Blame view

kernel/linux-imx6_3.14.28/drivers/crypto/nx/nx.c 19.3 KB
6b13f685e   김민수   BSP 최초 추가
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
  /**
   * Routines supporting the Power 7+ Nest Accelerators driver
   *
   * Copyright (C) 2011-2012 International Business Machines Inc.
   *
   * This program is free software; you can redistribute it and/or modify
   * it under the terms of the GNU General Public License as published by
   * the Free Software Foundation; version 2 only.
   *
   * This program is distributed in the hope that it will be useful,
   * but WITHOUT ANY WARRANTY; without even the implied warranty of
   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   * GNU General Public License for more details.
   *
   * You should have received a copy of the GNU General Public License
   * along with this program; if not, write to the Free Software
   * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
   *
   * Author: Kent Yoder <yoder1@us.ibm.com>
   */
  
  #include <crypto/internal/hash.h>
  #include <crypto/hash.h>
  #include <crypto/aes.h>
  #include <crypto/sha.h>
  #include <crypto/algapi.h>
  #include <crypto/scatterwalk.h>
  #include <linux/module.h>
  #include <linux/moduleparam.h>
  #include <linux/types.h>
  #include <linux/mm.h>
  #include <linux/crypto.h>
  #include <linux/scatterlist.h>
  #include <linux/device.h>
  #include <linux/of.h>
  #include <asm/hvcall.h>
  #include <asm/vio.h>
  
  #include "nx_csbcpb.h"
  #include "nx.h"
  
  
  /**
   * nx_hcall_sync - make an H_COP_OP hcall for the passed in op structure
   *
   * @nx_ctx: the crypto context handle
   * @op: PFO operation struct to pass in
   * @may_sleep: flag indicating the request can sleep
   *
   * Make the hcall, retrying while the hardware is busy. If we cannot yield
   * the thread, limit the number of retries to 10 here.
   */
  int nx_hcall_sync(struct nx_crypto_ctx *nx_ctx,
  		  struct vio_pfo_op    *op,
  		  u32                   may_sleep)
  {
  	int rc, retries = 10;
  	struct vio_dev *viodev = nx_driver.viodev;
  
  	atomic_inc(&(nx_ctx->stats->sync_ops));
  
  	do {
  		rc = vio_h_cop_sync(viodev, op);
  	} while (rc == -EBUSY && !may_sleep && retries--);
  
  	if (rc) {
  		dev_dbg(&viodev->dev, "vio_h_cop_sync failed: rc: %d "
  			"hcall rc: %ld
  ", rc, op->hcall_err);
  		atomic_inc(&(nx_ctx->stats->errors));
  		atomic_set(&(nx_ctx->stats->last_error), op->hcall_err);
  		atomic_set(&(nx_ctx->stats->last_error_pid), current->pid);
  	}
  
  	return rc;
  }
  
  /**
   * nx_build_sg_list - build an NX scatter list describing a single  buffer
   *
   * @sg_head: pointer to the first scatter list element to build
   * @start_addr: pointer to the linear buffer
   * @len: length of the data at @start_addr
   * @sgmax: the largest number of scatter list elements we're allowed to create
   *
   * This function will start writing nx_sg elements at @sg_head and keep
   * writing them until all of the data from @start_addr is described or
   * until sgmax elements have been written. Scatter list elements will be
   * created such that none of the elements describes a buffer that crosses a 4K
   * boundary.
   */
  struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head,
  			       u8           *start_addr,
  			       unsigned int  len,
  			       u32           sgmax)
  {
  	unsigned int sg_len = 0;
  	struct nx_sg *sg;
  	u64 sg_addr = (u64)start_addr;
  	u64 end_addr;
  
  	/* determine the start and end for this address range - slightly
  	 * different if this is in VMALLOC_REGION */
  	if (is_vmalloc_addr(start_addr))
  		sg_addr = page_to_phys(vmalloc_to_page(start_addr))
  			  + offset_in_page(sg_addr);
  	else
  		sg_addr = __pa(sg_addr);
  
  	end_addr = sg_addr + len;
  
