Blame view

kernel/linux-imx6_3.14.28/mm/filemap.c 73.2 KB
6b13f685e   김민수   BSP 최초 추가
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
  /*
   *	linux/mm/filemap.c
   *
   * Copyright (C) 1994-1999  Linus Torvalds
   */
  
  /*
   * This file handles the generic file mmap semantics used by
   * most "normal" filesystems (but you don't /have/ to use this:
   * the NFS filesystem used to do this differently, for example)
   */
  #include <linux/export.h>
  #include <linux/compiler.h>
  #include <linux/fs.h>
  #include <linux/uaccess.h>
  #include <linux/aio.h>
  #include <linux/capability.h>
  #include <linux/kernel_stat.h>
  #include <linux/gfp.h>
  #include <linux/mm.h>
  #include <linux/swap.h>
  #include <linux/mman.h>
  #include <linux/pagemap.h>
  #include <linux/file.h>
  #include <linux/uio.h>
  #include <linux/hash.h>
  #include <linux/writeback.h>
  #include <linux/backing-dev.h>
  #include <linux/pagevec.h>
  #include <linux/blkdev.h>
  #include <linux/security.h>
  #include <linux/cpuset.h>
  #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
  #include <linux/memcontrol.h>
  #include <linux/cleancache.h>
  #include "internal.h"
  
  #define CREATE_TRACE_POINTS
  #include <trace/events/filemap.h>
  
  /*
   * FIXME: remove all knowledge of the buffer layer from the core VM
   */
  #include <linux/buffer_head.h> /* for try_to_free_buffers */
  
  #include <asm/mman.h>
  
  /*
   * Shared mappings implemented 30.11.1994. It's not fully working yet,
   * though.
   *
   * Shared mappings now work. 15.8.1995  Bruno.
   *
   * finished 'unifying' the page and buffer cache and SMP-threaded the
   * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
   *
   * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
   */
  
  /*
   * Lock ordering:
   *
   *  ->i_mmap_mutex		(truncate_pagecache)
   *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
   *      ->swap_lock		(exclusive_swap_page, others)
   *        ->mapping->tree_lock
   *
   *  ->i_mutex
   *    ->i_mmap_mutex		(truncate->unmap_mapping_range)
   *
   *  ->mmap_sem
   *    ->i_mmap_mutex
   *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
   *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
   *
   *  ->mmap_sem
   *    ->lock_page		(access_process_vm)
   *
   *  ->i_mutex			(generic_file_buffered_write)
   *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
   *
   *  bdi->wb.list_lock
   *    sb_lock			(fs/fs-writeback.c)
   *    ->mapping->tree_lock	(__sync_single_inode)
   *
   *  ->i_mmap_mutex
   *    ->anon_vma.lock		(vma_adjust)
   *
   *  ->anon_vma.lock
   *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
   *
   *  ->page_table_lock or pte_lock
   *    ->swap_lock		(try_to_unmap_one)
   *    ->private_lock		(try_to_unmap_one)
   *    ->tree_lock		(try_to_unmap_one)
   *    ->zone.lru_lock		(follow_page->mark_page_accessed)
   *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
   *    ->private_lock		(page_remove_rmap->set_page_dirty)
   *    ->tree_lock		(page_remove_rmap->set_page_dirty)
   *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
   *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
   *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
   *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
   *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
   *
   * ->i_mmap_mutex
   *   ->tasklist_lock            (memory_failure, collect_procs_ao)
   */
  
  /*
   * Delete a page from the page cache and free it. Caller has to make
   * sure the page is locked and that nobody else uses it - or that usage
   * is safe.  The caller must hold the mapping's tree_lock.
   */
  void __delete_from_page_cache(struct page *page)
  {
  	struct address_space *mapping = page->mapping;
  
  	trace_mm_filemap_delete_from_page_cache(page);
  	/*
  	 * if we're uptodate, flush out into the cleancache, otherwise
  	 * invalidate any existing cleancache entries.  We can't leave
  	 * stale data around in the cleancache once our page is gone
  	 */
  	if (PageUptodate(page) && PageMappedToDisk(page))
  		cleancache_put_page(page);
  	else
  		cleancache_invalidate_page(mapping, page);
  
  	radix_tree_delete(&mapping->page_tree, page->index);
  	page->mapping = NULL;
  	/* Leave page->index set: truncation lookup relies upon it */
  	mapping->nrpages--;
  	__dec_zone_page_state(page, NR_FILE_PAGES);
  	if (PageSwapBacked(page))
  		__dec_zone_page_state(page, NR_SHMEM);
  	BUG_ON(page_mapped(page));
  
  	/*
  	 * Some filesystems seem to re-dirty the page even after
  	 * the VM has canceled the dirty bit (eg ext3 journaling).
  	 *
  	 * Fix it up by doing a final dirty accounting check after
  	 * having removed the page entirely.
  	 */
  	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
  		dec_zone_page_state(page, NR_FILE_DIRTY);
  		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
  	}
  }
  
  /**
   * delete_from_page_cache - delete page from page cache
   * @page: the page which the kernel is trying to remove from page cache
   *
   * This must be called only on pages that have been verified to be in the page
   * cache and locked.  It will never put the page into the free list, the caller
   * has a reference on the page.
   */
  void delete_from_page_cache(struct page *page)
  {
  	struct address_space *mapping = page->mapping;
  	void (*freepage)(struct page *);
  
  	BUG_ON(!PageLocked(page));
  
  	freepage = mapping->a_ops->freepage;
  	spin_lock_irq(&mapping->tree_lock);
  	__delete_from_page_cache(page);
  	spin_unlock_irq(&mapping->tree_lock);
  	mem_cgroup_uncharge_cache_page(page);
  
  	if (freepage)
  		freepage(page);
  	page_cache_release(page);
  }
  EXPORT_SYMBOL(delete_from_page_cache);
  
  static int sleep_on_page(void *word)
  {
  	io_schedule();
  	return 0;
  }
  
  static int sleep_on_page_killable(void *word)
  {
  	sleep_on_page(word);
  	return fatal_signal_pending(current) ? -EINTR : 0;
  }
  
  static int filemap_check_errors(struct address_space *mapping)
  {
  	int ret = 0;
  	/* Check for outstanding write errors */
  	if (test_bit(AS_ENOSPC, &mapping->flags) &&
  	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
  		ret = -ENOSPC;
  	if (test_bit(AS_EIO, &mapping->flags) &&
  	    test_and_clear_bit(AS_EIO, &mapping->flags))
  		ret = -EIO;
  	return ret;
  }
  
  /**
   * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
   * @mapping:	address space structure to write
   * @start:	offset in bytes where the range starts
   * @end:	offset in bytes where the range ends (inclusive)
   * @sync_mode:	enable synchronous operation
   *
   * Start writeback against all of a mapping's dirty pages that lie
   * within the byte offsets <start, end> inclusive.
   *
   * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
   * opposed to a regular memory cleansing writeback.  The difference between
   * these two operations is that if a dirty page/buffer is encountered, it must
   * be waited upon, and not just skipped over.
   */
  int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
  				loff_t end, int sync_mode)
  {
  	int ret;
  	struct writeback_control wbc = {
  		.sync_mode = sync_mode,
  		.nr_to_write = LONG_MAX,
  		.range_start = start,
  		.range_end = end,
  	};
  
  	if (!mapping_cap_writeback_dirty(mapping))
  		return 0;
  
  	ret = do_writepages(mapping, &wbc);
  	return ret;
  }
  
  static inline int __filemap_fdatawrite(struct address_space *mapping,
  	int sync_mode)
  {
  	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
  }
  
  int filemap_fdatawrite(struct address_space *mapping)
  {
  	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
  }
  EXPORT_SYMBOL(filemap_fdatawrite);
  
  int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
  				loff_t end)
  {
  	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
  }
  EXPORT_SYMBOL(filemap_fdatawrite_range);
  
  /**
   * filemap_flush - mostly a non-blocking flush
   * @mapping:	target address_space
   *
   * This is a mostly non-blocking flush.  Not suitable for data-integrity
   * purposes - I/O may not be started against all dirty pages.
   */
  int filemap_flush(struct address_space *mapping)
  {
  	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
  }
  EXPORT_SYMBOL(filemap_flush);
  
  /**
   * filemap_fdatawait_range - wait for writeback to complete
   * @mapping:		address space structure to wait for
   * @start_byte:		offset in bytes where the range starts
   * @end_byte:		offset in bytes where the range ends (inclusive)
   *
   * Walk the list of under-writeback pages of the given address space
   * in the given range and wait for all of them.
   */
  int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
  			    loff_t end_byte)
  {
  	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
  	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
  	struct pagevec pvec;
  	int nr_pages;
  	int ret2, ret = 0;
  
  	if (end_byte < start_byte)
  		goto out;
  
  	pagevec_init(&pvec, 0);
  	while ((index <= end) &&
  			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  			PAGECACHE_TAG_WRITEBACK,
  			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
  		unsigned i;
  
  		for (i = 0; i < nr_pages; i++) {
  			struct page *page = pvec.pages[i];
  
