Blame view

kernel/linux-imx6_3.14.28/drivers/iio/adc/nau7802.c 14 KB
6b13f685e   김민수   BSP 최초 추가
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
  /*
   * Driver for the Nuvoton NAU7802 ADC
   *
   * Copyright 2013 Free Electrons
   *
   * Licensed under the GPLv2 or later.
   */
  
  #include <linux/delay.h>
  #include <linux/i2c.h>
  #include <linux/interrupt.h>
  #include <linux/module.h>
  #include <linux/wait.h>
  #include <linux/log2.h>
  #include <linux/of.h>
  
  #include <linux/iio/iio.h>
  #include <linux/iio/sysfs.h>
  
  #define NAU7802_REG_PUCTRL	0x00
  #define NAU7802_PUCTRL_RR(x)		(x << 0)
  #define NAU7802_PUCTRL_RR_BIT		NAU7802_PUCTRL_RR(1)
  #define NAU7802_PUCTRL_PUD(x)		(x << 1)
  #define NAU7802_PUCTRL_PUD_BIT		NAU7802_PUCTRL_PUD(1)
  #define NAU7802_PUCTRL_PUA(x)		(x << 2)
  #define NAU7802_PUCTRL_PUA_BIT		NAU7802_PUCTRL_PUA(1)
  #define NAU7802_PUCTRL_PUR(x)		(x << 3)
  #define NAU7802_PUCTRL_PUR_BIT		NAU7802_PUCTRL_PUR(1)
  #define NAU7802_PUCTRL_CS(x)		(x << 4)
  #define NAU7802_PUCTRL_CS_BIT		NAU7802_PUCTRL_CS(1)
  #define NAU7802_PUCTRL_CR(x)		(x << 5)
  #define NAU7802_PUCTRL_CR_BIT		NAU7802_PUCTRL_CR(1)
  #define NAU7802_PUCTRL_AVDDS(x)		(x << 7)
  #define NAU7802_PUCTRL_AVDDS_BIT	NAU7802_PUCTRL_AVDDS(1)
  #define NAU7802_REG_CTRL1	0x01
  #define NAU7802_CTRL1_VLDO(x)		(x << 3)
  #define NAU7802_CTRL1_GAINS(x)		(x)
  #define NAU7802_CTRL1_GAINS_BITS	0x07
  #define NAU7802_REG_CTRL2	0x02
  #define NAU7802_CTRL2_CHS(x)		(x << 7)
  #define NAU7802_CTRL2_CRS(x)		(x << 4)
  #define NAU7802_SAMP_FREQ_320	0x07
  #define NAU7802_CTRL2_CHS_BIT		NAU7802_CTRL2_CHS(1)
  #define NAU7802_REG_ADC_B2	0x12
  #define NAU7802_REG_ADC_B1	0x13
  #define NAU7802_REG_ADC_B0	0x14
  #define NAU7802_REG_ADC_CTRL	0x15
  
  #define NAU7802_MIN_CONVERSIONS 6
  
  struct nau7802_state {
  	struct i2c_client	*client;
  	s32			last_value;
  	struct mutex		lock;
  	struct mutex		data_lock;
  	u32			vref_mv;
  	u32			conversion_count;
  	u32			min_conversions;
  	u8			sample_rate;
  	u32			scale_avail[8];
  	struct completion	value_ok;
  };
  
  #define NAU7802_CHANNEL(chan) {					\
  	.type = IIO_VOLTAGE,					\
  	.indexed = 1,						\
  	.channel = (chan),					\
  	.scan_index = (chan),					\
  	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),		\
  	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |	\
  				BIT(IIO_CHAN_INFO_SAMP_FREQ)	\
  }
  
  static const struct iio_chan_spec nau7802_chan_array[] = {
  	NAU7802_CHANNEL(0),
  	NAU7802_CHANNEL(1),
  };
  
  static const u16 nau7802_sample_freq_avail[] = {10, 20, 40, 80,
  						10, 10, 10, 320};
  
  static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("10 40 80 320");
  
  static struct attribute *nau7802_attributes[] = {
  	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
  	NULL
  };
  
  static const struct attribute_group nau7802_attribute_group = {
  	.attrs = nau7802_attributes,
  };
  
  static int nau7802_set_gain(struct nau7802_state *st, int gain)
  {
  	int ret;
  
  	mutex_lock(&st->lock);
  	st->conversion_count = 0;
  
