Blame view

kernel/linux-imx6_3.14.28/arch/ia64/lib/memset.S 9.04 KB
6b13f685e   김민수   BSP 최초 추가
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
  /* Optimized version of the standard memset() function.
  
     Copyright (c) 2002 Hewlett-Packard Co/CERN
  	Sverre Jarp <Sverre.Jarp@cern.ch>
  
     Return: dest
  
     Inputs:
          in0:    dest
          in1:    value
          in2:    count
  
     The algorithm is fairly straightforward: set byte by byte until we
     we get to a 16B-aligned address, then loop on 128 B chunks using an
     early store as prefetching, then loop on 32B chucks, then clear remaining
     words, finally clear remaining bytes.
     Since a stf.spill f0 can store 16B in one go, we use this instruction
     to get peak speed when value = 0.  */
  
  #include <asm/asmmacro.h>
  #undef ret
  
  #define dest		in0
  #define value		in1
  #define	cnt		in2
  
  #define tmp		r31
  #define save_lc		r30
  #define ptr0		r29
  #define ptr1		r28
  #define ptr2		r27
  #define ptr3		r26
  #define ptr9 		r24
  #define	loopcnt		r23
  #define linecnt		r22
  #define bytecnt		r21
  
  #define fvalue		f6
  
  // This routine uses only scratch predicate registers (p6 - p15)
  #define p_scr		p6			// default register for same-cycle branches
  #define p_nz		p7
  #define p_zr		p8
  #define p_unalgn	p9
  #define p_y		p11
  #define p_n		p12
  #define p_yy		p13
  #define p_nn		p14
  
  #define MIN1		15
  #define MIN1P1HALF	8
  #define LINE_SIZE	128
  #define LSIZE_SH        7			// shift amount
  #define PREF_AHEAD	8
  
  GLOBAL_ENTRY(memset)
  { .mmi
  	.prologue
  	alloc	tmp = ar.pfs, 3, 0, 0, 0
  	lfetch.nt1 [dest]			//
  	.save   ar.lc, save_lc
  	mov.i	save_lc = ar.lc
  	.body
  } { .mmi
  	mov	ret0 = dest			// return value
  	cmp.ne	p_nz, p_zr = value, r0		// use stf.spill if value is zero
  	cmp.eq	p_scr, p0 = cnt, r0
  ;; }
  { .mmi
  	and	ptr2 = -(MIN1+1), dest		// aligned address
  	and	tmp = MIN1, dest		// prepare to check for correct alignment
  	tbit.nz p_y, p_n = dest, 0		// Do we have an odd address? (M_B_U)
  } { .mib
  	mov	ptr1 = dest
  	mux1	value = value, @brcst		// create 8 identical bytes in word
  (p_scr)	br.ret.dpnt.many rp			// return immediately if count = 0
  ;; }
  { .mib
  	cmp.ne	p_unalgn, p0 = tmp, r0		//
  } { .mib
  	sub	bytecnt = (MIN1+1), tmp		// NB: # of bytes to move is 1 higher than loopcnt
  	cmp.gt	p_scr, p0 = 16, cnt		// is it a minimalistic task?
  (p_scr)	br.cond.dptk.many .move_bytes_unaligned	// go move just a few (M_B_U)
  ;; }
  { .mmi
  (p_unalgn) add	ptr1 = (MIN1+1), ptr2		// after alignment
  (p_unalgn) add	ptr2 = MIN1P1HALF, ptr2		// after alignment
  (p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 3	// should we do a st8 ?
  ;; }
  { .mib
  (p_y)	add	cnt = -8, cnt			//
  (p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 2	// should we do a st4 ?
  } { .mib
  (p_y)	st8	[ptr2] = value,-4		//
  (p_n)	add	ptr2 = 4, ptr2			//
  ;; }
  { .mib
  (p_yy)	add	cnt = -4, cnt			//
  (p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 1	// should we do a st2 ?
  } { .mib
  (p_yy)	st4	[ptr2] = value,-2		//
  (p_nn)	add	ptr2 = 2, ptr2			//
  ;; }
  { .mmi
  	mov	tmp = LINE_SIZE+1		// for compare
  (p_y)	add	cnt = -2, cnt			//
  (p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 0	// should we do a st1 ?
  } { .mmi
  	setf.sig fvalue=value			// transfer value to FLP side
  (p_y)	st2	[ptr2] = value,-1		//
  (p_n)	add	ptr2 = 1, ptr2			//
  ;; }
  
  { .mmi
  (p_yy)	st1	[ptr2] = value 			//
    	cmp.gt	p_scr, p0 = tmp, cnt		// is it a minimalistic task?
  } { .mbb
  (p_yy)	add	cnt = -1, cnt			//
  (p_scr)	br.cond.dpnt.many .fraction_of_line	// go move just a few
  ;; }
  
  { .mib
  	nop.m 0
  	shr.u	linecnt = cnt, LSIZE_SH
  (p_zr)	br.cond.dptk.many .l1b			// Jump to use stf.spill
  ;; }
  