  			/* until radix tree lookup accepts end_index */
  			if (page->index > end)
  				continue;
  
  			wait_on_page_writeback(page);
  			if (TestClearPageError(page))
  				ret = -EIO;
  		}
  		pagevec_release(&pvec);
  		cond_resched();
  	}
  out:
  	ret2 = filemap_check_errors(mapping);
  	if (!ret)
  		ret = ret2;
  
  	return ret;
  }
  EXPORT_SYMBOL(filemap_fdatawait_range);
  
  /**
   * filemap_fdatawait - wait for all under-writeback pages to complete
   * @mapping: address space structure to wait for
   *
   * Walk the list of under-writeback pages of the given address space
   * and wait for all of them.
   */
  int filemap_fdatawait(struct address_space *mapping)
  {
  	loff_t i_size = i_size_read(mapping->host);
  
  	if (i_size == 0)
  		return 0;
  
  	return filemap_fdatawait_range(mapping, 0, i_size - 1);
  }
  EXPORT_SYMBOL(filemap_fdatawait);
  
  int filemap_write_and_wait(struct address_space *mapping)
  {
  	int err = 0;
  
  	if (mapping->nrpages) {
  		err = filemap_fdatawrite(mapping);
  		/*
  		 * Even if the above returned error, the pages may be
  		 * written partially (e.g. -ENOSPC), so we wait for it.
  		 * But the -EIO is special case, it may indicate the worst
  		 * thing (e.g. bug) happened, so we avoid waiting for it.
  		 */
  		if (err != -EIO) {
  			int err2 = filemap_fdatawait(mapping);
  			if (!err)
  				err = err2;
  		}
  	} else {
  		err = filemap_check_errors(mapping);
  	}
  	return err;
  }
  EXPORT_SYMBOL(filemap_write_and_wait);
  
  /**
   * filemap_write_and_wait_range - write out & wait on a file range
   * @mapping:	the address_space for the pages
   * @lstart:	offset in bytes where the range starts
   * @lend:	offset in bytes where the range ends (inclusive)
   *
   * Write out and wait upon file offsets lstart->lend, inclusive.
   *
   * Note that `lend' is inclusive (describes the last byte to be written) so
   * that this function can be used to write to the very end-of-file (end = -1).
   */
  int filemap_write_and_wait_range(struct address_space *mapping,
  				 loff_t lstart, loff_t lend)
  {
  	int err = 0;
  
  	if (mapping->nrpages) {
  		err = __filemap_fdatawrite_range(mapping, lstart, lend,
  						 WB_SYNC_ALL);
  		/* See comment of filemap_write_and_wait() */
  		if (err != -EIO) {
  			int err2 = filemap_fdatawait_range(mapping,
  						lstart, lend);
  			if (!err)
  				err = err2;
  		}
  	} else {
  		err = filemap_check_errors(mapping);
  	}
  	return err;
  }
  EXPORT_SYMBOL(filemap_write_and_wait_range);
  
  /**
   * replace_page_cache_page - replace a pagecache page with a new one
   * @old:	page to be replaced
   * @new:	page to replace with
   * @gfp_mask:	allocation mode
   *
   * This function replaces a page in the pagecache with a new one.  On
   * success it acquires the pagecache reference for the new page and
   * drops it for the old page.  Both the old and new pages must be
   * locked.  This function does not add the new page to the LRU, the
   * caller must do that.
   *
   * The remove + add is atomic.  The only way this function can fail is
   * memory allocation failure.
   */
  int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
  {
  	int error;
  
  	VM_BUG_ON_PAGE(!PageLocked(old), old);
  	VM_BUG_ON_PAGE(!PageLocked(new), new);
  	VM_BUG_ON_PAGE(new->mapping, new);
  
  	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
  	if (!error) {
  		struct address_space *mapping = old->mapping;
  		void (*freepage)(struct page *);
  
  		pgoff_t offset = old->index;
  		freepage = mapping->a_ops->freepage;
  
  		page_cache_get(new);
  		new->mapping = mapping;
  		new->index = offset;
  
  		spin_lock_irq(&mapping->tree_lock);
  		__delete_from_page_cache(old);
  		error = radix_tree_insert(&mapping->page_tree, offset, new);
  		BUG_ON(error);
  		mapping->nrpages++;
  		__inc_zone_page_state(new, NR_FILE_PAGES);
  		if (PageSwapBacked(new))
  			__inc_zone_page_state(new, NR_SHMEM);
  		spin_unlock_irq(&mapping->tree_lock);
  		/* mem_cgroup codes must not be called under tree_lock */
  		mem_cgroup_replace_page_cache(old, new);
  		radix_tree_preload_end();
  		if (freepage)
  			freepage(old);
  		page_cache_release(old);
  	}
  
  	return error;
  }
  EXPORT_SYMBOL_GPL(replace_page_cache_page);
  
  static int page_cache_tree_insert(struct address_space *mapping,
  				  struct page *page)
  {
  	void **slot;
  	int error;
  
  	slot = radix_tree_lookup_slot(&mapping->page_tree, page->index);
  	if (slot) {
  		void *p;
  
  		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
  		if (!radix_tree_exceptional_entry(p))
  			return -EEXIST;
  		radix_tree_replace_slot(slot, page);
  		mapping->nrpages++;
  		return 0;
  	}
  	error = radix_tree_insert(&mapping->page_tree, page->index, page);
  	if (!error)
  		mapping->nrpages++;
  	return error;
  }
  
  /**
   * add_to_page_cache_locked - add a locked page to the pagecache
   * @page:	page to add
   * @mapping:	the page's address_space
   * @offset:	page index
   * @gfp_mask:	page allocation mode
   *
   * This function is used to add a page to the pagecache. It must be locked.
   * This function does not add the page to the LRU.  The caller must do that.
   */
  int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
  		pgoff_t offset, gfp_t gfp_mask)
  {
  	int error;
  
  	VM_BUG_ON_PAGE(!PageLocked(page), page);
  	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
  
  	error = mem_cgroup_cache_charge(page, current->mm,
  					gfp_mask & GFP_RECLAIM_MASK);
  	if (error)
  		return error;
  
  	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
  	if (error) {
  		mem_cgroup_uncharge_cache_page(page);
  		return error;
  	}
  
  	page_cache_get(page);
  	page->mapping = mapping;
  	page->index = offset;
  
  	spin_lock_irq(&mapping->tree_lock);
  	error = page_cache_tree_insert(mapping, page);
  	radix_tree_preload_end();
  	if (unlikely(error))
  		goto err_insert;
  	__inc_zone_page_state(page, NR_FILE_PAGES);
  	spin_unlock_irq(&mapping->tree_lock);
  	trace_mm_filemap_add_to_page_cache(page);
  	return 0;
  err_insert:
  	page->mapping = NULL;
  	/* Leave page->index set: truncation relies upon it */
  	spin_unlock_irq(&mapping->tree_lock);
  	mem_cgroup_uncharge_cache_page(page);
  	page_cache_release(page);
  	return error;
  }
  EXPORT_SYMBOL(add_to_page_cache_locked);
  
  int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
  				pgoff_t offset, gfp_t gfp_mask)
  {
  	int ret;
  
  	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
  	if (ret == 0)
  		lru_cache_add_file(page);
  	return ret;
  }
  EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
  
  #ifdef CONFIG_NUMA
  struct page *__page_cache_alloc(gfp_t gfp)
  {
  	int n;
  	struct page *page;
  
  	if (cpuset_do_page_mem_spread()) {
  		unsigned int cpuset_mems_cookie;
  		do {
  			cpuset_mems_cookie = read_mems_allowed_begin();
  			n = cpuset_mem_spread_node();
  			page = alloc_pages_exact_node(n, gfp, 0);
  		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
  
  		return page;
  	}
  	return alloc_pages(gfp, 0);
  }
  EXPORT_SYMBOL(__page_cache_alloc);
  #endif
  
  /*
   * In order to wait for pages to become available there must be
   * waitqueues associated with pages. By using a hash table of
   * waitqueues where the bucket discipline is to maintain all
   * waiters on the same queue and wake all when any of the pages
   * become available, and for the woken contexts to check to be
   * sure the appropriate page became available, this saves space
   * at a cost of "thundering herd" phenomena during rare hash
   * collisions.
   */
  static wait_queue_head_t *page_waitqueue(struct page *page)
  {
  	const struct zone *zone = page_zone(page);
  
  	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
  }
  
  static inline void wake_up_page(struct page *page, int bit)
  {
  	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
  }
  
  void wait_on_page_bit(struct page *page, int bit_nr)
  {
  	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
  
  	if (test_bit(bit_nr, &page->flags))
  		__wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
  							TASK_UNINTERRUPTIBLE);
  }
  EXPORT_SYMBOL(wait_on_page_bit);
  
  int wait_on_page_bit_killable(struct page *page, int bit_nr)
  {
  	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
  
  	if (!test_bit(bit_nr, &page->flags))
  		return 0;
  
  	return __wait_on_bit(page_waitqueue(page), &wait,
  			     sleep_on_page_killable, TASK_KILLABLE);
  }
  