  	ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL1);
  	if (ret < 0)
  		goto nau7802_sysfs_set_gain_out;
  	ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL1,
  					(ret & (~NAU7802_CTRL1_GAINS_BITS)) |
  					gain);
  
  nau7802_sysfs_set_gain_out:
  	mutex_unlock(&st->lock);
  
  	return ret;
  }
  
  static int nau7802_read_conversion(struct nau7802_state *st)
  {
  	int data;
  
  	mutex_lock(&st->data_lock);
  	data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B2);
  	if (data < 0)
  		goto nau7802_read_conversion_out;
  	st->last_value = data << 16;
  
  	data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B1);
  	if (data < 0)
  		goto nau7802_read_conversion_out;
  	st->last_value |= data << 8;
  
  	data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B0);
  	if (data < 0)
  		goto nau7802_read_conversion_out;
  	st->last_value |= data;
  
  	st->last_value = sign_extend32(st->last_value, 23);
  
  nau7802_read_conversion_out:
  	mutex_unlock(&st->data_lock);
  
  	return data;
  }
  
  /*
   * Conversions are synchronised on the rising edge of NAU7802_PUCTRL_CS_BIT
   */
  static int nau7802_sync(struct nau7802_state *st)
  {
  	int ret;
  
  	ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
  	if (ret < 0)
  		return ret;
  	ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL,
  				ret | NAU7802_PUCTRL_CS_BIT);
  
  	return ret;
  }
  
  static irqreturn_t nau7802_eoc_trigger(int irq, void *private)
  {
  	struct iio_dev *indio_dev = private;
  	struct nau7802_state *st = iio_priv(indio_dev);
  	int status;
  
  	status = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
  	if (status < 0)
  		return IRQ_HANDLED;
  
  	if (!(status & NAU7802_PUCTRL_CR_BIT))
  		return IRQ_NONE;
  
  	if (nau7802_read_conversion(st) < 0)
  		return IRQ_HANDLED;
  
  	/*
  	 * Because there is actually only one ADC for both channels, we have to
  	 * wait for enough conversions to happen before getting a significant
  	 * value when changing channels and the values are far apart.
  	 */
  	if (st->conversion_count < NAU7802_MIN_CONVERSIONS)
  		st->conversion_count++;
  	if (st->conversion_count >= NAU7802_MIN_CONVERSIONS)
  		complete_all(&st->value_ok);
  
  	return IRQ_HANDLED;
  }
  
  static int nau7802_read_irq(struct iio_dev *indio_dev,
  			struct iio_chan_spec const *chan,
  			int *val)
  {
  	struct nau7802_state *st = iio_priv(indio_dev);
  	int ret;
  
  	reinit_completion(&st->value_ok);
  	enable_irq(st->client->irq);
  
  	nau7802_sync(st);
  
  	/* read registers to ensure we flush everything */
  	ret = nau7802_read_conversion(st);
  	if (ret < 0)
  		goto read_chan_info_failure;
  
  	/* Wait for a conversion to finish */
  	ret = wait_for_completion_interruptible_timeout(&st->value_ok,
  			msecs_to_jiffies(1000));
  	if (ret == 0)
  		ret = -ETIMEDOUT;
  
  	if (ret < 0)
  		goto read_chan_info_failure;
  
  	disable_irq(st->client->irq);
  
  	*val = st->last_value;
  
  	return IIO_VAL_INT;
  
  read_chan_info_failure:
  	disable_irq(st->client->irq);
  
  	return ret;
  }
  
  static int nau7802_read_poll(struct iio_dev *indio_dev,
  			struct iio_chan_spec const *chan,
  			int *val)
  {
  	struct nau7802_state *st = iio_priv(indio_dev);
  	int ret;
  
  	nau7802_sync(st);
  
  	/* read registers to ensure we flush everything */
  	ret = nau7802_read_conversion(st);
  	if (ret < 0)
  		return ret;
  
  	/*
  	 * Because there is actually only one ADC for both channels, we have to
  	 * wait for enough conversions to happen before getting a significant
  	 * value when changing channels and the values are far appart.
  	 */
  	do {
  		ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
  		if (ret < 0)
  			return ret;
  
  		while (!(ret & NAU7802_PUCTRL_CR_BIT)) {
  			if (st->sample_rate != NAU7802_SAMP_FREQ_320)
  				msleep(20);
  			else
  				mdelay(4);
  			ret = i2c_smbus_read_byte_data(st->client,
  							NAU7802_REG_PUCTRL);
  			if (ret < 0)
  				return ret;
  		}
  
  		ret = nau7802_read_conversion(st);
  		if (ret < 0)
  			return ret;
  		if (st->conversion_count < NAU7802_MIN_CONVERSIONS)
  			st->conversion_count++;
  	} while (st->conversion_count < NAU7802_MIN_CONVERSIONS);
  
