Blame view

kernel/linux-imx6_3.14.28/drivers/dma/omap-dma.c 16.7 KB
6b13f685e   김민수   BSP 최초 추가
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
  /*
   * OMAP DMAengine support
   *
   * This program is free software; you can redistribute it and/or modify
   * it under the terms of the GNU General Public License version 2 as
   * published by the Free Software Foundation.
   */
  #include <linux/dmaengine.h>
  #include <linux/dma-mapping.h>
  #include <linux/err.h>
  #include <linux/init.h>
  #include <linux/interrupt.h>
  #include <linux/list.h>
  #include <linux/module.h>
  #include <linux/omap-dma.h>
  #include <linux/platform_device.h>
  #include <linux/slab.h>
  #include <linux/spinlock.h>
  #include <linux/of_dma.h>
  #include <linux/of_device.h>
  
  #include "virt-dma.h"
  
  struct omap_dmadev {
  	struct dma_device ddev;
  	spinlock_t lock;
  	struct tasklet_struct task;
  	struct list_head pending;
  };
  
  struct omap_chan {
  	struct virt_dma_chan vc;
  	struct list_head node;
  
  	struct dma_slave_config	cfg;
  	unsigned dma_sig;
  	bool cyclic;
  	bool paused;
  
  	int dma_ch;
  	struct omap_desc *desc;
  	unsigned sgidx;
  };
  
  struct omap_sg {
  	dma_addr_t addr;
  	uint32_t en;		/* number of elements (24-bit) */
  	uint32_t fn;		/* number of frames (16-bit) */
  };
  
  struct omap_desc {
  	struct virt_dma_desc vd;
  	enum dma_transfer_direction dir;
  	dma_addr_t dev_addr;
  
  	int16_t fi;		/* for OMAP_DMA_SYNC_PACKET */
  	uint8_t es;		/* OMAP_DMA_DATA_TYPE_xxx */
  	uint8_t sync_mode;	/* OMAP_DMA_SYNC_xxx */
  	uint8_t sync_type;	/* OMAP_DMA_xxx_SYNC* */
  	uint8_t periph_port;	/* Peripheral port */
  
  	unsigned sglen;
  	struct omap_sg sg[0];
  };
  
  static const unsigned es_bytes[] = {
  	[OMAP_DMA_DATA_TYPE_S8] = 1,
  	[OMAP_DMA_DATA_TYPE_S16] = 2,
  	[OMAP_DMA_DATA_TYPE_S32] = 4,
  };
  
  static struct of_dma_filter_info omap_dma_info = {
  	.filter_fn = omap_dma_filter_fn,
  };
  
  static inline struct omap_dmadev *to_omap_dma_dev(struct dma_device *d)
  {
  	return container_of(d, struct omap_dmadev, ddev);
  }
  
  static inline struct omap_chan *to_omap_dma_chan(struct dma_chan *c)
  {
  	return container_of(c, struct omap_chan, vc.chan);
  }
  
  static inline struct omap_desc *to_omap_dma_desc(struct dma_async_tx_descriptor *t)
  {
  	return container_of(t, struct omap_desc, vd.tx);
  }
  
  static void omap_dma_desc_free(struct virt_dma_desc *vd)
  {
  	kfree(container_of(vd, struct omap_desc, vd));
  }
  
  static void omap_dma_start_sg(struct omap_chan *c, struct omap_desc *d,
  	unsigned idx)
  {
  	struct omap_sg *sg = d->sg + idx;
  
  	if (d->dir == DMA_DEV_TO_MEM)
  		omap_set_dma_dest_params(c->dma_ch, OMAP_DMA_PORT_EMIFF,
  			OMAP_DMA_AMODE_POST_INC, sg->addr, 0, 0);
  	else
  		omap_set_dma_src_params(c->dma_ch, OMAP_DMA_PORT_EMIFF,
  			OMAP_DMA_AMODE_POST_INC, sg->addr, 0, 0);
  
  	omap_set_dma_transfer_params(c->dma_ch, d->es, sg->en, sg->fn,
  		d->sync_mode, c->dma_sig, d->sync_type);
  
  	omap_start_dma(c->dma_ch);
  }
  
  static void omap_dma_start_desc(struct omap_chan *c)
  {
  	struct virt_dma_desc *vd = vchan_next_desc(&c->vc);
  	struct omap_desc *d;
  