  /**
   * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
   * @page: Page defining the wait queue of interest
   * @waiter: Waiter to add to the queue
   *
   * Add an arbitrary @waiter to the wait queue for the nominated @page.
   */
  void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
  {
  	wait_queue_head_t *q = page_waitqueue(page);
  	unsigned long flags;
  
  	spin_lock_irqsave(&q->lock, flags);
  	__add_wait_queue(q, waiter);
  	spin_unlock_irqrestore(&q->lock, flags);
  }
  EXPORT_SYMBOL_GPL(add_page_wait_queue);
  
  /**
   * unlock_page - unlock a locked page
   * @page: the page
   *
   * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
   * Also wakes sleepers in wait_on_page_writeback() because the wakeup
   * mechananism between PageLocked pages and PageWriteback pages is shared.
   * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
   *
   * The mb is necessary to enforce ordering between the clear_bit and the read
   * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
   */
  void unlock_page(struct page *page)
  {
  	VM_BUG_ON_PAGE(!PageLocked(page), page);
  	clear_bit_unlock(PG_locked, &page->flags);
  	smp_mb__after_clear_bit();
  	wake_up_page(page, PG_locked);
  }
  EXPORT_SYMBOL(unlock_page);
  
  /**
   * end_page_writeback - end writeback against a page
   * @page: the page
   */
  void end_page_writeback(struct page *page)
  {
  	if (TestClearPageReclaim(page))
  		rotate_reclaimable_page(page);
  
  	if (!test_clear_page_writeback(page))
  		BUG();
  
  	smp_mb__after_clear_bit();
  	wake_up_page(page, PG_writeback);
  }
  EXPORT_SYMBOL(end_page_writeback);
  
  /**
   * __lock_page - get a lock on the page, assuming we need to sleep to get it
   * @page: the page to lock
   */
  void __lock_page(struct page *page)
  {
  	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
  
  	__wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
  							TASK_UNINTERRUPTIBLE);
  }
  EXPORT_SYMBOL(__lock_page);
  
  int __lock_page_killable(struct page *page)
  {
  	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
  
  	return __wait_on_bit_lock(page_waitqueue(page), &wait,
  					sleep_on_page_killable, TASK_KILLABLE);
  }
  EXPORT_SYMBOL_GPL(__lock_page_killable);
  
  int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
  			 unsigned int flags)
  {
  	if (flags & FAULT_FLAG_ALLOW_RETRY) {
  		/*
  		 * CAUTION! In this case, mmap_sem is not released
  		 * even though return 0.
  		 */
  		if (flags & FAULT_FLAG_RETRY_NOWAIT)
  			return 0;
  
  		up_read(&mm->mmap_sem);
  		if (flags & FAULT_FLAG_KILLABLE)
  			wait_on_page_locked_killable(page);
  		else
  			wait_on_page_locked(page);
  		return 0;
  	} else {
  		if (flags & FAULT_FLAG_KILLABLE) {
  			int ret;
  
  			ret = __lock_page_killable(page);
  			if (ret) {
  				up_read(&mm->mmap_sem);
  				return 0;
  			}
  		} else
  			__lock_page(page);
  		return 1;
  	}
  }
  
  /**
   * page_cache_next_hole - find the next hole (not-present entry)
   * @mapping: mapping
   * @index: index
   * @max_scan: maximum range to search
   *
   * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
   * lowest indexed hole.
   *
   * Returns: the index of the hole if found, otherwise returns an index
   * outside of the set specified (in which case 'return - index >=
   * max_scan' will be true). In rare cases of index wrap-around, 0 will
   * be returned.
   *
   * page_cache_next_hole may be called under rcu_read_lock. However,
   * like radix_tree_gang_lookup, this will not atomically search a
   * snapshot of the tree at a single point in time. For example, if a
   * hole is created at index 5, then subsequently a hole is created at
   * index 10, page_cache_next_hole covering both indexes may return 10
   * if called under rcu_read_lock.
   */
  pgoff_t page_cache_next_hole(struct address_space *mapping,
  			     pgoff_t index, unsigned long max_scan)
  {
  	unsigned long i;
  
  	for (i = 0; i < max_scan; i++) {
  		struct page *page;
  
  		page = radix_tree_lookup(&mapping->page_tree, index);
  		if (!page || radix_tree_exceptional_entry(page))
  			break;
  		index++;
  		if (index == 0)
  			break;
  	}
  
  	return index;
  }
  EXPORT_SYMBOL(page_cache_next_hole);
  
  /**
   * page_cache_prev_hole - find the prev hole (not-present entry)
   * @mapping: mapping
   * @index: index
   * @max_scan: maximum range to search
   *
   * Search backwards in the range [max(index-max_scan+1, 0), index] for
   * the first hole.
   *
   * Returns: the index of the hole if found, otherwise returns an index
   * outside of the set specified (in which case 'index - return >=
   * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
   * will be returned.
   *
   * page_cache_prev_hole may be called under rcu_read_lock. However,
   * like radix_tree_gang_lookup, this will not atomically search a
   * snapshot of the tree at a single point in time. For example, if a
   * hole is created at index 10, then subsequently a hole is created at
   * index 5, page_cache_prev_hole covering both indexes may return 5 if
   * called under rcu_read_lock.
   */
  pgoff_t page_cache_prev_hole(struct address_space *mapping,
  			     pgoff_t index, unsigned long max_scan)
  {
  	unsigned long i;
  
  	for (i = 0; i < max_scan; i++) {
  		struct page *page;
  
  		page = radix_tree_lookup(&mapping->page_tree, index);
  		if (!page || radix_tree_exceptional_entry(page))
  			break;
  		index--;
  		if (index == ULONG_MAX)
  			break;
  	}
  
  	return index;
  }
  EXPORT_SYMBOL(page_cache_prev_hole);
  
  /**
   * find_get_entry - find and get a page cache entry
   * @mapping: the address_space to search
   * @offset: the page cache index
   *
   * Looks up the page cache slot at @mapping & @offset.  If there is a
   * page cache page, it is returned with an increased refcount.
   *
   * If the slot holds a shadow entry of a previously evicted page, it
   * is returned.
   *
   * Otherwise, %NULL is returned.
   */
  struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
  {
  	void **pagep;
  	struct page *page;
  
  	rcu_read_lock();
  repeat:
  	page = NULL;
  	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
  	if (pagep) {
  		page = radix_tree_deref_slot(pagep);
  		if (unlikely(!page))
  			goto out;
  		if (radix_tree_exception(page)) {
  			if (radix_tree_deref_retry(page))
  				goto repeat;
  			/*
  			 * Otherwise, shmem/tmpfs must be storing a swap entry
  			 * here as an exceptional entry: so return it without
  			 * attempting to raise page count.
  			 */
  			goto out;
  		}
  		if (!page_cache_get_speculative(page))
  			goto repeat;
  
  		/*
  		 * Has the page moved?
  		 * This is part of the lockless pagecache protocol. See
  		 * include/linux/pagemap.h for details.
  		 */
  		if (unlikely(page != *pagep)) {
  			page_cache_release(page);
  			goto repeat;
  		}
  	}
  out:
  	rcu_read_unlock();
  
  	return page;
  }
  EXPORT_SYMBOL(find_get_entry);
  
  /**
   * find_get_page - find and get a page reference
   * @mapping: the address_space to search
   * @offset: the page index
   *
   * Looks up the page cache slot at @mapping & @offset.  If there is a
   * page cache page, it is returned with an increased refcount.
   *
   * Otherwise, %NULL is returned.
   */
  struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
  {
  	struct page *page = find_get_entry(mapping, offset);
  
  	if (radix_tree_exceptional_entry(page))
  		page = NULL;
  	return page;
  }
  EXPORT_SYMBOL(find_get_page);
  
  /**
   * find_lock_entry - locate, pin and lock a page cache entry
   * @mapping: the address_space to search
   * @offset: the page cache index
   *
   * Looks up the page cache slot at @mapping & @offset.  If there is a
   * page cache page, it is returned locked and with an increased
   * refcount.
   *
   * If the slot holds a shadow entry of a previously evicted page, it
   * is returned.
   *
   * Otherwise, %NULL is returned.
   *
   * find_lock_entry() may sleep.
   */
  struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
  {
  	struct page *page;
  
  repeat:
  	page = find_get_entry(mapping, offset);
  	if (page && !radix_tree_exception(page)) {
  		lock_page(page);
  		/* Has the page been truncated? */
  		if (unlikely(page->mapping != mapping)) {
  			unlock_page(page);
  			page_cache_release(page);
  			goto repeat;
  		}
  		VM_BUG_ON_PAGE(page->index != offset, page);
  	}
  	return page;
  }
  EXPORT_SYMBOL(find_lock_entry);
  
  /**
   * find_lock_page - locate, pin and lock a pagecache page
   * @mapping: the address_space to search
   * @offset: the page index
   *
   * Looks up the page cache slot at @mapping & @offset.  If there is a
   * page cache page, it is returned locked and with an increased
   * refcount.
   *
   * Otherwise, %NULL is returned.
   *
   * find_lock_page() may sleep.
   */
  struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
  {
  	struct page *page = find_lock_entry(mapping, offset);
  
  	if (radix_tree_exceptional_entry(page))
  		page = NULL;
  	return page;
  }
  EXPORT_SYMBOL(find_lock_page);
  