  	/* each iteration will write one struct nx_sg element and add the
  	 * length of data described by that element to sg_len. Once @len bytes
  	 * have been described (or @sgmax elements have been written), the
  	 * loop ends. min_t is used to ensure @end_addr falls on the same page
  	 * as sg_addr, if not, we need to create another nx_sg element for the
  	 * data on the next page.
  	 *
  	 * Also when using vmalloc'ed data, every time that a system page
  	 * boundary is crossed the physical address needs to be re-calculated.
  	 */
  	for (sg = sg_head; sg_len < len; sg++) {
  		u64 next_page;
  
  		sg->addr = sg_addr;
  		sg_addr = min_t(u64, NX_PAGE_NUM(sg_addr + NX_PAGE_SIZE),
  				end_addr);
  
  		next_page = (sg->addr & PAGE_MASK) + PAGE_SIZE;
  		sg->len = min_t(u64, sg_addr, next_page) - sg->addr;
  		sg_len += sg->len;
  
  		if (sg_addr >= next_page &&
  				is_vmalloc_addr(start_addr + sg_len)) {
  			sg_addr = page_to_phys(vmalloc_to_page(
  						start_addr + sg_len));
  			end_addr = sg_addr + len - sg_len;
  		}
  
  		if ((sg - sg_head) == sgmax) {
  			pr_err("nx: scatter/gather list overflow, pid: %d
  ",
  			       current->pid);
  			return NULL;
  		}
  	}
  
  	/* return the moved sg_head pointer */
  	return sg;
  }
  
  /**
   * nx_walk_and_build - walk a linux scatterlist and build an nx scatterlist
   *
   * @nx_dst: pointer to the first nx_sg element to write
   * @sglen: max number of nx_sg entries we're allowed to write
   * @sg_src: pointer to the source linux scatterlist to walk
   * @start: number of bytes to fast-forward past at the beginning of @sg_src
   * @src_len: number of bytes to walk in @sg_src
   */
  struct nx_sg *nx_walk_and_build(struct nx_sg       *nx_dst,
  				unsigned int        sglen,
  				struct scatterlist *sg_src,
  				unsigned int        start,
  				unsigned int        src_len)
  {
  	struct scatter_walk walk;
  	struct nx_sg *nx_sg = nx_dst;
  	unsigned int n, offset = 0, len = src_len;
  	char *dst;
  
  	/* we need to fast forward through @start bytes first */
  	for (;;) {
  		scatterwalk_start(&walk, sg_src);
  
  		if (start < offset + sg_src->length)
  			break;
  
  		offset += sg_src->length;
  		sg_src = scatterwalk_sg_next(sg_src);
  	}
  
  	/* start - offset is the number of bytes to advance in the scatterlist
  	 * element we're currently looking at */
  	scatterwalk_advance(&walk, start - offset);
  
  	while (len && nx_sg) {
  		n = scatterwalk_clamp(&walk, len);
  		if (!n) {
  			scatterwalk_start(&walk, sg_next(walk.sg));
  			n = scatterwalk_clamp(&walk, len);
  		}
  		dst = scatterwalk_map(&walk);
  
  		nx_sg = nx_build_sg_list(nx_sg, dst, n, sglen);
  		len -= n;
  
  		scatterwalk_unmap(dst);
  		scatterwalk_advance(&walk, n);
  		scatterwalk_done(&walk, SCATTERWALK_FROM_SG, len);
  	}
  
  	/* return the moved destination pointer */
  	return nx_sg;
  }
  
  /**
   * nx_build_sg_lists - walk the input scatterlists and build arrays of NX
   *                     scatterlists based on them.
   *
   * @nx_ctx: NX crypto context for the lists we're building
   * @desc: the block cipher descriptor for the operation
   * @dst: destination scatterlist
   * @src: source scatterlist
   * @nbytes: length of data described in the scatterlists
   * @offset: number of bytes to fast-forward past at the beginning of
   *          scatterlists.
   * @iv: destination for the iv data, if the algorithm requires it
   *
   * This is common code shared by all the AES algorithms. It uses the block
   * cipher walk routines to traverse input and output scatterlists, building
   * corresponding NX scatterlists
   */
  int nx_build_sg_lists(struct nx_crypto_ctx  *nx_ctx,
  		      struct blkcipher_desc *desc,
  		      struct scatterlist    *dst,
  		      struct scatterlist    *src,
  		      unsigned int           nbytes,
  		      unsigned int           offset,
  		      u8                    *iv)
  {
  	struct nx_sg *nx_insg = nx_ctx->in_sg;
  	struct nx_sg *nx_outsg = nx_ctx->out_sg;
  
  	if (iv)
  		memcpy(iv, desc->info, AES_BLOCK_SIZE);
  
  	nx_insg = nx_walk_and_build(nx_insg, nx_ctx->ap->sglen, src,
  				    offset, nbytes);
  	nx_outsg = nx_walk_and_build(nx_outsg, nx_ctx->ap->sglen, dst,
  				    offset, nbytes);
  