  	if (!vd) {
  		c->desc = NULL;
  		return;
  	}
  
  	list_del(&vd->node);
  
  	c->desc = d = to_omap_dma_desc(&vd->tx);
  	c->sgidx = 0;
  
  	if (d->dir == DMA_DEV_TO_MEM)
  		omap_set_dma_src_params(c->dma_ch, d->periph_port,
  			OMAP_DMA_AMODE_CONSTANT, d->dev_addr, 0, d->fi);
  	else
  		omap_set_dma_dest_params(c->dma_ch, d->periph_port,
  			OMAP_DMA_AMODE_CONSTANT, d->dev_addr, 0, d->fi);
  
  	omap_dma_start_sg(c, d, 0);
  }
  
  static void omap_dma_callback(int ch, u16 status, void *data)
  {
  	struct omap_chan *c = data;
  	struct omap_desc *d;
  	unsigned long flags;
  
  	spin_lock_irqsave(&c->vc.lock, flags);
  	d = c->desc;
  	if (d) {
  		if (!c->cyclic) {
  			if (++c->sgidx < d->sglen) {
  				omap_dma_start_sg(c, d, c->sgidx);
  			} else {
  				omap_dma_start_desc(c);
  				vchan_cookie_complete(&d->vd);
  			}
  		} else {
  			vchan_cyclic_callback(&d->vd);
  		}
  	}
  	spin_unlock_irqrestore(&c->vc.lock, flags);
  }
  
  /*
   * This callback schedules all pending channels.  We could be more
   * clever here by postponing allocation of the real DMA channels to
   * this point, and freeing them when our virtual channel becomes idle.
   *
   * We would then need to deal with 'all channels in-use'
   */
  static void omap_dma_sched(unsigned long data)
  {
  	struct omap_dmadev *d = (struct omap_dmadev *)data;
  	LIST_HEAD(head);
  
  	spin_lock_irq(&d->lock);
  	list_splice_tail_init(&d->pending, &head);
  	spin_unlock_irq(&d->lock);
  
  	while (!list_empty(&head)) {
  		struct omap_chan *c = list_first_entry(&head,
  			struct omap_chan, node);
  
  		spin_lock_irq(&c->vc.lock);
  		list_del_init(&c->node);
  		omap_dma_start_desc(c);
  		spin_unlock_irq(&c->vc.lock);
  	}
  }
  
  static int omap_dma_alloc_chan_resources(struct dma_chan *chan)
  {
  	struct omap_chan *c = to_omap_dma_chan(chan);
  
  	dev_dbg(c->vc.chan.device->dev, "allocating channel for %u
  ", c->dma_sig);
  
  	return omap_request_dma(c->dma_sig, "DMA engine",
  		omap_dma_callback, c, &c->dma_ch);
  }
  
  static void omap_dma_free_chan_resources(struct dma_chan *chan)
  {
  	struct omap_chan *c = to_omap_dma_chan(chan);
  
  	vchan_free_chan_resources(&c->vc);
  	omap_free_dma(c->dma_ch);
  
  	dev_dbg(c->vc.chan.device->dev, "freeing channel for %u
  ", c->dma_sig);
  }
  
  static size_t omap_dma_sg_size(struct omap_sg *sg)
  {
  	return sg->en * sg->fn;
  }
  
  static size_t omap_dma_desc_size(struct omap_desc *d)
  {
  	unsigned i;
  	size_t size;
  
  	for (size = i = 0; i < d->sglen; i++)
  		size += omap_dma_sg_size(&d->sg[i]);
  
  	return size * es_bytes[d->es];
  }
  
  static size_t omap_dma_desc_size_pos(struct omap_desc *d, dma_addr_t addr)
  {
  	unsigned i;
  	size_t size, es_size = es_bytes[d->es];
  
  	for (size = i = 0; i < d->sglen; i++) {
  		size_t this_size = omap_dma_sg_size(&d->sg[i]) * es_size;
  
  		if (size)
  			size += this_size;
  		else if (addr >= d->sg[i].addr &&
  			 addr < d->sg[i].addr + this_size)
  			size += d->sg[i].addr + this_size - addr;
  	}
  	return size;
  }
  