  /**
   * find_or_create_page - locate or add a pagecache page
   * @mapping: the page's address_space
   * @index: the page's index into the mapping
   * @gfp_mask: page allocation mode
   *
   * Looks up the page cache slot at @mapping & @offset.  If there is a
   * page cache page, it is returned locked and with an increased
   * refcount.
   *
   * If the page is not present, a new page is allocated using @gfp_mask
   * and added to the page cache and the VM's LRU list.  The page is
   * returned locked and with an increased refcount.
   *
   * On memory exhaustion, %NULL is returned.
   *
   * find_or_create_page() may sleep, even if @gfp_flags specifies an
   * atomic allocation!
   */
  struct page *find_or_create_page(struct address_space *mapping,
  		pgoff_t index, gfp_t gfp_mask)
  {
  	struct page *page;
  	int err;
  repeat:
  	page = find_lock_page(mapping, index);
  	if (!page) {
  		page = __page_cache_alloc(gfp_mask);
  		if (!page)
  			return NULL;
  		/*
  		 * We want a regular kernel memory (not highmem or DMA etc)
  		 * allocation for the radix tree nodes, but we need to honour
  		 * the context-specific requirements the caller has asked for.
  		 * GFP_RECLAIM_MASK collects those requirements.
  		 */
  		err = add_to_page_cache_lru(page, mapping, index,
  			(gfp_mask & GFP_RECLAIM_MASK));
  		if (unlikely(err)) {
  			page_cache_release(page);
  			page = NULL;
  			if (err == -EEXIST)
  				goto repeat;
  		}
  	}
  	return page;
  }
  EXPORT_SYMBOL(find_or_create_page);
  
  /**
   * find_get_entries - gang pagecache lookup
   * @mapping:	The address_space to search
   * @start:	The starting page cache index
   * @nr_entries:	The maximum number of entries
   * @entries:	Where the resulting entries are placed
   * @indices:	The cache indices corresponding to the entries in @entries
   *
   * find_get_entries() will search for and return a group of up to
   * @nr_entries entries in the mapping.  The entries are placed at
   * @entries.  find_get_entries() takes a reference against any actual
   * pages it returns.
   *
   * The search returns a group of mapping-contiguous page cache entries
   * with ascending indexes.  There may be holes in the indices due to
   * not-present pages.
   *
   * Any shadow entries of evicted pages are included in the returned
   * array.
   *
   * find_get_entries() returns the number of pages and shadow entries
   * which were found.
   */
  unsigned find_get_entries(struct address_space *mapping,
  			  pgoff_t start, unsigned int nr_entries,
  			  struct page **entries, pgoff_t *indices)
  {
  	void **slot;
  	unsigned int ret = 0;
  	struct radix_tree_iter iter;
  
  	if (!nr_entries)
  		return 0;
  
  	rcu_read_lock();
  restart:
  	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
  		struct page *page;
  repeat:
  		page = radix_tree_deref_slot(slot);
  		if (unlikely(!page))
  			continue;
  		if (radix_tree_exception(page)) {
  			if (radix_tree_deref_retry(page))
  				goto restart;
  			/*
  			 * Otherwise, we must be storing a swap entry
  			 * here as an exceptional entry: so return it
  			 * without attempting to raise page count.
  			 */
  			goto export;
  		}
  		if (!page_cache_get_speculative(page))
  			goto repeat;
  
  		/* Has the page moved? */
  		if (unlikely(page != *slot)) {
  			page_cache_release(page);
  			goto repeat;
  		}
  export:
  		indices[ret] = iter.index;
  		entries[ret] = page;
  		if (++ret == nr_entries)
  			break;
  	}
  	rcu_read_unlock();
  	return ret;
  }
  
  /**
   * find_get_pages - gang pagecache lookup
   * @mapping:	The address_space to search
   * @start:	The starting page index
   * @nr_pages:	The maximum number of pages
   * @pages:	Where the resulting pages are placed
   *
   * find_get_pages() will search for and return a group of up to
   * @nr_pages pages in the mapping.  The pages are placed at @pages.
   * find_get_pages() takes a reference against the returned pages.
   *
   * The search returns a group of mapping-contiguous pages with ascending
   * indexes.  There may be holes in the indices due to not-present pages.
   *
   * find_get_pages() returns the number of pages which were found.
   */
  unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
  			    unsigned int nr_pages, struct page **pages)
  {
  	struct radix_tree_iter iter;
  	void **slot;
  	unsigned ret = 0;
  
  	if (unlikely(!nr_pages))
  		return 0;
  
  	rcu_read_lock();
  restart:
  	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
  		struct page *page;
  repeat:
  		page = radix_tree_deref_slot(slot);
  		if (unlikely(!page))
  			continue;
  
  		if (radix_tree_exception(page)) {
  			if (radix_tree_deref_retry(page)) {
  				/*
  				 * Transient condition which can only trigger
  				 * when entry at index 0 moves out of or back
  				 * to root: none yet gotten, safe to restart.
  				 */
  				WARN_ON(iter.index);
  				goto restart;
  			}
  			/*
  			 * Otherwise, shmem/tmpfs must be storing a swap entry
  			 * here as an exceptional entry: so skip over it -
  			 * we only reach this from invalidate_mapping_pages().
  			 */
  			continue;
  		}
  
  		if (!page_cache_get_speculative(page))
  			goto repeat;
  
  		/* Has the page moved? */
  		if (unlikely(page != *slot)) {
  			page_cache_release(page);
  			goto repeat;
  		}
  
  		pages[ret] = page;
  		if (++ret == nr_pages)
  			break;
  	}
  
  	rcu_read_unlock();
  	return ret;
  }
  
  /**
   * find_get_pages_contig - gang contiguous pagecache lookup
   * @mapping:	The address_space to search
   * @index:	The starting page index
   * @nr_pages:	The maximum number of pages
   * @pages:	Where the resulting pages are placed
   *
   * find_get_pages_contig() works exactly like find_get_pages(), except
   * that the returned number of pages are guaranteed to be contiguous.
   *
   * find_get_pages_contig() returns the number of pages which were found.
   */
  unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
  			       unsigned int nr_pages, struct page **pages)
  {
  	struct radix_tree_iter iter;
  	void **slot;
  	unsigned int ret = 0;
  
  	if (unlikely(!nr_pages))
  		return 0;
  
  	rcu_read_lock();
  restart:
  	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
  		struct page *page;
  repeat:
  		page = radix_tree_deref_slot(slot);
  		/* The hole, there no reason to continue */
  		if (unlikely(!page))
  			break;
  
  		if (radix_tree_exception(page)) {
  			if (radix_tree_deref_retry(page)) {
  				/*
  				 * Transient condition which can only trigger
  				 * when entry at index 0 moves out of or back
  				 * to root: none yet gotten, safe to restart.
  				 */
  				goto restart;
  			}
  			/*
  			 * Otherwise, shmem/tmpfs must be storing a swap entry
  			 * here as an exceptional entry: so stop looking for
  			 * contiguous pages.
  			 */
  			break;
  		}
  
  		if (!page_cache_get_speculative(page))
  			goto repeat;
  
  		/* Has the page moved? */
  		if (unlikely(page != *slot)) {
  			page_cache_release(page);
  			goto repeat;
  		}
  
  		/*
  		 * must check mapping and index after taking the ref.
  		 * otherwise we can get both false positives and false
  		 * negatives, which is just confusing to the caller.
  		 */
  		if (page->mapping == NULL || page->index != iter.index) {
  			page_cache_release(page);
  			break;
  		}
  
  		pages[ret] = page;
  		if (++ret == nr_pages)
  			break;
  	}
  	rcu_read_unlock();
  	return ret;
  }
  EXPORT_SYMBOL(find_get_pages_contig);
  
  /**
   * find_get_pages_tag - find and return pages that match @tag
   * @mapping:	the address_space to search
   * @index:	the starting page index
   * @tag:	the tag index
   * @nr_pages:	the maximum number of pages
   * @pages:	where the resulting pages are placed
   *
   * Like find_get_pages, except we only return pages which are tagged with
   * @tag.   We update @index to index the next page for the traversal.
   */
  unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
  			int tag, unsigned int nr_pages, struct page **pages)
  {
  	struct radix_tree_iter iter;
  	void **slot;
  	unsigned ret = 0;
  
  	if (unlikely(!nr_pages))
  		return 0;
  
  	rcu_read_lock();
  restart:
  	radix_tree_for_each_tagged(slot, &mapping->page_tree,
  				   &iter, *index, tag) {
  		struct page *page;
  repeat:
  		page = radix_tree_deref_slot(slot);
  		if (unlikely(!page))
  			continue;
  
  		if (radix_tree_exception(page)) {
  			if (radix_tree_deref_retry(page)) {
  				/*
  				 * Transient condition which can only trigger
  				 * when entry at index 0 moves out of or back
  				 * to root: none yet gotten, safe to restart.
  				 */
  				goto restart;
  			}
  			/*
  			 * This function is never used on a shmem/tmpfs
  			 * mapping, so a swap entry won't be found here.
  			 */
  			BUG();
  		}
  
  		if (!page_cache_get_speculative(page))
  			goto repeat;
  