  	*val = st->last_value;
  
  	return IIO_VAL_INT;
  }
  
  static int nau7802_read_raw(struct iio_dev *indio_dev,
  			    struct iio_chan_spec const *chan,
  			    int *val, int *val2, long mask)
  {
  	struct nau7802_state *st = iio_priv(indio_dev);
  	int ret;
  
  	switch (mask) {
  	case IIO_CHAN_INFO_RAW:
  		mutex_lock(&st->lock);
  		/*
  		 * Select the channel to use
  		 *   - Channel 1 is value 0 in the CHS register
  		 *   - Channel 2 is value 1 in the CHS register
  		 */
  		ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL2);
  		if (ret < 0) {
  			mutex_unlock(&st->lock);
  			return ret;
  		}
  
  		if (((ret & NAU7802_CTRL2_CHS_BIT) && !chan->channel) ||
  				(!(ret & NAU7802_CTRL2_CHS_BIT) &&
  				 chan->channel)) {
  			st->conversion_count = 0;
  			ret = i2c_smbus_write_byte_data(st->client,
  					NAU7802_REG_CTRL2,
  					NAU7802_CTRL2_CHS(chan->channel) |
  					NAU7802_CTRL2_CRS(st->sample_rate));
  
  			if (ret < 0) {
  				mutex_unlock(&st->lock);
  				return ret;
  			}
  		}
  
  		if (st->client->irq)
  			ret = nau7802_read_irq(indio_dev, chan, val);
  		else
  			ret = nau7802_read_poll(indio_dev, chan, val);
  
  		mutex_unlock(&st->lock);
  		return ret;
  
  	case IIO_CHAN_INFO_SCALE:
  		ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL1);
  		if (ret < 0)
  			return ret;
  
  		/*
  		 * We have 24 bits of signed data, that means 23 bits of data
  		 * plus the sign bit
  		 */
  		*val = st->vref_mv;
  		*val2 = 23 + (ret & NAU7802_CTRL1_GAINS_BITS);
  
  		return IIO_VAL_FRACTIONAL_LOG2;
  
  	case IIO_CHAN_INFO_SAMP_FREQ:
  		*val =  nau7802_sample_freq_avail[st->sample_rate];
  		*val2 = 0;
  		return IIO_VAL_INT;
  
  	default:
  		break;
  	}
  
  	return -EINVAL;
  }
  
  static int nau7802_write_raw(struct iio_dev *indio_dev,
  			     struct iio_chan_spec const *chan,
  			     int val, int val2, long mask)
  {
  	struct nau7802_state *st = iio_priv(indio_dev);
  	int i, ret;
  
  	switch (mask) {
  	case IIO_CHAN_INFO_SCALE:
  		for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++)
  			if (val2 == st->scale_avail[i])
  				return nau7802_set_gain(st, i);
  
  		break;
  
  	case IIO_CHAN_INFO_SAMP_FREQ:
  		for (i = 0; i < ARRAY_SIZE(nau7802_sample_freq_avail); i++)
  			if (val == nau7802_sample_freq_avail[i]) {
  				mutex_lock(&st->lock);
  				st->sample_rate = i;
  				st->conversion_count = 0;
  				ret = i2c_smbus_write_byte_data(st->client,
  					NAU7802_REG_CTRL2,
  					NAU7802_CTRL2_CRS(st->sample_rate));
  				mutex_unlock(&st->lock);
  				return ret;
  			}
  
  		break;
  
  	default:
  		break;
  	}
  
  	return -EINVAL;
  }
  
  static int nau7802_write_raw_get_fmt(struct iio_dev *indio_dev,
  				     struct iio_chan_spec const *chan,
  				     long mask)
  {
  	return IIO_VAL_INT_PLUS_NANO;
  }
  
  static const struct iio_info nau7802_info = {
  	.driver_module = THIS_MODULE,
  	.read_raw = &nau7802_read_raw,
  	.write_raw = &nau7802_write_raw,
  	.write_raw_get_fmt = nau7802_write_raw_get_fmt,
  	.attrs = &nau7802_attribute_group,
  };
  
  static int nau7802_probe(struct i2c_client *client,
  			const struct i2c_device_id *id)
  {
  	struct iio_dev *indio_dev;
  	struct nau7802_state *st;
  	struct device_node *np = client->dev.of_node;
  	int i, ret;
  	u8 data;
  	u32 tmp = 0;
  
  	if (!client->dev.of_node) {
  		dev_err(&client->dev, "No device tree node available.
  ");
  		return -EINVAL;
  	}
  
  	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*st));
  	if (indio_dev == NULL)
  		return -ENOMEM;
  
  	st = iio_priv(indio_dev);
  
  	i2c_set_clientdata(client, indio_dev);
  
  	indio_dev->dev.parent = &client->dev;
  	indio_dev->name = dev_name(&client->dev);
  	indio_dev->modes = INDIO_DIRECT_MODE;
  	indio_dev->info = &nau7802_info;
  
  	st->client = client;
  
  	/* Reset the device */
  	ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL,
  				  NAU7802_PUCTRL_RR_BIT);
  	if (ret < 0)
  		return ret;
  