  static enum dma_status omap_dma_tx_status(struct dma_chan *chan,
  	dma_cookie_t cookie, struct dma_tx_state *txstate)
  {
  	struct omap_chan *c = to_omap_dma_chan(chan);
  	struct virt_dma_desc *vd;
  	enum dma_status ret;
  	unsigned long flags;
  
  	ret = dma_cookie_status(chan, cookie, txstate);
  	if (ret == DMA_COMPLETE || !txstate)
  		return ret;
  
  	spin_lock_irqsave(&c->vc.lock, flags);
  	vd = vchan_find_desc(&c->vc, cookie);
  	if (vd) {
  		txstate->residue = omap_dma_desc_size(to_omap_dma_desc(&vd->tx));
  	} else if (c->desc && c->desc->vd.tx.cookie == cookie) {
  		struct omap_desc *d = c->desc;
  		dma_addr_t pos;
  
  		if (d->dir == DMA_MEM_TO_DEV)
  			pos = omap_get_dma_src_pos(c->dma_ch);
  		else if (d->dir == DMA_DEV_TO_MEM)
  			pos = omap_get_dma_dst_pos(c->dma_ch);
  		else
  			pos = 0;
  
  		txstate->residue = omap_dma_desc_size_pos(d, pos);
  	} else {
  		txstate->residue = 0;
  	}
  	spin_unlock_irqrestore(&c->vc.lock, flags);
  
  	return ret;
  }
  
  static void omap_dma_issue_pending(struct dma_chan *chan)
  {
  	struct omap_chan *c = to_omap_dma_chan(chan);
  	unsigned long flags;
  
  	spin_lock_irqsave(&c->vc.lock, flags);
  	if (vchan_issue_pending(&c->vc) && !c->desc) {
  		/*
  		 * c->cyclic is used only by audio and in this case the DMA need
  		 * to be started without delay.
  		 */
  		if (!c->cyclic) {
  			struct omap_dmadev *d = to_omap_dma_dev(chan->device);
  			spin_lock(&d->lock);
  			if (list_empty(&c->node))
  				list_add_tail(&c->node, &d->pending);
  			spin_unlock(&d->lock);
  			tasklet_schedule(&d->task);
  		} else {
  			omap_dma_start_desc(c);
  		}
  	}
  	spin_unlock_irqrestore(&c->vc.lock, flags);
  }
  
  static struct dma_async_tx_descriptor *omap_dma_prep_slave_sg(
  	struct dma_chan *chan, struct scatterlist *sgl, unsigned sglen,
  	enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
  {
  	struct omap_chan *c = to_omap_dma_chan(chan);
  	enum dma_slave_buswidth dev_width;
  	struct scatterlist *sgent;
  	struct omap_desc *d;
  	dma_addr_t dev_addr;
  	unsigned i, j = 0, es, en, frame_bytes, sync_type;
  	u32 burst;
  
  	if (dir == DMA_DEV_TO_MEM) {
  		dev_addr = c->cfg.src_addr;
  		dev_width = c->cfg.src_addr_width;
  		burst = c->cfg.src_maxburst;
  		sync_type = OMAP_DMA_SRC_SYNC;
  	} else if (dir == DMA_MEM_TO_DEV) {
  		dev_addr = c->cfg.dst_addr;
  		dev_width = c->cfg.dst_addr_width;
  		burst = c->cfg.dst_maxburst;
  		sync_type = OMAP_DMA_DST_SYNC;
  	} else {
  		dev_err(chan->device->dev, "%s: bad direction?
  ", __func__);
  		return NULL;
  	}
  
  	/* Bus width translates to the element size (ES) */
  	switch (dev_width) {
  	case DMA_SLAVE_BUSWIDTH_1_BYTE:
  		es = OMAP_DMA_DATA_TYPE_S8;
  		break;
  	case DMA_SLAVE_BUSWIDTH_2_BYTES:
  		es = OMAP_DMA_DATA_TYPE_S16;
  		break;
  	case DMA_SLAVE_BUSWIDTH_4_BYTES:
  		es = OMAP_DMA_DATA_TYPE_S32;
  		break;
  	default: /* not reached */
  		return NULL;
  	}
  