  		/* Has the page moved? */
  		if (unlikely(page != *slot)) {
  			page_cache_release(page);
  			goto repeat;
  		}
  
  		pages[ret] = page;
  		if (++ret == nr_pages)
  			break;
  	}
  
  	rcu_read_unlock();
  
  	if (ret)
  		*index = pages[ret - 1]->index + 1;
  
  	return ret;
  }
  EXPORT_SYMBOL(find_get_pages_tag);
  
  /**
   * grab_cache_page_nowait - returns locked page at given index in given cache
   * @mapping: target address_space
   * @index: the page index
   *
   * Same as grab_cache_page(), but do not wait if the page is unavailable.
   * This is intended for speculative data generators, where the data can
   * be regenerated if the page couldn't be grabbed.  This routine should
   * be safe to call while holding the lock for another page.
   *
   * Clear __GFP_FS when allocating the page to avoid recursion into the fs
   * and deadlock against the caller's locked page.
   */
  struct page *
  grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
  {
  	struct page *page = find_get_page(mapping, index);
  
  	if (page) {
  		if (trylock_page(page))
  			return page;
  		page_cache_release(page);
  		return NULL;
  	}
  	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
  	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
  		page_cache_release(page);
  		page = NULL;
  	}
  	return page;
  }
  EXPORT_SYMBOL(grab_cache_page_nowait);
  
  /*
   * CD/DVDs are error prone. When a medium error occurs, the driver may fail
   * a _large_ part of the i/o request. Imagine the worst scenario:
   *
   *      ---R__________________________________________B__________
   *         ^ reading here                             ^ bad block(assume 4k)
   *
   * read(R) => miss => readahead(R...B) => media error => frustrating retries
   * => failing the whole request => read(R) => read(R+1) =>
   * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
   * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
   * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
   *
   * It is going insane. Fix it by quickly scaling down the readahead size.
   */
  static void shrink_readahead_size_eio(struct file *filp,
  					struct file_ra_state *ra)
  {
  	ra->ra_pages /= 4;
  }
  
  /**
   * do_generic_file_read - generic file read routine
   * @filp:	the file to read
   * @ppos:	current file position
   * @desc:	read_descriptor
   *
   * This is a generic file read routine, and uses the
   * mapping->a_ops->readpage() function for the actual low-level stuff.
   *
   * This is really ugly. But the goto's actually try to clarify some
   * of the logic when it comes to error handling etc.
   */
  static void do_generic_file_read(struct file *filp, loff_t *ppos,
  		read_descriptor_t *desc)
  {
  	struct address_space *mapping = filp->f_mapping;
  	struct inode *inode = mapping->host;
  	struct file_ra_state *ra = &filp->f_ra;
  	pgoff_t index;
  	pgoff_t last_index;
  	pgoff_t prev_index;
  	unsigned long offset;      /* offset into pagecache page */
  	unsigned int prev_offset;
  	int error;
  
  	index = *ppos >> PAGE_CACHE_SHIFT;
  	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
  	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
  	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
  	offset = *ppos & ~PAGE_CACHE_MASK;
  
  	for (;;) {
  		struct page *page;
  		pgoff_t end_index;
  		loff_t isize;
  		unsigned long nr, ret;
  
  		cond_resched();
  find_page:
  		page = find_get_page(mapping, index);
  		if (!page) {
  			page_cache_sync_readahead(mapping,
  					ra, filp,
  					index, last_index - index);
  			page = find_get_page(mapping, index);
  			if (unlikely(page == NULL))
  				goto no_cached_page;
  		}
  		if (PageReadahead(page)) {
  			page_cache_async_readahead(mapping,
  					ra, filp, page,
  					index, last_index - index);
  		}
  		if (!PageUptodate(page)) {
  			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
  					!mapping->a_ops->is_partially_uptodate)
  				goto page_not_up_to_date;
  			if (!trylock_page(page))
  				goto page_not_up_to_date;
  			/* Did it get truncated before we got the lock? */
  			if (!page->mapping)
  				goto page_not_up_to_date_locked;
  			if (!mapping->a_ops->is_partially_uptodate(page,
  								desc, offset))
  				goto page_not_up_to_date_locked;
  			unlock_page(page);
  		}
  page_ok:
  		/*
  		 * i_size must be checked after we know the page is Uptodate.
  		 *
  		 * Checking i_size after the check allows us to calculate
  		 * the correct value for "nr", which means the zero-filled
  		 * part of the page is not copied back to userspace (unless
  		 * another truncate extends the file - this is desired though).
  		 */
  
  		isize = i_size_read(inode);
  		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
  		if (unlikely(!isize || index > end_index)) {
  			page_cache_release(page);
  			goto out;
  		}
  
  		/* nr is the maximum number of bytes to copy from this page */
  		nr = PAGE_CACHE_SIZE;
  		if (index == end_index) {
  			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
  			if (nr <= offset) {
  				page_cache_release(page);
  				goto out;
  			}
  		}
  		nr = nr - offset;
  
  		/* If users can be writing to this page using arbitrary
  		 * virtual addresses, take care about potential aliasing
  		 * before reading the page on the kernel side.
  		 */
  		if (mapping_writably_mapped(mapping))
  			flush_dcache_page(page);
  
  		/*
  		 * When a sequential read accesses a page several times,
  		 * only mark it as accessed the first time.
  		 */
  		if (prev_index != index || offset != prev_offset)
  			mark_page_accessed(page);
  		prev_index = index;
  
  		/*
  		 * Ok, we have the page, and it's up-to-date, so
  		 * now we can copy it to user space...
  		 *
  		 * The file_read_actor routine returns how many bytes were
  		 * actually used..
  		 * NOTE! This may not be the same as how much of a user buffer
  		 * we filled up (we may be padding etc), so we can only update
  		 * "pos" here (the actor routine has to update the user buffer
  		 * pointers and the remaining count).
  		 */
  		ret = file_read_actor(desc, page, offset, nr);
  		offset += ret;
  		index += offset >> PAGE_CACHE_SHIFT;
  		offset &= ~PAGE_CACHE_MASK;
  		prev_offset = offset;
  
  		page_cache_release(page);
  		if (ret == nr && desc->count)
  			continue;
  		goto out;
  
  page_not_up_to_date:
  		/* Get exclusive access to the page ... */
  		error = lock_page_killable(page);
  		if (unlikely(error))
  			goto readpage_error;
  
  page_not_up_to_date_locked:
  		/* Did it get truncated before we got the lock? */
  		if (!page->mapping) {
  			unlock_page(page);
  			page_cache_release(page);
  			continue;
  		}
  
  		/* Did somebody else fill it already? */
  		if (PageUptodate(page)) {
  			unlock_page(page);
  			goto page_ok;
  		}
  
  readpage:
  		/*
  		 * A previous I/O error may have been due to temporary
  		 * failures, eg. multipath errors.
  		 * PG_error will be set again if readpage fails.
  		 */
  		ClearPageError(page);
  		/* Start the actual read. The read will unlock the page. */
  		error = mapping->a_ops->readpage(filp, page);
  
  		if (unlikely(error)) {
  			if (error == AOP_TRUNCATED_PAGE) {
  				page_cache_release(page);
  				goto find_page;
  			}
  			goto readpage_error;
  		}
  
  		if (!PageUptodate(page)) {
  			error = lock_page_killable(page);
  			if (unlikely(error))
  				goto readpage_error;
  			if (!PageUptodate(page)) {
  				if (page->mapping == NULL) {
  					/*
  					 * invalidate_mapping_pages got it
  					 */
  					unlock_page(page);
  					page_cache_release(page);
  					goto find_page;
  				}
  				unlock_page(page);
  				shrink_readahead_size_eio(filp, ra);
  				error = -EIO;
  				goto readpage_error;
  			}
  			unlock_page(page);
  		}
  
  		goto page_ok;
  
  readpage_error:
  		/* UHHUH! A synchronous read error occurred. Report it */
  		desc->error = error;
  		page_cache_release(page);
  		goto out;
  
  no_cached_page:
  		/*
  		 * Ok, it wasn't cached, so we need to create a new
  		 * page..
  		 */
  		page = page_cache_alloc_cold(mapping);
  		if (!page) {
  			desc->error = -ENOMEM;
  			goto out;
  		}
  		error = add_to_page_cache_lru(page, mapping,
  						index, GFP_KERNEL);
  		if (error) {
  			page_cache_release(page);
  			if (error == -EEXIST)
  				goto find_page;
  			desc->error = error;
  			goto out;
  		}
  		goto readpage;
  	}
  
  out:
  	ra->prev_pos = prev_index;
  	ra->prev_pos <<= PAGE_CACHE_SHIFT;
  	ra->prev_pos |= prev_offset;
  
  	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
  	file_accessed(filp);
  }
  
  int file_read_actor(read_descriptor_t *desc, struct page *page,
  			unsigned long offset, unsigned long size)
  {
  	char *kaddr;
  	unsigned long left, count = desc->count;
  
  	if (size > count)
  		size = count;
  