  	TEXT_ALIGN(32) // --------------------- //  L1A: store ahead into cache lines; fill later
  { .mmi
  	and	tmp = -(LINE_SIZE), cnt		// compute end of range
  	mov	ptr9 = ptr1			// used for prefetching
  	and	cnt = (LINE_SIZE-1), cnt	// remainder
  } { .mmi
  	mov	loopcnt = PREF_AHEAD-1		// default prefetch loop
  	cmp.gt	p_scr, p0 = PREF_AHEAD, linecnt	// check against actual value
  ;; }
  { .mmi
  (p_scr)	add	loopcnt = -1, linecnt		//
  	add	ptr2 = 8, ptr1			// start of stores (beyond prefetch stores)
  	add	ptr1 = tmp, ptr1		// first address beyond total range
  ;; }
  { .mmi
  	add	tmp = -1, linecnt		// next loop count
  	mov.i	ar.lc = loopcnt			//
  ;; }
  .pref_l1a:
  { .mib
  	stf8 [ptr9] = fvalue, 128		// Do stores one cache line apart
  	nop.i	0
  	br.cloop.dptk.few .pref_l1a
  ;; }
  { .mmi
  	add	ptr0 = 16, ptr2			// Two stores in parallel
  	mov.i	ar.lc = tmp			//
  ;; }
  .l1ax:
   { .mmi
  	stf8 [ptr2] = fvalue, 8
  	stf8 [ptr0] = fvalue, 8
   ;; }
   { .mmi
  	stf8 [ptr2] = fvalue, 24
  	stf8 [ptr0] = fvalue, 24
   ;; }
   { .mmi
  	stf8 [ptr2] = fvalue, 8
  	stf8 [ptr0] = fvalue, 8
   ;; }
   { .mmi
  	stf8 [ptr2] = fvalue, 24
  	stf8 [ptr0] = fvalue, 24
   ;; }
   { .mmi
  	stf8 [ptr2] = fvalue, 8
  	stf8 [ptr0] = fvalue, 8
   ;; }
   { .mmi
  	stf8 [ptr2] = fvalue, 24
  	stf8 [ptr0] = fvalue, 24
   ;; }
   { .mmi
  	stf8 [ptr2] = fvalue, 8
  	stf8 [ptr0] = fvalue, 32
   	cmp.lt	p_scr, p0 = ptr9, ptr1		// do we need more prefetching?
   ;; }
  { .mmb
  	stf8 [ptr2] = fvalue, 24
  (p_scr)	stf8 [ptr9] = fvalue, 128
  	br.cloop.dptk.few .l1ax
  ;; }
  { .mbb
  	cmp.le  p_scr, p0 = 8, cnt		// just a few bytes left ?
  (p_scr) br.cond.dpnt.many  .fraction_of_line	// Branch no. 2
  	br.cond.dpnt.many  .move_bytes_from_alignment	// Branch no. 3
  ;; }
  
  	TEXT_ALIGN(32)
  .l1b:	// ------------------------------------ //  L1B: store ahead into cache lines; fill later
  { .mmi
  	and	tmp = -(LINE_SIZE), cnt		// compute end of range
  	mov	ptr9 = ptr1			// used for prefetching
  	and	cnt = (LINE_SIZE-1), cnt	// remainder
  } { .mmi
  	mov	loopcnt = PREF_AHEAD-1		// default prefetch loop
  	cmp.gt	p_scr, p0 = PREF_AHEAD, linecnt	// check against actual value
  ;; }
  { .mmi
  (p_scr)	add	loopcnt = -1, linecnt
  	add	ptr2 = 16, ptr1			// start of stores (beyond prefetch stores)
  	add	ptr1 = tmp, ptr1		// first address beyond total range
  ;; }
  { .mmi
  	add	tmp = -1, linecnt		// next loop count
  	mov.i	ar.lc = loopcnt
  ;; }
  .pref_l1b:
  { .mib
  	stf.spill [ptr9] = f0, 128		// Do stores one cache line apart
  	nop.i   0
  	br.cloop.dptk.few .pref_l1b
  ;; }
  { .mmi
  	add	ptr0 = 16, ptr2			// Two stores in parallel
  	mov.i	ar.lc = tmp
  ;; }
  .l1bx:
   { .mmi
  	stf.spill [ptr2] = f0, 32
  	stf.spill [ptr0] = f0, 32
   ;; }
   { .mmi
  	stf.spill [ptr2] = f0, 32
  	stf.spill [ptr0] = f0, 32
   ;; }
   { .mmi
  	stf.spill [ptr2] = f0, 32
  	stf.spill [ptr0] = f0, 64
   	cmp.lt	p_scr, p0 = ptr9, ptr1		// do we need more prefetching?
   ;; }
  { .mmb
  	stf.spill [ptr2] = f0, 32
  (p_scr)	stf.spill [ptr9] = f0, 128
  	br.cloop.dptk.few .l1bx
  ;; }
  { .mib
  	cmp.gt  p_scr, p0 = 8, cnt		// just a few bytes left ?
  (p_scr)	br.cond.dpnt.many  .move_bytes_from_alignment	//
  ;; }
  