  	/* Now allocate and setup the descriptor. */
  	d = kzalloc(sizeof(*d) + sglen * sizeof(d->sg[0]), GFP_ATOMIC);
  	if (!d)
  		return NULL;
  
  	d->dir = dir;
  	d->dev_addr = dev_addr;
  	d->es = es;
  	d->sync_mode = OMAP_DMA_SYNC_FRAME;
  	d->sync_type = sync_type;
  	d->periph_port = OMAP_DMA_PORT_TIPB;
  
  	/*
  	 * Build our scatterlist entries: each contains the address,
  	 * the number of elements (EN) in each frame, and the number of
  	 * frames (FN).  Number of bytes for this entry = ES * EN * FN.
  	 *
  	 * Burst size translates to number of elements with frame sync.
  	 * Note: DMA engine defines burst to be the number of dev-width
  	 * transfers.
  	 */
  	en = burst;
  	frame_bytes = es_bytes[es] * en;
  	for_each_sg(sgl, sgent, sglen, i) {
  		d->sg[j].addr = sg_dma_address(sgent);
  		d->sg[j].en = en;
  		d->sg[j].fn = sg_dma_len(sgent) / frame_bytes;
  		j++;
  	}
  
  	d->sglen = j;
  
  	return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
  }
  
  static struct dma_async_tx_descriptor *omap_dma_prep_dma_cyclic(
  	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
  	size_t period_len, enum dma_transfer_direction dir, unsigned long flags,
  	void *context)
  {
  	struct omap_chan *c = to_omap_dma_chan(chan);
  	enum dma_slave_buswidth dev_width;
  	struct omap_desc *d;
  	dma_addr_t dev_addr;
  	unsigned es, sync_type;
  	u32 burst;
  
  	if (dir == DMA_DEV_TO_MEM) {
  		dev_addr = c->cfg.src_addr;
  		dev_width = c->cfg.src_addr_width;
  		burst = c->cfg.src_maxburst;
  		sync_type = OMAP_DMA_SRC_SYNC;
  	} else if (dir == DMA_MEM_TO_DEV) {
  		dev_addr = c->cfg.dst_addr;
  		dev_width = c->cfg.dst_addr_width;
  		burst = c->cfg.dst_maxburst;
  		sync_type = OMAP_DMA_DST_SYNC;
  	} else {
  		dev_err(chan->device->dev, "%s: bad direction?
  ", __func__);
  		return NULL;
  	}
  
  	/* Bus width translates to the element size (ES) */
  	switch (dev_width) {
  	case DMA_SLAVE_BUSWIDTH_1_BYTE:
  		es = OMAP_DMA_DATA_TYPE_S8;
  		break;
  	case DMA_SLAVE_BUSWIDTH_2_BYTES:
  		es = OMAP_DMA_DATA_TYPE_S16;
  		break;
  	case DMA_SLAVE_BUSWIDTH_4_BYTES:
  		es = OMAP_DMA_DATA_TYPE_S32;
  		break;
  	default: /* not reached */
  		return NULL;
  	}
  
  	/* Now allocate and setup the descriptor. */
  	d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
  	if (!d)
  		return NULL;
  
  	d->dir = dir;
  	d->dev_addr = dev_addr;
  	d->fi = burst;
  	d->es = es;
  	if (burst)
  		d->sync_mode = OMAP_DMA_SYNC_PACKET;
  	else
  		d->sync_mode = OMAP_DMA_SYNC_ELEMENT;
  	d->sync_type = sync_type;
  	d->periph_port = OMAP_DMA_PORT_MPUI;
  	d->sg[0].addr = buf_addr;
  	d->sg[0].en = period_len / es_bytes[es];
  	d->sg[0].fn = buf_len / period_len;
  	d->sglen = 1;
  
  	if (!c->cyclic) {
  		c->cyclic = true;
  		omap_dma_link_lch(c->dma_ch, c->dma_ch);
  
  		if (flags & DMA_PREP_INTERRUPT)
  			omap_enable_dma_irq(c->dma_ch, OMAP_DMA_FRAME_IRQ);
  
  		omap_disable_dma_irq(c->dma_ch, OMAP_DMA_BLOCK_IRQ);
  	}
  
  	if (dma_omap2plus()) {
  		omap_set_dma_src_burst_mode(c->dma_ch, OMAP_DMA_DATA_BURST_16);
  		omap_set_dma_dest_burst_mode(c->dma_ch, OMAP_DMA_DATA_BURST_16);
  	}
  