  	/*
  	 * Faults on the destination of a read are common, so do it before
  	 * taking the kmap.
  	 */
  	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
  		kaddr = kmap_atomic(page);
  		left = __copy_to_user_inatomic(desc->arg.buf,
  						kaddr + offset, size);
  		kunmap_atomic(kaddr);
  		if (left == 0)
  			goto success;
  	}
  
  	/* Do it the slow way */
  	kaddr = kmap(page);
  	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
  	kunmap(page);
  
  	if (left) {
  		size -= left;
  		desc->error = -EFAULT;
  	}
  success:
  	desc->count = count - size;
  	desc->written += size;
  	desc->arg.buf += size;
  	return size;
  }
  
  /*
   * Performs necessary checks before doing a write
   * @iov:	io vector request
   * @nr_segs:	number of segments in the iovec
   * @count:	number of bytes to write
   * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
   *
   * Adjust number of segments and amount of bytes to write (nr_segs should be
   * properly initialized first). Returns appropriate error code that caller
   * should return or zero in case that write should be allowed.
   */
  int generic_segment_checks(const struct iovec *iov,
  			unsigned long *nr_segs, size_t *count, int access_flags)
  {
  	unsigned long   seg;
  	size_t cnt = 0;
  	for (seg = 0; seg < *nr_segs; seg++) {
  		const struct iovec *iv = &iov[seg];
  
  		/*
  		 * If any segment has a negative length, or the cumulative
  		 * length ever wraps negative then return -EINVAL.
  		 */
  		cnt += iv->iov_len;
  		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
  			return -EINVAL;
  		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
  			continue;
  		if (seg == 0)
  			return -EFAULT;
  		*nr_segs = seg;
  		cnt -= iv->iov_len;	/* This segment is no good */
  		break;
  	}
  	*count = cnt;
  	return 0;
  }
  EXPORT_SYMBOL(generic_segment_checks);
  
  /**
   * generic_file_aio_read - generic filesystem read routine
   * @iocb:	kernel I/O control block
   * @iov:	io vector request
   * @nr_segs:	number of segments in the iovec
   * @pos:	current file position
   *
   * This is the "read()" routine for all filesystems
   * that can use the page cache directly.
   */
  ssize_t
  generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
  		unsigned long nr_segs, loff_t pos)
  {
  	struct file *filp = iocb->ki_filp;
  	ssize_t retval;
  	unsigned long seg = 0;
  	size_t count;
  	loff_t *ppos = &iocb->ki_pos;
  
  	count = 0;
  	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
  	if (retval)
  		return retval;
  
  	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
  	if (filp->f_flags & O_DIRECT) {
  		loff_t size;
  		struct address_space *mapping;
  		struct inode *inode;
  
  		mapping = filp->f_mapping;
  		inode = mapping->host;
  		if (!count)
  			goto out; /* skip atime */
  		size = i_size_read(inode);
  		retval = filemap_write_and_wait_range(mapping, pos,
  					pos + iov_length(iov, nr_segs) - 1);
  		if (!retval) {
  			retval = mapping->a_ops->direct_IO(READ, iocb,
  							   iov, pos, nr_segs);
  		}
  		if (retval > 0) {
  			*ppos = pos + retval;
  			count -= retval;
  		}
  
  		/*
  		 * Btrfs can have a short DIO read if we encounter
  		 * compressed extents, so if there was an error, or if
  		 * we've already read everything we wanted to, or if
  		 * there was a short read because we hit EOF, go ahead
  		 * and return.  Otherwise fallthrough to buffered io for
  		 * the rest of the read.
  		 */
  		if (retval < 0 || !count || *ppos >= size) {
  			file_accessed(filp);
  			goto out;
  		}
  	}
  
  	count = retval;
  	for (seg = 0; seg < nr_segs; seg++) {
  		read_descriptor_t desc;
  		loff_t offset = 0;
  
  		/*
  		 * If we did a short DIO read we need to skip the section of the
  		 * iov that we've already read data into.
  		 */
  		if (count) {
  			if (count > iov[seg].iov_len) {
  				count -= iov[seg].iov_len;
  				continue;
  			}
  			offset = count;
  			count = 0;
  		}
  
  		desc.written = 0;
  		desc.arg.buf = iov[seg].iov_base + offset;
  		desc.count = iov[seg].iov_len - offset;
  		if (desc.count == 0)
  			continue;
  		desc.error = 0;
  		do_generic_file_read(filp, ppos, &desc);
  		retval += desc.written;
  		if (desc.error) {
  			retval = retval ?: desc.error;
  			break;
  		}
  		if (desc.count > 0)
  			break;
  	}
  out:
  	return retval;
  }
  EXPORT_SYMBOL(generic_file_aio_read);
  
  #ifdef CONFIG_MMU
  /**
   * page_cache_read - adds requested page to the page cache if not already there
   * @file:	file to read
   * @offset:	page index
   *
   * This adds the requested page to the page cache if it isn't already there,
   * and schedules an I/O to read in its contents from disk.
   */
  static int page_cache_read(struct file *file, pgoff_t offset)
  {
  	struct address_space *mapping = file->f_mapping;
  	struct page *page; 
  	int ret;
  
  	do {
  		page = page_cache_alloc_cold(mapping);
  		if (!page)
  			return -ENOMEM;
  
  		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
  		if (ret == 0)
  			ret = mapping->a_ops->readpage(file, page);
  		else if (ret == -EEXIST)
  			ret = 0; /* losing race to add is OK */
  
  		page_cache_release(page);
  
  	} while (ret == AOP_TRUNCATED_PAGE);
  		
  	return ret;
  }
  
  #define MMAP_LOTSAMISS  (100)
  
  /*
   * Synchronous readahead happens when we don't even find
   * a page in the page cache at all.
   */
  static void do_sync_mmap_readahead(struct vm_area_struct *vma,
  				   struct file_ra_state *ra,
  				   struct file *file,
  				   pgoff_t offset)
  {
  	unsigned long ra_pages;
  	struct address_space *mapping = file->f_mapping;
  
  	/* If we don't want any read-ahead, don't bother */
  	if (vma->vm_flags & VM_RAND_READ)
  		return;
  	if (!ra->ra_pages)
  		return;
  
  	if (vma->vm_flags & VM_SEQ_READ) {
  		page_cache_sync_readahead(mapping, ra, file, offset,
  					  ra->ra_pages);
  		return;
  	}
  
  	/* Avoid banging the cache line if not needed */
  	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
  		ra->mmap_miss++;
  
  	/*
  	 * Do we miss much more than hit in this file? If so,
  	 * stop bothering with read-ahead. It will only hurt.
  	 */
  	if (ra->mmap_miss > MMAP_LOTSAMISS)
  		return;
  
  	/*
  	 * mmap read-around
  	 */
  	ra_pages = max_sane_readahead(ra->ra_pages);
  	ra->start = max_t(long, 0, offset - ra_pages / 2);
  	ra->size = ra_pages;
  	ra->async_size = ra_pages / 4;
  	ra_submit(ra, mapping, file);
  }
  
  /*
   * Asynchronous readahead happens when we find the page and PG_readahead,
   * so we want to possibly extend the readahead further..
   */
  static void do_async_mmap_readahead(struct vm_area_struct *vma,
  				    struct file_ra_state *ra,
  				    struct file *file,
  				    struct page *page,
  				    pgoff_t offset)
  {
  	struct address_space *mapping = file->f_mapping;
  
  	/* If we don't want any read-ahead, don't bother */
  	if (vma->vm_flags & VM_RAND_READ)
  		return;
  	if (ra->mmap_miss > 0)
  		ra->mmap_miss--;
  	if (PageReadahead(page))
  		page_cache_async_readahead(mapping, ra, file,
  					   page, offset, ra->ra_pages);
  }
  
  /**
   * filemap_fault - read in file data for page fault handling
   * @vma:	vma in which the fault was taken
   * @vmf:	struct vm_fault containing details of the fault
   *
   * filemap_fault() is invoked via the vma operations vector for a
   * mapped memory region to read in file data during a page fault.
   *
   * The goto's are kind of ugly, but this streamlines the normal case of having
   * it in the page cache, and handles the special cases reasonably without
   * having a lot of duplicated code.
   */
  int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  {
  	int error;
  	struct file *file = vma->vm_file;
  	struct address_space *mapping = file->f_mapping;
  	struct file_ra_state *ra = &file->f_ra;
  	struct inode *inode = mapping->host;
  	pgoff_t offset = vmf->pgoff;
  	struct page *page;
  	pgoff_t size;
  	int ret = 0;
  
  	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  	if (offset >= size)
  		return VM_FAULT_SIGBUS;
  
  	/*
  	 * Do we have something in the page cache already?
  	 */
  	page = find_get_page(mapping, offset);
  	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
  		/*
  		 * We found the page, so try async readahead before
  		 * waiting for the lock.
  		 */
  		do_async_mmap_readahead(vma, ra, file, page, offset);
  	} else if (!page) {
  		/* No page in the page cache at all */
  		do_sync_mmap_readahead(vma, ra, file, offset);
  		count_vm_event(PGMAJFAULT);
  		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
  		ret = VM_FAULT_MAJOR;
  retry_find:
  		page = find_get_page(mapping, offset);
  		if (!page)
  			goto no_cached_page;
  	}
  
