6b13f685e
김민수
BSP 최초 추가
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
|
/*******************************************************************************
*
* Module Name: utmath - Integer math support routines
*
******************************************************************************/
/*
* Copyright (C) 2000 - 2013, Intel Corp.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon
* including a substantially similar Disclaimer requirement for further
* binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*/
#include <acpi/acpi.h>
#include "accommon.h"
#define _COMPONENT ACPI_UTILITIES
ACPI_MODULE_NAME("utmath")
/*
* Optional support for 64-bit double-precision integer divide. This code
* is configurable and is implemented in order to support 32-bit kernel
* environments where a 64-bit double-precision math library is not available.
*
* Support for a more normal 64-bit divide/modulo (with check for a divide-
* by-zero) appears after this optional section of code.
*/
#ifndef ACPI_USE_NATIVE_DIVIDE
/* Structures used only for 64-bit divide */
typedef struct uint64_struct {
u32 lo;
u32 hi;
} uint64_struct;
typedef union uint64_overlay {
u64 full;
struct uint64_struct part;
} uint64_overlay;
/*******************************************************************************
*
* FUNCTION: acpi_ut_short_divide
*
* PARAMETERS: dividend - 64-bit dividend
* divisor - 32-bit divisor
* out_quotient - Pointer to where the quotient is returned
* out_remainder - Pointer to where the remainder is returned
*
* RETURN: Status (Checks for divide-by-zero)
*
* DESCRIPTION: Perform a short (maximum 64 bits divided by 32 bits)
* divide and modulo. The result is a 64-bit quotient and a
* 32-bit remainder.
*
******************************************************************************/
acpi_status
acpi_ut_short_divide(u64 dividend,
u32 divisor, u64 *out_quotient, u32 *out_remainder)
{
union uint64_overlay dividend_ovl;
union uint64_overlay quotient;
u32 remainder32;
ACPI_FUNCTION_TRACE(ut_short_divide);
/* Always check for a zero divisor */
if (divisor == 0) {
ACPI_ERROR((AE_INFO, "Divide by zero"));
return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO);
}
dividend_ovl.full = dividend;
/*
* The quotient is 64 bits, the remainder is always 32 bits,
* and is generated by the second divide.
*/
ACPI_DIV_64_BY_32(0, dividend_ovl.part.hi, divisor,
quotient.part.hi, remainder32);
ACPI_DIV_64_BY_32(remainder32, dividend_ovl.part.lo, divisor,
quotient.part.lo, remainder32);
/* Return only what was requested */
if (out_quotient) {
*out_quotient = quotient.full;
}
if (out_remainder) {
*out_remainder = remainder32;
}
return_ACPI_STATUS(AE_OK);
}
/*******************************************************************************
*
* FUNCTION: acpi_ut_divide
*
* PARAMETERS: in_dividend - Dividend
* in_divisor - Divisor
* out_quotient - Pointer to where the quotient is returned
* out_remainder - Pointer to where the remainder is returned
*
* RETURN: Status (Checks for divide-by-zero)
*
* DESCRIPTION: Perform a divide and modulo.
*
******************************************************************************/
acpi_status
acpi_ut_divide(u64 in_dividend,
u64 in_divisor, u64 *out_quotient, u64 *out_remainder)
{
union uint64_overlay dividend;
union uint64_overlay divisor;
union uint64_overlay quotient;
union uint64_overlay remainder;
union uint64_overlay normalized_dividend;
union uint64_overlay normalized_divisor;
u32 partial1;
union uint64_overlay partial2;
union uint64_overlay partial3;
ACPI_FUNCTION_TRACE(ut_divide);
/* Always check for a zero divisor */
if (in_divisor == 0) {
ACPI_ERROR((AE_INFO, "Divide by zero"));
return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO);
}
divisor.full = in_divisor;
dividend.full = in_dividend;
if (divisor.part.hi == 0) {
/*
* 1) Simplest case is where the divisor is 32 bits, we can
* just do two divides
*/
remainder.part.hi = 0;
/*
* The quotient is 64 bits, the remainder is always 32 bits,
* and is generated by the second divide.