  	/* these lengths should be negative, which will indicate to phyp that
  	 * the input and output parameters are scatterlists, not linear
  	 * buffers */
  	nx_ctx->op.inlen = (nx_ctx->in_sg - nx_insg) * sizeof(struct nx_sg);
  	nx_ctx->op.outlen = (nx_ctx->out_sg - nx_outsg) * sizeof(struct nx_sg);
  
  	return 0;
  }
  
  /**
   * nx_ctx_init - initialize an nx_ctx's vio_pfo_op struct
   *
   * @nx_ctx: the nx context to initialize
   * @function: the function code for the op
   */
  void nx_ctx_init(struct nx_crypto_ctx *nx_ctx, unsigned int function)
  {
  	spin_lock_init(&nx_ctx->lock);
  	memset(nx_ctx->kmem, 0, nx_ctx->kmem_len);
  	nx_ctx->csbcpb->csb.valid |= NX_CSB_VALID_BIT;
  
  	nx_ctx->op.flags = function;
  	nx_ctx->op.csbcpb = __pa(nx_ctx->csbcpb);
  	nx_ctx->op.in = __pa(nx_ctx->in_sg);
  	nx_ctx->op.out = __pa(nx_ctx->out_sg);
  
  	if (nx_ctx->csbcpb_aead) {
  		nx_ctx->csbcpb_aead->csb.valid |= NX_CSB_VALID_BIT;
  
  		nx_ctx->op_aead.flags = function;
  		nx_ctx->op_aead.csbcpb = __pa(nx_ctx->csbcpb_aead);
  		nx_ctx->op_aead.in = __pa(nx_ctx->in_sg);
  		nx_ctx->op_aead.out = __pa(nx_ctx->out_sg);
  	}
  }
  
  static void nx_of_update_status(struct device   *dev,
  			       struct property *p,
  			       struct nx_of    *props)
  {
  	if (!strncmp(p->value, "okay", p->length)) {
  		props->status = NX_WAITING;
  		props->flags |= NX_OF_FLAG_STATUS_SET;
  	} else {
  		dev_info(dev, "%s: status '%s' is not 'okay'
  ", __func__,
  			 (char *)p->value);
  	}
  }
  
  static void nx_of_update_sglen(struct device   *dev,
  			       struct property *p,
  			       struct nx_of    *props)
  {
  	if (p->length != sizeof(props->max_sg_len)) {
  		dev_err(dev, "%s: unexpected format for "
  			"ibm,max-sg-len property
  ", __func__);
  		dev_dbg(dev, "%s: ibm,max-sg-len is %d bytes "
  			"long, expected %zd bytes
  ", __func__,
  			p->length, sizeof(props->max_sg_len));
  		return;
  	}
  
  	props->max_sg_len = *(u32 *)p->value;
  	props->flags |= NX_OF_FLAG_MAXSGLEN_SET;
  }
  
  static void nx_of_update_msc(struct device   *dev,
  			     struct property *p,
  			     struct nx_of    *props)
  {
  	struct msc_triplet *trip;
  	struct max_sync_cop *msc;
  	unsigned int bytes_so_far, i, lenp;
  
  	msc = (struct max_sync_cop *)p->value;
  	lenp = p->length;
  
  	/* You can't tell if the data read in for this property is sane by its
  	 * size alone. This is because there are sizes embedded in the data
  	 * structure. The best we can do is check lengths as we parse and bail
  	 * as soon as a length error is detected. */
  	bytes_so_far = 0;
  
  	while ((bytes_so_far + sizeof(struct max_sync_cop)) <= lenp) {
  		bytes_so_far += sizeof(struct max_sync_cop);
  
  		trip = msc->trip;
  
  		for (i = 0;
  		     ((bytes_so_far + sizeof(struct msc_triplet)) <= lenp) &&
  		     i < msc->triplets;
  		     i++) {
  			if (msc->fc > NX_MAX_FC || msc->mode > NX_MAX_MODE) {
  				dev_err(dev, "unknown function code/mode "
  					"combo: %d/%d (ignored)
  ", msc->fc,
  					msc->mode);
  				goto next_loop;
  			}
  