  	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
  		page_cache_release(page);
  		return ret | VM_FAULT_RETRY;
  	}
  
  	/* Did it get truncated? */
  	if (unlikely(page->mapping != mapping)) {
  		unlock_page(page);
  		put_page(page);
  		goto retry_find;
  	}
  	VM_BUG_ON_PAGE(page->index != offset, page);
  
  	/*
  	 * We have a locked page in the page cache, now we need to check
  	 * that it's up-to-date. If not, it is going to be due to an error.
  	 */
  	if (unlikely(!PageUptodate(page)))
  		goto page_not_uptodate;
  
  	/*
  	 * Found the page and have a reference on it.
  	 * We must recheck i_size under page lock.
  	 */
  	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  	if (unlikely(offset >= size)) {
  		unlock_page(page);
  		page_cache_release(page);
  		return VM_FAULT_SIGBUS;
  	}
  
  	vmf->page = page;
  	return ret | VM_FAULT_LOCKED;
  
  no_cached_page:
  	/*
  	 * We're only likely to ever get here if MADV_RANDOM is in
  	 * effect.
  	 */
  	error = page_cache_read(file, offset);
  
  	/*
  	 * The page we want has now been added to the page cache.
  	 * In the unlikely event that someone removed it in the
  	 * meantime, we'll just come back here and read it again.
  	 */
  	if (error >= 0)
  		goto retry_find;
  
  	/*
  	 * An error return from page_cache_read can result if the
  	 * system is low on memory, or a problem occurs while trying
  	 * to schedule I/O.
  	 */
  	if (error == -ENOMEM)
  		return VM_FAULT_OOM;
  	return VM_FAULT_SIGBUS;
  
  page_not_uptodate:
  	/*
  	 * Umm, take care of errors if the page isn't up-to-date.
  	 * Try to re-read it _once_. We do this synchronously,
  	 * because there really aren't any performance issues here
  	 * and we need to check for errors.
  	 */
  	ClearPageError(page);
  	error = mapping->a_ops->readpage(file, page);
  	if (!error) {
  		wait_on_page_locked(page);
  		if (!PageUptodate(page))
  			error = -EIO;
  	}
  	page_cache_release(page);
  
  	if (!error || error == AOP_TRUNCATED_PAGE)
  		goto retry_find;
  
  	/* Things didn't work out. Return zero to tell the mm layer so. */
  	shrink_readahead_size_eio(file, ra);
  	return VM_FAULT_SIGBUS;
  }
  EXPORT_SYMBOL(filemap_fault);
  
  int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
  {
  	struct page *page = vmf->page;
  	struct inode *inode = file_inode(vma->vm_file);
  	int ret = VM_FAULT_LOCKED;
  
  	sb_start_pagefault(inode->i_sb);
  	file_update_time(vma->vm_file);
  	lock_page(page);
  	if (page->mapping != inode->i_mapping) {
  		unlock_page(page);
  		ret = VM_FAULT_NOPAGE;
  		goto out;
  	}
  	/*
  	 * We mark the page dirty already here so that when freeze is in
  	 * progress, we are guaranteed that writeback during freezing will
  	 * see the dirty page and writeprotect it again.
  	 */
  	set_page_dirty(page);
  	wait_for_stable_page(page);
  out:
  	sb_end_pagefault(inode->i_sb);
  	return ret;
  }
  EXPORT_SYMBOL(filemap_page_mkwrite);
  
  const struct vm_operations_struct generic_file_vm_ops = {
  	.fault		= filemap_fault,
  	.page_mkwrite	= filemap_page_mkwrite,
  	.remap_pages	= generic_file_remap_pages,
  };
  
  /* This is used for a general mmap of a disk file */
  
  int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
  {
  	struct address_space *mapping = file->f_mapping;
  
  	if (!mapping->a_ops->readpage)
  		return -ENOEXEC;
  	file_accessed(file);
  	vma->vm_ops = &generic_file_vm_ops;
  	return 0;
  }
  
  /*
   * This is for filesystems which do not implement ->writepage.
   */
  int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
  {
  	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
  		return -EINVAL;
  	return generic_file_mmap(file, vma);
  }
  #else
  int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
  {
  	return -ENOSYS;
  }
  int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
  {
  	return -ENOSYS;
  }
  #endif /* CONFIG_MMU */
  
  EXPORT_SYMBOL(generic_file_mmap);
  EXPORT_SYMBOL(generic_file_readonly_mmap);
  
  static struct page *wait_on_page_read(struct page *page)
  {
  	if (!IS_ERR(page)) {
  		wait_on_page_locked(page);
  		if (!PageUptodate(page)) {
  			page_cache_release(page);
  			page = ERR_PTR(-EIO);
  		}
  	}
  	return page;
  }
  
  static struct page *__read_cache_page(struct address_space *mapping,
  				pgoff_t index,
  				int (*filler)(void *, struct page *),
  				void *data,
  				gfp_t gfp)
  {
  	struct page *page;
  	int err;
  repeat:
  	page = find_get_page(mapping, index);
  	if (!page) {
  		page = __page_cache_alloc(gfp | __GFP_COLD);
  		if (!page)
  			return ERR_PTR(-ENOMEM);
  		err = add_to_page_cache_lru(page, mapping, index, gfp);
  		if (unlikely(err)) {
  			page_cache_release(page);
  			if (err == -EEXIST)
  				goto repeat;
  			/* Presumably ENOMEM for radix tree node */
  			return ERR_PTR(err);
  		}
  		err = filler(data, page);
  		if (err < 0) {
  			page_cache_release(page);
  			page = ERR_PTR(err);
  		} else {
  			page = wait_on_page_read(page);
  		}
  	}
  	return page;
  }
  
  static struct page *do_read_cache_page(struct address_space *mapping,
  				pgoff_t index,
  				int (*filler)(void *, struct page *),
  				void *data,
  				gfp_t gfp)
  
  {
  	struct page *page;
  	int err;
  
  retry:
  	page = __read_cache_page(mapping, index, filler, data, gfp);
  	if (IS_ERR(page))
  		return page;
  	if (PageUptodate(page))
  		goto out;
  
  	lock_page(page);
  	if (!page->mapping) {
  		unlock_page(page);
  		page_cache_release(page);
  		goto retry;
  	}
  	if (PageUptodate(page)) {
  		unlock_page(page);
  		goto out;
  	}
  	err = filler(data, page);
  	if (err < 0) {
  		page_cache_release(page);
  		return ERR_PTR(err);
  	} else {
  		page = wait_on_page_read(page);
  		if (IS_ERR(page))
  			return page;
  	}
  out:
  	mark_page_accessed(page);
  	return page;
  }
  
  /**
   * read_cache_page - read into page cache, fill it if needed
   * @mapping:	the page's address_space
   * @index:	the page index
   * @filler:	function to perform the read
   * @data:	first arg to filler(data, page) function, often left as NULL
   *
   * Read into the page cache. If a page already exists, and PageUptodate() is
   * not set, try to fill the page and wait for it to become unlocked.
   *
   * If the page does not get brought uptodate, return -EIO.
   */
  struct page *read_cache_page(struct address_space *mapping,
  				pgoff_t index,
  				int (*filler)(void *, struct page *),
  				void *data)
  {
  	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
  }
  EXPORT_SYMBOL(read_cache_page);
  
  /**
   * read_cache_page_gfp - read into page cache, using specified page allocation flags.
   * @mapping:	the page's address_space
   * @index:	the page index
   * @gfp:	the page allocator flags to use if allocating
   *
   * This is the same as "read_mapping_page(mapping, index, NULL)", but with
   * any new page allocations done using the specified allocation flags.
   *
   * If the page does not get brought uptodate, return -EIO.
   */
  struct page *read_cache_page_gfp(struct address_space *mapping,
  				pgoff_t index,
  				gfp_t gfp)
  {
  	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
  
  	return do_read_cache_page(mapping, index, filler, NULL, gfp);
  }
  EXPORT_SYMBOL(read_cache_page_gfp);
  
  static size_t __iovec_copy_from_user_inatomic(char *vaddr,
  			const struct iovec *iov, size_t base, size_t bytes)
  {
  	size_t copied = 0, left = 0;
  
  	while (bytes) {
  		char __user *buf = iov->iov_base + base;
  		int copy = min(bytes, iov->iov_len - base);
  
  		base = 0;
  		left = __copy_from_user_inatomic(vaddr, buf, copy);
  		copied += copy;
  		bytes -= copy;
  		vaddr += copy;
  		iov++;
  
  		if (unlikely(left))
  			break;
  	}
  	return copied - left;
  }
  
  /*
   * Copy as much as we can into the page and return the number of bytes which
   * were successfully copied.  If a fault is encountered then return the number of
   * bytes which were copied.
   */
  size_t iov_iter_copy_from_user_atomic(struct page *page,
  		struct iov_iter *i, unsigned long offset, size_t bytes)
  {
  	char *kaddr;
  	size_t copied;
  
  	kaddr = kmap_atomic(page);
  	if (likely(i->nr_segs == 1)) {
  		int left;
  		char __user *buf = i->iov->iov_base + i->iov_offset;
  		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
  		copied = bytes - left;
  	} else {
  		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
  						i->iov, i->iov_offset, bytes);
  	}
  	kunmap_atomic(kaddr);
  