  	return vchan_tx_prep(&c->vc, &d->vd, flags);
  }
  
  static int omap_dma_slave_config(struct omap_chan *c, struct dma_slave_config *cfg)
  {
  	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
  	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
  		return -EINVAL;
  
  	memcpy(&c->cfg, cfg, sizeof(c->cfg));
  
  	return 0;
  }
  
  static int omap_dma_terminate_all(struct omap_chan *c)
  {
  	struct omap_dmadev *d = to_omap_dma_dev(c->vc.chan.device);
  	unsigned long flags;
  	LIST_HEAD(head);
  
  	spin_lock_irqsave(&c->vc.lock, flags);
  
  	/* Prevent this channel being scheduled */
  	spin_lock(&d->lock);
  	list_del_init(&c->node);
  	spin_unlock(&d->lock);
  
  	/*
  	 * Stop DMA activity: we assume the callback will not be called
  	 * after omap_stop_dma() returns (even if it does, it will see
  	 * c->desc is NULL and exit.)
  	 */
  	if (c->desc) {
  		c->desc = NULL;
  		/* Avoid stopping the dma twice */
  		if (!c->paused)
  			omap_stop_dma(c->dma_ch);
  	}
  
  	if (c->cyclic) {
  		c->cyclic = false;
  		c->paused = false;
  		omap_dma_unlink_lch(c->dma_ch, c->dma_ch);
  	}
  
  	vchan_get_all_descriptors(&c->vc, &head);
  	spin_unlock_irqrestore(&c->vc.lock, flags);
  	vchan_dma_desc_free_list(&c->vc, &head);
  
  	return 0;
  }
  
  static int omap_dma_pause(struct omap_chan *c)
  {
  	/* Pause/Resume only allowed with cyclic mode */
  	if (!c->cyclic)
  		return -EINVAL;
  
  	if (!c->paused) {
  		omap_stop_dma(c->dma_ch);
  		c->paused = true;
  	}
  
  	return 0;
  }
  
  static int omap_dma_resume(struct omap_chan *c)
  {
  	/* Pause/Resume only allowed with cyclic mode */
  	if (!c->cyclic)
  		return -EINVAL;
  
  	if (c->paused) {
  		omap_start_dma(c->dma_ch);
  		c->paused = false;
  	}
  
  	return 0;
  }
  
  static int omap_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  	unsigned long arg)
  {
  	struct omap_chan *c = to_omap_dma_chan(chan);
  	int ret;
  
  	switch (cmd) {
  	case DMA_SLAVE_CONFIG:
  		ret = omap_dma_slave_config(c, (struct dma_slave_config *)arg);
  		break;
  
  	case DMA_TERMINATE_ALL:
  		ret = omap_dma_terminate_all(c);
  		break;
  
  	case DMA_PAUSE:
  		ret = omap_dma_pause(c);
  		break;
  
  	case DMA_RESUME:
  		ret = omap_dma_resume(c);
  		break;
  
  	default:
  		ret = -ENXIO;
  		break;
  	}
  
  	return ret;
  }
  
  static int omap_dma_chan_init(struct omap_dmadev *od, int dma_sig)
  {
  	struct omap_chan *c;
  
  	c = kzalloc(sizeof(*c), GFP_KERNEL);
  	if (!c)
  		return -ENOMEM;
  
  	c->dma_sig = dma_sig;
  	c->vc.desc_free = omap_dma_desc_free;
  	vchan_init(&c->vc, &od->ddev);
  	INIT_LIST_HEAD(&c->node);
  
  	od->ddev.chancnt++;
  
  	return 0;
  }
  
  static void omap_dma_free(struct omap_dmadev *od)
  {
  	tasklet_kill(&od->task);
  	while (!list_empty(&od->ddev.channels)) {
  		struct omap_chan *c = list_first_entry(&od->ddev.channels,
  			struct omap_chan, vc.chan.device_node);
  
  		list_del(&c->vc.chan.device_node);
  		tasklet_kill(&c->vc.task);
  		kfree(c);
  	}
  	kfree(od);
  }
  
  static int omap_dma_probe(struct platform_device *pdev)
  {
  	struct omap_dmadev *od;
  	int rc, i;
  