  			switch (trip->keybitlen) {
  			case 128:
  			case 160:
  				props->ap[msc->fc][msc->mode][0].databytelen =
  					trip->databytelen;
  				props->ap[msc->fc][msc->mode][0].sglen =
  					trip->sglen;
  				break;
  			case 192:
  				props->ap[msc->fc][msc->mode][1].databytelen =
  					trip->databytelen;
  				props->ap[msc->fc][msc->mode][1].sglen =
  					trip->sglen;
  				break;
  			case 256:
  				if (msc->fc == NX_FC_AES) {
  					props->ap[msc->fc][msc->mode][2].
  						databytelen = trip->databytelen;
  					props->ap[msc->fc][msc->mode][2].sglen =
  						trip->sglen;
  				} else if (msc->fc == NX_FC_AES_HMAC ||
  					   msc->fc == NX_FC_SHA) {
  					props->ap[msc->fc][msc->mode][1].
  						databytelen = trip->databytelen;
  					props->ap[msc->fc][msc->mode][1].sglen =
  						trip->sglen;
  				} else {
  					dev_warn(dev, "unknown function "
  						"code/key bit len combo"
  						": (%u/256)
  ", msc->fc);
  				}
  				break;
  			case 512:
  				props->ap[msc->fc][msc->mode][2].databytelen =
  					trip->databytelen;
  				props->ap[msc->fc][msc->mode][2].sglen =
  					trip->sglen;
  				break;
  			default:
  				dev_warn(dev, "unknown function code/key bit "
  					 "len combo: (%u/%u)
  ", msc->fc,
  					 trip->keybitlen);
  				break;
  			}
  next_loop:
  			bytes_so_far += sizeof(struct msc_triplet);
  			trip++;
  		}
  
  		msc = (struct max_sync_cop *)trip;
  	}
  
  	props->flags |= NX_OF_FLAG_MAXSYNCCOP_SET;
  }
  
  /**
   * nx_of_init - read openFirmware values from the device tree
   *
   * @dev: device handle
   * @props: pointer to struct to hold the properties values
   *
   * Called once at driver probe time, this function will read out the
   * openFirmware properties we use at runtime. If all the OF properties are
   * acceptable, when we exit this function props->flags will indicate that
   * we're ready to register our crypto algorithms.
   */
  static void nx_of_init(struct device *dev, struct nx_of *props)
  {
  	struct device_node *base_node = dev->of_node;
  	struct property *p;
  
  	p = of_find_property(base_node, "status", NULL);
  	if (!p)
  		dev_info(dev, "%s: property 'status' not found
  ", __func__);
  	else
  		nx_of_update_status(dev, p, props);
  
  	p = of_find_property(base_node, "ibm,max-sg-len", NULL);
  	if (!p)
  		dev_info(dev, "%s: property 'ibm,max-sg-len' not found
  ",
  			 __func__);
  	else
  		nx_of_update_sglen(dev, p, props);
  
  	p = of_find_property(base_node, "ibm,max-sync-cop", NULL);
  	if (!p)
  		dev_info(dev, "%s: property 'ibm,max-sync-cop' not found
  ",
  			 __func__);
  	else
  		nx_of_update_msc(dev, p, props);
  }
  
  /**
   * nx_register_algs - register algorithms with the crypto API
   *
   * Called from nx_probe()
   *
   * If all OF properties are in an acceptable state, the driver flags will
   * indicate that we're ready and we'll create our debugfs files and register
   * out crypto algorithms.
   */
  static int nx_register_algs(void)
  {
  	int rc = -1;
  
  	if (nx_driver.of.flags != NX_OF_FLAG_MASK_READY)
  		goto out;
  
  	memset(&nx_driver.stats, 0, sizeof(struct nx_stats));
  
  	rc = NX_DEBUGFS_INIT(&nx_driver);
  	if (rc)
  		goto out;
  
  	nx_driver.of.status = NX_OKAY;
  
  	rc = crypto_register_alg(&nx_ecb_aes_alg);
  	if (rc)
  		goto out;
  
  	rc = crypto_register_alg(&nx_cbc_aes_alg);
  	if (rc)
  		goto out_unreg_ecb;
  
  	rc = crypto_register_alg(&nx_ctr_aes_alg);
  	if (rc)
  		goto out_unreg_cbc;
  
  	rc = crypto_register_alg(&nx_ctr3686_aes_alg);
  	if (rc)
  		goto out_unreg_ctr;
  