*/
ACPI_DIV_64_BY_32(0, dividend.part.hi, divisor.part.lo,
quotient.part.hi, partial1);
ACPI_DIV_64_BY_32(partial1, dividend.part.lo, divisor.part.lo,
quotient.part.lo, remainder.part.lo);
}
else {
/*
* 2) The general case where the divisor is a full 64 bits
* is more difficult
*/
quotient.part.hi = 0;
normalized_dividend = dividend;
normalized_divisor = divisor;
/* Normalize the operands (shift until the divisor is < 32 bits) */
do {
ACPI_SHIFT_RIGHT_64(normalized_divisor.part.hi,
normalized_divisor.part.lo);
ACPI_SHIFT_RIGHT_64(normalized_dividend.part.hi,
normalized_dividend.part.lo);
} while (normalized_divisor.part.hi != 0);
/* Partial divide */
ACPI_DIV_64_BY_32(normalized_dividend.part.hi,
normalized_dividend.part.lo,
normalized_divisor.part.lo,
quotient.part.lo, partial1);
/*
* The quotient is always 32 bits, and simply requires adjustment.
* The 64-bit remainder must be generated.
*/
partial1 = quotient.part.lo * divisor.part.hi;
partial2.full = (u64) quotient.part.lo * divisor.part.lo;
partial3.full = (u64) partial2.part.hi + partial1;
remainder.part.hi = partial3.part.lo;
remainder.part.lo = partial2.part.lo;
if (partial3.part.hi == 0) {
if (partial3.part.lo >= dividend.part.hi) {
if (partial3.part.lo == dividend.part.hi) {
if (partial2.part.lo > dividend.part.lo) {
quotient.part.lo--;
remainder.full -= divisor.full;
}
} else {
quotient.part.lo--;
remainder.full -= divisor.full;
}
}
remainder.full = remainder.full - dividend.full;
remainder.part.hi = (u32) - ((s32) remainder.part.hi);
remainder.part.lo = (u32) - ((s32) remainder.part.lo);
if (remainder.part.lo) {
remainder.part.hi--;
}
}
}
/* Return only what was requested */
if (out_quotient) {
*out_quotient = quotient.full;
}
if (out_remainder) {
*out_remainder = remainder.full;
}
return_ACPI_STATUS(AE_OK);
}
#else
/*******************************************************************************
*
* FUNCTION: acpi_ut_short_divide, acpi_ut_divide
*
* PARAMETERS: See function headers above
*
* DESCRIPTION: Native versions of the ut_divide functions. Use these if either
* 1) The target is a 64-bit platform and therefore 64-bit
* integer math is supported directly by the machine.
* 2) The target is a 32-bit or 16-bit platform, and the
* double-precision integer math library is available to
* perform the divide.
*
******************************************************************************/
acpi_status
acpi_ut_short_divide(u64 in_dividend,
u32 divisor, u64 *out_quotient, u32 *out_remainder)
{
ACPI_FUNCTION_TRACE(ut_short_divide);
/* Always check for a zero divisor */
if (divisor == 0) {
ACPI_ERROR((AE_INFO, "Divide by zero"));
return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO);
}
/* Return only what was requested */
if (out_quotient) {
*out_quotient = in_dividend / divisor;
}
if (out_remainder) {
*out_remainder = (u32) (in_dividend % divisor);
}
return_ACPI_STATUS(AE_OK);
}
acpi_status
acpi_ut_divide(u64 in_dividend,
u64 in_divisor, u64 *out_quotient, u64 *out_remainder)
{
ACPI_FUNCTION_TRACE(ut_divide);
/* Always check for a zero divisor */
if (in_divisor == 0) {
ACPI_ERROR((AE_INFO, "Divide by zero"));
return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO);
}
/* Return only what was requested */
if (out_quotient) {
*out_quotient = in_dividend / in_divisor;
}
if (out_remainder) {
*out_remainder = in_dividend % in_divisor;
}
return_ACPI_STATUS(AE_OK);
}
#endif
|