  	/* Enter normal operation mode */
  	ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL,
  				  NAU7802_PUCTRL_PUD_BIT);
  	if (ret < 0)
  		return ret;
  
  	/*
  	 * After about 200 usecs, the device should be ready and then
  	 * the Power Up bit will be set to 1. If not, wait for it.
  	 */
  	udelay(210);
  	ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
  	if (ret < 0)
  		return ret;
  	if (!(ret & NAU7802_PUCTRL_PUR_BIT))
  		return ret;
  
  	of_property_read_u32(np, "nuvoton,vldo", &tmp);
  	st->vref_mv = tmp;
  
  	data = NAU7802_PUCTRL_PUD_BIT | NAU7802_PUCTRL_PUA_BIT |
  		NAU7802_PUCTRL_CS_BIT;
  	if (tmp >= 2400)
  		data |= NAU7802_PUCTRL_AVDDS_BIT;
  
  	ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL, data);
  	if (ret < 0)
  		return ret;
  	ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_ADC_CTRL, 0x30);
  	if (ret < 0)
  		return ret;
  
  	if (tmp >= 2400) {
  		data = NAU7802_CTRL1_VLDO((4500 - tmp) / 300);
  		ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL1,
  						data);
  		if (ret < 0)
  			return ret;
  	}
  
  	/* Populate available ADC input ranges */
  	for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++)
  		st->scale_avail[i] = (((u64)st->vref_mv) * 1000000000ULL)
  					   >> (23 + i);
  
  	init_completion(&st->value_ok);
  
  	/*
  	 * The ADC fires continuously and we can't do anything about
  	 * it. So we need to have the IRQ disabled by default, and we
  	 * will enable them back when we will need them..
  	 */
  	if (client->irq) {
  		ret = request_threaded_irq(client->irq,
  				NULL,
  				nau7802_eoc_trigger,
  				IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
  				client->dev.driver->name,
  				indio_dev);
  		if (ret) {
  			/*
  			 * What may happen here is that our IRQ controller is
  			 * not able to get level interrupt but this is required
  			 * by this ADC as when going over 40 sample per second,
  			 * the interrupt line may stay high between conversions.
  			 * So, we continue no matter what but we switch to
  			 * polling mode.
  			 */
  			dev_info(&client->dev,
  				"Failed to allocate IRQ, using polling mode
  ");
  			client->irq = 0;
  		} else
  			disable_irq(client->irq);
  	}
  
  	if (!client->irq) {
  		/*
  		 * We are polling, use the fastest sample rate by
  		 * default
  		 */
  		st->sample_rate = NAU7802_SAMP_FREQ_320;
  		ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL2,
  					  NAU7802_CTRL2_CRS(st->sample_rate));
  		if (ret)
  			goto error_free_irq;
  	}
  
  	/* Setup the ADC channels available on the board */
  	indio_dev->num_channels = ARRAY_SIZE(nau7802_chan_array);
  	indio_dev->channels = nau7802_chan_array;
  
  	mutex_init(&st->lock);
  	mutex_init(&st->data_lock);
  
  	ret = iio_device_register(indio_dev);
  	if (ret < 0) {
  		dev_err(&client->dev, "Couldn't register the device.
  ");
  		goto error_device_register;
  	}
  
  	return 0;
  
  error_device_register:
  	mutex_destroy(&st->lock);
  	mutex_destroy(&st->data_lock);
  error_free_irq:
  	if (client->irq)
  		free_irq(client->irq, indio_dev);
  
  	return ret;
  }
  
  static int nau7802_remove(struct i2c_client *client)
  {
  	struct iio_dev *indio_dev = i2c_get_clientdata(client);
  	struct nau7802_state *st = iio_priv(indio_dev);
  
  	iio_device_unregister(indio_dev);
  	mutex_destroy(&st->lock);
  	mutex_destroy(&st->data_lock);
  	if (client->irq)
  		free_irq(client->irq, indio_dev);
  
  	return 0;
  }
  
  static const struct i2c_device_id nau7802_i2c_id[] = {
  	{ "nau7802", 0 },
  	{ }
  };
  MODULE_DEVICE_TABLE(i2c, nau7802_i2c_id);
  
  static const struct of_device_id nau7802_dt_ids[] = {
  	{ .compatible = "nuvoton,nau7802" },
  	{},
  };
  MODULE_DEVICE_TABLE(of, nau7802_dt_ids);
  
  static struct i2c_driver nau7802_driver = {
  	.probe = nau7802_probe,
  	.remove = nau7802_remove,
  	.id_table = nau7802_i2c_id,
  	.driver = {
  		   .name = "nau7802",
  		   .of_match_table = nau7802_dt_ids,
  	},
  };
  
  module_i2c_driver(nau7802_driver);
  
  MODULE_LICENSE("GPL");
  MODULE_DESCRIPTION("Nuvoton NAU7802 ADC Driver");
  MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
  MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");