  	rc = crypto_register_alg(&nx_gcm_aes_alg);
  	if (rc)
  		goto out_unreg_ctr3686;
  
  	rc = crypto_register_alg(&nx_gcm4106_aes_alg);
  	if (rc)
  		goto out_unreg_gcm;
  
  	rc = crypto_register_alg(&nx_ccm_aes_alg);
  	if (rc)
  		goto out_unreg_gcm4106;
  
  	rc = crypto_register_alg(&nx_ccm4309_aes_alg);
  	if (rc)
  		goto out_unreg_ccm;
  
  	rc = crypto_register_shash(&nx_shash_sha256_alg);
  	if (rc)
  		goto out_unreg_ccm4309;
  
  	rc = crypto_register_shash(&nx_shash_sha512_alg);
  	if (rc)
  		goto out_unreg_s256;
  
  	rc = crypto_register_shash(&nx_shash_aes_xcbc_alg);
  	if (rc)
  		goto out_unreg_s512;
  
  	goto out;
  
  out_unreg_s512:
  	crypto_unregister_shash(&nx_shash_sha512_alg);
  out_unreg_s256:
  	crypto_unregister_shash(&nx_shash_sha256_alg);
  out_unreg_ccm4309:
  	crypto_unregister_alg(&nx_ccm4309_aes_alg);
  out_unreg_ccm:
  	crypto_unregister_alg(&nx_ccm_aes_alg);
  out_unreg_gcm4106:
  	crypto_unregister_alg(&nx_gcm4106_aes_alg);
  out_unreg_gcm:
  	crypto_unregister_alg(&nx_gcm_aes_alg);
  out_unreg_ctr3686:
  	crypto_unregister_alg(&nx_ctr3686_aes_alg);
  out_unreg_ctr:
  	crypto_unregister_alg(&nx_ctr_aes_alg);
  out_unreg_cbc:
  	crypto_unregister_alg(&nx_cbc_aes_alg);
  out_unreg_ecb:
  	crypto_unregister_alg(&nx_ecb_aes_alg);
  out:
  	return rc;
  }
  
  /**
   * nx_crypto_ctx_init - create and initialize a crypto api context
   *
   * @nx_ctx: the crypto api context
   * @fc: function code for the context
   * @mode: the function code specific mode for this context
   */
  static int nx_crypto_ctx_init(struct nx_crypto_ctx *nx_ctx, u32 fc, u32 mode)
  {
  	if (nx_driver.of.status != NX_OKAY) {
  		pr_err("Attempt to initialize NX crypto context while device "
  		       "is not available!
  ");
  		return -ENODEV;
  	}
  
  	/* we need an extra page for csbcpb_aead for these modes */
  	if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
  		nx_ctx->kmem_len = (4 * NX_PAGE_SIZE) +
  				   sizeof(struct nx_csbcpb);
  	else
  		nx_ctx->kmem_len = (3 * NX_PAGE_SIZE) +
  				   sizeof(struct nx_csbcpb);
  
  	nx_ctx->kmem = kmalloc(nx_ctx->kmem_len, GFP_KERNEL);
  	if (!nx_ctx->kmem)
  		return -ENOMEM;
  
  	/* the csbcpb and scatterlists must be 4K aligned pages */
  	nx_ctx->csbcpb = (struct nx_csbcpb *)(round_up((u64)nx_ctx->kmem,
  						       (u64)NX_PAGE_SIZE));
  	nx_ctx->in_sg = (struct nx_sg *)((u8 *)nx_ctx->csbcpb + NX_PAGE_SIZE);
  	nx_ctx->out_sg = (struct nx_sg *)((u8 *)nx_ctx->in_sg + NX_PAGE_SIZE);
  
  	if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
  		nx_ctx->csbcpb_aead =
  			(struct nx_csbcpb *)((u8 *)nx_ctx->out_sg +
  					     NX_PAGE_SIZE);
  
