define NAND_BBT_NRBITS_MSK	0x0000000F
  #define NAND_BBT_1BIT		0x00000001
  #define NAND_BBT_2BIT		0x00000002
  #define NAND_BBT_4BIT		0x00000004
  #define NAND_BBT_8BIT		0x00000008
  /* The bad block table is in the last good block of the device */
  #define	NAND_BBT_LASTBLOCK	0x00000010
  /* The bbt is at the given page, else we must scan for the bbt */
  #define NAND_BBT_ABSPAGE	0x00000020
  /* bbt is stored per chip on multichip devices */
  #define NAND_BBT_PERCHIP	0x00000080
  /* bbt has a version counter at offset veroffs */
  #define NAND_BBT_VERSION	0x00000100
  /* Create a bbt if none axists */
  #define NAND_BBT_CREATE		0x00000200
  /* Write bbt if neccecary */
  #define NAND_BBT_WRITE		0x00001000
  /* Read and write back block contents when writing bbt */
  #define NAND_BBT_SAVECONTENT	0x00002000
  	</programlisting>
  	</para>
       </sect1>	
  
    </chapter>
    	
    <chapter id="structs">
       <title>Structures</title>
       <para>
       This chapter contains the autogenerated documentation of the structures which are
       used in the NAND driver and might be relevant for a driver developer. Each  
       struct member has a short description which is marked with an [XXX] identifier.
       See the chapter "Documentation hints" for an explanation.
       </para>
  !Iinclude/linux/mtd/nand.h
    </chapter>
  
    <chapter id="pubfunctions">
       <title>Public Functions Provided</title>
       <para>
       This chapter contains the autogenerated documentation of the NAND kernel API functions
        which are exported. Each function has a short description which is marked with an [XXX] identifier.
       See the chapter "Documentation hints" for an explanation.
       </para>
  !Edrivers/mtd/nand/nand_base.c
  !Edrivers/mtd/nand/nand_bbt.c
  !Edrivers/mtd/nand/nand_ecc.c
    </chapter>
    
    <chapter id="intfunctions">
       <title>Internal Functions Provided</title>
       <para>
       This chapter contains the autogenerated documentation of the NAND driver internal functions.
       Each function has a short description which is marked with an [XXX] identifier.
       See the chapter "Documentation hints" for an explanation.
       The functions marked with [DEFAULT] might be relevant for a board driver developer.
       </para>
  !Idrivers/mtd/nand/nand_base.c
  !Idrivers/mtd/nand/nand_bbt.c
  <!-- No internal functions for kernel-doc:
  X!Idrivers/mtd/nand/nand_ecc.c
  -->
    </chapter>
  
    <chapter id="credits">
       <title>Credits</title>
  	<para>
  		The following people have contributed to the NAND driver:
  		<orderedlist>
  			<listitem><para>Steven J. Hill<email>sjhill@realitydiluted.com</email></para></listitem>
  			<listitem><para>David Woodhouse<email>dwmw2@infradead.org</email></para></listitem>
  			<listitem><para>Thomas Gleixner<email>tglx@linutronix.de</email></para></listitem>
  		</orderedlist>
  		A lot of users have provided bugfixes, improvements and helping hands for testing.
  		Thanks a lot.
  	</para>
  	<para>
  		The following people have contributed to this document:
  		<orderedlist>
  			<listitem><para>Thomas Gleixner<email>tglx@linutronix.de</email></para></listitem>
  		</orderedlist>
  	</para>
    </chapter>
  </book>