  .fraction_of_line:
  { .mib
  	add	ptr2 = 16, ptr1
  	shr.u	loopcnt = cnt, 5   		// loopcnt = cnt / 32
  ;; }
  { .mib
  	cmp.eq	p_scr, p0 = loopcnt, r0
  	add	loopcnt = -1, loopcnt
  (p_scr)	br.cond.dpnt.many .store_words
  ;; }
  { .mib
  	and	cnt = 0x1f, cnt			// compute the remaining cnt
  	mov.i   ar.lc = loopcnt
  ;; }
  	TEXT_ALIGN(32)
  .l2:	// ------------------------------------ //  L2A:  store 32B in 2 cycles
  { .mmb
  	stf8	[ptr1] = fvalue, 8
  	stf8	[ptr2] = fvalue, 8
  ;; } { .mmb
  	stf8	[ptr1] = fvalue, 24
  	stf8	[ptr2] = fvalue, 24
  	br.cloop.dptk.many .l2
  ;; }
  .store_words:
  { .mib
  	cmp.gt	p_scr, p0 = 8, cnt		// just a few bytes left ?
  (p_scr)	br.cond.dpnt.many .move_bytes_from_alignment	// Branch
  ;; }
  
  { .mmi
  	stf8	[ptr1] = fvalue, 8		// store
  	cmp.le	p_y, p_n = 16, cnt
  	add	cnt = -8, cnt			// subtract
  ;; }
  { .mmi
  (p_y)	stf8	[ptr1] = fvalue, 8		// store
  (p_y)	cmp.le.unc p_yy, p_nn = 16, cnt
  (p_y)	add	cnt = -8, cnt			// subtract
  ;; }
  { .mmi						// store
  (p_yy)	stf8	[ptr1] = fvalue, 8
  (p_yy)	add	cnt = -8, cnt			// subtract
  ;; }
  
  .move_bytes_from_alignment:
  { .mib
  	cmp.eq	p_scr, p0 = cnt, r0
  	tbit.nz.unc p_y, p0 = cnt, 2		// should we terminate with a st4 ?
  (p_scr)	br.cond.dpnt.few .restore_and_exit
  ;; }
  { .mib
  (p_y)	st4	[ptr1] = value,4
  	tbit.nz.unc p_yy, p0 = cnt, 1		// should we terminate with a st2 ?
  ;; }
  { .mib
  (p_yy)	st2	[ptr1] = value,2
  	tbit.nz.unc p_y, p0 = cnt, 0		// should we terminate with a st1 ?
  ;; }
  
  { .mib
  (p_y)	st1	[ptr1] = value
  ;; }
  .restore_and_exit:
  { .mib
  	nop.m	0
  	mov.i	ar.lc = save_lc
  	br.ret.sptk.many rp
  ;; }
  
  .move_bytes_unaligned:
  { .mmi
         .pred.rel "mutex",p_y, p_n
         .pred.rel "mutex",p_yy, p_nn
  (p_n)	cmp.le  p_yy, p_nn = 4, cnt
  (p_y)	cmp.le  p_yy, p_nn = 5, cnt
  (p_n)	add	ptr2 = 2, ptr1
  } { .mmi
  (p_y)	add	ptr2 = 3, ptr1
  (p_y)	st1	[ptr1] = value, 1		// fill 1 (odd-aligned) byte [15, 14 (or less) left]
  (p_y)	add	cnt = -1, cnt
  ;; }
  { .mmi
  (p_yy)	cmp.le.unc p_y, p0 = 8, cnt
  	add	ptr3 = ptr1, cnt		// prepare last store
  	mov.i	ar.lc = save_lc
  } { .mmi
  (p_yy)	st2	[ptr1] = value, 4		// fill 2 (aligned) bytes
  (p_yy)	st2	[ptr2] = value, 4		// fill 2 (aligned) bytes [11, 10 (o less) left]
  (p_yy)	add	cnt = -4, cnt
  ;; }
  { .mmi
  (p_y)	cmp.le.unc p_yy, p0 = 8, cnt
  	add	ptr3 = -1, ptr3			// last store
  	tbit.nz p_scr, p0 = cnt, 1		// will there be a st2 at the end ?
  } { .mmi
  (p_y)	st2	[ptr1] = value, 4		// fill 2 (aligned) bytes
  (p_y)	st2	[ptr2] = value, 4		// fill 2 (aligned) bytes [7, 6 (or less) left]
  (p_y)	add	cnt = -4, cnt
  ;; }
  { .mmi
  (p_yy)	st2	[ptr1] = value, 4		// fill 2 (aligned) bytes
  (p_yy)	st2	[ptr2] = value, 4		// fill 2 (aligned) bytes [3, 2 (or less) left]
  	tbit.nz p_y, p0 = cnt, 0		// will there be a st1 at the end ?
  } { .mmi
  (p_yy)	add	cnt = -4, cnt
  ;; }
  { .mmb
  (p_scr)	st2	[ptr1] = value			// fill 2 (aligned) bytes
  (p_y)	st1	[ptr3] = value			// fill last byte (using ptr3)
  	br.ret.sptk.many rp
  }
  END(memset)