  	/* give each context a pointer to global stats and their OF
  	 * properties */
  	nx_ctx->stats = &nx_driver.stats;
  	memcpy(nx_ctx->props, nx_driver.of.ap[fc][mode],
  	       sizeof(struct alg_props) * 3);
  
  	return 0;
  }
  
  /* entry points from the crypto tfm initializers */
  int nx_crypto_ctx_aes_ccm_init(struct crypto_tfm *tfm)
  {
  	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
  				  NX_MODE_AES_CCM);
  }
  
  int nx_crypto_ctx_aes_gcm_init(struct crypto_tfm *tfm)
  {
  	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
  				  NX_MODE_AES_GCM);
  }
  
  int nx_crypto_ctx_aes_ctr_init(struct crypto_tfm *tfm)
  {
  	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
  				  NX_MODE_AES_CTR);
  }
  
  int nx_crypto_ctx_aes_cbc_init(struct crypto_tfm *tfm)
  {
  	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
  				  NX_MODE_AES_CBC);
  }
  
  int nx_crypto_ctx_aes_ecb_init(struct crypto_tfm *tfm)
  {
  	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
  				  NX_MODE_AES_ECB);
  }
  
  int nx_crypto_ctx_sha_init(struct crypto_tfm *tfm)
  {
  	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_SHA, NX_MODE_SHA);
  }
  
  int nx_crypto_ctx_aes_xcbc_init(struct crypto_tfm *tfm)
  {
  	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
  				  NX_MODE_AES_XCBC_MAC);
  }
  
  /**
   * nx_crypto_ctx_exit - destroy a crypto api context
   *
   * @tfm: the crypto transform pointer for the context
   *
   * As crypto API contexts are destroyed, this exit hook is called to free the
   * memory associated with it.
   */
  void nx_crypto_ctx_exit(struct crypto_tfm *tfm)
  {
  	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
  
  	kzfree(nx_ctx->kmem);
  	nx_ctx->csbcpb = NULL;
  	nx_ctx->csbcpb_aead = NULL;
  	nx_ctx->in_sg = NULL;
  	nx_ctx->out_sg = NULL;
  }
  
  static int nx_probe(struct vio_dev *viodev, const struct vio_device_id *id)
  {
  	dev_dbg(&viodev->dev, "driver probed: %s resource id: 0x%x
  ",
  		viodev->name, viodev->resource_id);
  
  	if (nx_driver.viodev) {
  		dev_err(&viodev->dev, "%s: Attempt to register more than one "
  			"instance of the hardware
  ", __func__);
  		return -EINVAL;
  	}
  
  	nx_driver.viodev = viodev;
  
  	nx_of_init(&viodev->dev, &nx_driver.of);
  
  	return nx_register_algs();
  }
  
  static int nx_remove(struct vio_dev *viodev)
  {
  	dev_dbg(&viodev->dev, "entering nx_remove for UA 0x%x
  ",
  		viodev->unit_address);
  
  	if (nx_driver.of.status == NX_OKAY) {
  		NX_DEBUGFS_FINI(&nx_driver);
  
  		crypto_unregister_alg(&nx_ccm_aes_alg);
  		crypto_unregister_alg(&nx_ccm4309_aes_alg);
  		crypto_unregister_alg(&nx_gcm_aes_alg);
  		crypto_unregister_alg(&nx_gcm4106_aes_alg);
  		crypto_unregister_alg(&nx_ctr_aes_alg);
  		crypto_unregister_alg(&nx_ctr3686_aes_alg);
  		crypto_unregister_alg(&nx_cbc_aes_alg);
  		crypto_unregister_alg(&nx_ecb_aes_alg);
  		crypto_unregister_shash(&nx_shash_sha256_alg);
  		crypto_unregister_shash(&nx_shash_sha512_alg);
  		crypto_unregister_shash(&nx_shash_aes_xcbc_alg);
  	}
  
  	return 0;
  }
  
  
  /* module wide initialization/cleanup */
  static int __init nx_init(void)
  {
  	return vio_register_driver(&nx_driver.viodriver);
  }
  
  static void __exit nx_fini(void)
  {
  	vio_unregister_driver(&nx_driver.viodriver);
  }
  
  static struct vio_device_id nx_crypto_driver_ids[] = {
  	{ "ibm,sym-encryption-v1", "ibm,sym-encryption" },
  	{ "", "" }
  };
  MODULE_DEVICE_TABLE(vio, nx_crypto_driver_ids);
  
  /* driver state structure */
  struct nx_crypto_driver nx_driver = {
  	.viodriver = {
  		.id_table = nx_crypto_driver_ids,
  		.probe = nx_probe,
  		.remove = nx_remove,
  		.name  = NX_NAME,
  	},
  };
  
  module_init(nx_init);
  module_exit(nx_fini);
  
  MODULE_AUTHOR("Kent Yoder <yoder1@us.ibm.com>");
  MODULE_DESCRIPTION(NX_STRING);
  MODULE_LICENSE("GPL");
  MODULE_VERSION(NX_VERSION);