  	od = kzalloc(sizeof(*od), GFP_KERNEL);
  	if (!od)
  		return -ENOMEM;
  
  	dma_cap_set(DMA_SLAVE, od->ddev.cap_mask);
  	dma_cap_set(DMA_CYCLIC, od->ddev.cap_mask);
  	od->ddev.device_alloc_chan_resources = omap_dma_alloc_chan_resources;
  	od->ddev.device_free_chan_resources = omap_dma_free_chan_resources;
  	od->ddev.device_tx_status = omap_dma_tx_status;
  	od->ddev.device_issue_pending = omap_dma_issue_pending;
  	od->ddev.device_prep_slave_sg = omap_dma_prep_slave_sg;
  	od->ddev.device_prep_dma_cyclic = omap_dma_prep_dma_cyclic;
  	od->ddev.device_control = omap_dma_control;
  	od->ddev.dev = &pdev->dev;
  	INIT_LIST_HEAD(&od->ddev.channels);
  	INIT_LIST_HEAD(&od->pending);
  	spin_lock_init(&od->lock);
  
  	tasklet_init(&od->task, omap_dma_sched, (unsigned long)od);
  
  	for (i = 0; i < 127; i++) {
  		rc = omap_dma_chan_init(od, i);
  		if (rc) {
  			omap_dma_free(od);
  			return rc;
  		}
  	}
  
  	rc = dma_async_device_register(&od->ddev);
  	if (rc) {
  		pr_warn("OMAP-DMA: failed to register slave DMA engine device: %d
  ",
  			rc);
  		omap_dma_free(od);
  		return rc;
  	}
  
  	platform_set_drvdata(pdev, od);
  
  	if (pdev->dev.of_node) {
  		omap_dma_info.dma_cap = od->ddev.cap_mask;
  
  		/* Device-tree DMA controller registration */
  		rc = of_dma_controller_register(pdev->dev.of_node,
  				of_dma_simple_xlate, &omap_dma_info);
  		if (rc) {
  			pr_warn("OMAP-DMA: failed to register DMA controller
  ");
  			dma_async_device_unregister(&od->ddev);
  			omap_dma_free(od);
  		}
  	}
  
  	dev_info(&pdev->dev, "OMAP DMA engine driver
  ");
  
  	return rc;
  }
  
  static int omap_dma_remove(struct platform_device *pdev)
  {
  	struct omap_dmadev *od = platform_get_drvdata(pdev);
  
  	if (pdev->dev.of_node)
  		of_dma_controller_free(pdev->dev.of_node);
  
  	dma_async_device_unregister(&od->ddev);
  	omap_dma_free(od);
  
  	return 0;
  }
  
  static const struct of_device_id omap_dma_match[] = {
  	{ .compatible = "ti,omap2420-sdma", },
  	{ .compatible = "ti,omap2430-sdma", },
  	{ .compatible = "ti,omap3430-sdma", },
  	{ .compatible = "ti,omap3630-sdma", },
  	{ .compatible = "ti,omap4430-sdma", },
  	{},
  };
  MODULE_DEVICE_TABLE(of, omap_dma_match);
  
  static struct platform_driver omap_dma_driver = {
  	.probe	= omap_dma_probe,
  	.remove	= omap_dma_remove,
  	.driver = {
  		.name = "omap-dma-engine",
  		.owner = THIS_MODULE,
  		.of_match_table = of_match_ptr(omap_dma_match),
  	},
  };
  
  bool omap_dma_filter_fn(struct dma_chan *chan, void *param)
  {
  	if (chan->device->dev->driver == &omap_dma_driver.driver) {
  		struct omap_chan *c = to_omap_dma_chan(chan);
  		unsigned req = *(unsigned *)param;
  
  		return req == c->dma_sig;
  	}
  	return false;
  }
  EXPORT_SYMBOL_GPL(omap_dma_filter_fn);
  
  static int omap_dma_init(void)
  {
  	return platform_driver_register(&omap_dma_driver);
  }
  subsys_initcall(omap_dma_init);
  
  static void __exit omap_dma_exit(void)
  {
  	platform_driver_unregister(&omap_dma_driver);
  }
  module_exit(omap_dma_exit);
  
  MODULE_AUTHOR("Russell King");
  MODULE_LICENSE("GPL");