  	return copied;
  }
  EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
  
  /*
   * This has the same sideeffects and return value as
   * iov_iter_copy_from_user_atomic().
   * The difference is that it attempts to resolve faults.
   * Page must not be locked.
   */
  size_t iov_iter_copy_from_user(struct page *page,
  		struct iov_iter *i, unsigned long offset, size_t bytes)
  {
  	char *kaddr;
  	size_t copied;
  
  	kaddr = kmap(page);
  	if (likely(i->nr_segs == 1)) {
  		int left;
  		char __user *buf = i->iov->iov_base + i->iov_offset;
  		left = __copy_from_user(kaddr + offset, buf, bytes);
  		copied = bytes - left;
  	} else {
  		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
  						i->iov, i->iov_offset, bytes);
  	}
  	kunmap(page);
  	return copied;
  }
  EXPORT_SYMBOL(iov_iter_copy_from_user);
  
  void iov_iter_advance(struct iov_iter *i, size_t bytes)
  {
  	BUG_ON(i->count < bytes);
  
  	if (likely(i->nr_segs == 1)) {
  		i->iov_offset += bytes;
  		i->count -= bytes;
  	} else {
  		const struct iovec *iov = i->iov;
  		size_t base = i->iov_offset;
  		unsigned long nr_segs = i->nr_segs;
  
  		/*
  		 * The !iov->iov_len check ensures we skip over unlikely
  		 * zero-length segments (without overruning the iovec).
  		 */
  		while (bytes || unlikely(i->count && !iov->iov_len)) {
  			int copy;
  
  			copy = min(bytes, iov->iov_len - base);
  			BUG_ON(!i->count || i->count < copy);
  			i->count -= copy;
  			bytes -= copy;
  			base += copy;
  			if (iov->iov_len == base) {
  				iov++;
  				nr_segs--;
  				base = 0;
  			}
  		}
  		i->iov = iov;
  		i->iov_offset = base;
  		i->nr_segs = nr_segs;
  	}
  }
  EXPORT_SYMBOL(iov_iter_advance);
  
  /*
   * Fault in the first iovec of the given iov_iter, to a maximum length
   * of bytes. Returns 0 on success, or non-zero if the memory could not be
   * accessed (ie. because it is an invalid address).
   *
   * writev-intensive code may want this to prefault several iovecs -- that
   * would be possible (callers must not rely on the fact that _only_ the
   * first iovec will be faulted with the current implementation).
   */
  int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
  {
  	char __user *buf = i->iov->iov_base + i->iov_offset;
  	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
  	return fault_in_pages_readable(buf, bytes);
  }
  EXPORT_SYMBOL(iov_iter_fault_in_readable);
  
  /*
   * Return the count of just the current iov_iter segment.
   */
  size_t iov_iter_single_seg_count(const struct iov_iter *i)
  {
  	const struct iovec *iov = i->iov;
  	if (i->nr_segs == 1)
  		return i->count;
  	else
  		return min(i->count, iov->iov_len - i->iov_offset);
  }
  EXPORT_SYMBOL(iov_iter_single_seg_count);
  
  /*
   * Performs necessary checks before doing a write
   *
   * Can adjust writing position or amount of bytes to write.
   * Returns appropriate error code that caller should return or
   * zero in case that write should be allowed.
   */
  inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
  {
  	struct inode *inode = file->f_mapping->host;
  	unsigned long limit = rlimit(RLIMIT_FSIZE);
  
          if (unlikely(*pos < 0))
                  return -EINVAL;
  
  	if (!isblk) {
  		/* FIXME: this is for backwards compatibility with 2.4 */
  		if (file->f_flags & O_APPEND)
                          *pos = i_size_read(inode);
  
  		if (limit != RLIM_INFINITY) {
  			if (*pos >= limit) {
  				send_sig(SIGXFSZ, current, 0);
  				return -EFBIG;
  			}
  			if (*count > limit - (typeof(limit))*pos) {
  				*count = limit - (typeof(limit))*pos;
  			}
  		}
  	}
  
  	/*
  	 * LFS rule
  	 */
  	if (unlikely(*pos + *count > MAX_NON_LFS &&
  				!(file->f_flags & O_LARGEFILE))) {
  		if (*pos >= MAX_NON_LFS) {
  			return -EFBIG;
  		}
  		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
  			*count = MAX_NON_LFS - (unsigned long)*pos;
  		}
  	}
  
  	/*
  	 * Are we about to exceed the fs block limit ?
  	 *
  	 * If we have written data it becomes a short write.  If we have
  	 * exceeded without writing data we send a signal and return EFBIG.
  	 * Linus frestrict idea will clean these up nicely..
  	 */
  	if (likely(!isblk)) {
  		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
  			if (*count || *pos > inode->i_sb->s_maxbytes) {
  				return -EFBIG;
  			}
  			/* zero-length writes at ->s_maxbytes are OK */
  		}
  
  		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
  			*count = inode->i_sb->s_maxbytes - *pos;
  	} else {
  #ifdef CONFIG_BLOCK
  		loff_t isize;
  		if (bdev_read_only(I_BDEV(inode)))
  			return -EPERM;
  		isize = i_size_read(inode);
  		if (*pos >= isize) {
  			if (*count || *pos > isize)
  				return -ENOSPC;
  		}
  
  		if (*pos + *count > isize)
  			*count = isize - *pos;
  #else
  		return -EPERM;
  #endif
  	}
  	return 0;
  }
  EXPORT_SYMBOL(generic_write_checks);
  
  int pagecache_write_begin(struct file *file, struct address_space *mapping,
  				loff_t pos, unsigned len, unsigned flags,
  				struct page **pagep, void **fsdata)
  {
  	const struct address_space_operations *aops = mapping->a_ops;
  
  	return aops->write_begin(file, mapping, pos, len, flags,
  							pagep, fsdata);
  }
  EXPORT_SYMBOL(pagecache_write_begin);
  
  int pagecache_write_end(struct file *file, struct address_space *mapping,
  				loff_t pos, unsigned len, unsigned copied,
  				struct page *page, void *fsdata)
  {
  	const struct address_space_operations *aops = mapping->a_ops;
  
  	mark_page_accessed(page);
  	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
  }
  EXPORT_SYMBOL(pagecache_write_end);
  
  ssize_t
  generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
  		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
  		size_t count, size_t ocount)
  {
  	struct file	*file = iocb->ki_filp;
  	struct address_space *mapping = file->f_mapping;
  	struct inode	*inode = mapping->host;
  	ssize_t		written;
  	size_t		write_len;
  	pgoff_t		end;
  
  	if (count != ocount)
  		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
  
  	write_len = iov_length(iov, *nr_segs);
  	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
  
  	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
  	if (written)
  		goto out;
  
  	/*
  	 * After a write we want buffered reads to be sure to go to disk to get
  	 * the new data.  We invalidate clean cached page from the region we're
  	 * about to write.  We do this *before* the write so that we can return
  	 * without clobbering -EIOCBQUEUED from ->direct_IO().
  	 */
  	if (mapping->nrpages) {
  		written = invalidate_inode_pages2_range(mapping,
  					pos >> PAGE_CACHE_SHIFT, end);
  		/*
  		 * If a page can not be invalidated, return 0 to fall back
  		 * to buffered write.
  		 */
  		if (written) {
  			if (written == -EBUSY)
  				return 0;
  			goto out;
  		}
  	}
  
  	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
  
  	/*
  	 * Finally, try again to invalidate clean pages which might have been
  	 * cached by non-direct readahead, or faulted in by get_user_pages()
  	 * if the source of the write was an mmap'ed region of the file
  	 * we're writing.  Either one is a pretty crazy thing to do,
  	 * so we don't support it 100%.  If this invalidation
  	 * fails, tough, the write still worked...
  	 */
  	if (mapping->nrpages) {
  		invalidate_inode_pages2_range(mapping,
  					      pos >> PAGE_CACHE_SHIFT, end);
  	}
  
  	if (written > 0) {
  		pos += written;
  		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
  			i_size_write(inode, pos);
  			mark_inode_dirty(inode);
  		}
  		*ppos = pos;
  	}
  out:
  	return written;
  }
  EXPORT_SYMBOL(generic_file_direct_write);
  
  /*
   * Find or create a page at the given pagecache position. Return the locked
   * page. This function is specifically for buffered writes.
   */
  struct page *grab_cache_page_write_begin(struct address_space *mapping,
  					pgoff_t index, unsigned flags)
  {
  	int status;
  	gfp_t gfp_mask;
  	struct page *page;
  	gfp_t gfp_notmask = 0;
  
  	gfp_mask = mapping_gfp_mask(mapping);
  	if (mapping_cap_account_dirty(mapping))
  		gfp_mask |= __GFP_WRITE;
  	if (flags & AOP_FLAG_NOFS)
  		gfp_notmask = __GFP_FS;
  repeat:
  	page = find_lock_page(mapping, index);
  	if (page)
  		goto found;
  
  	page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
  	if (!page)
  		return NULL;
  	status = add_to_page_cache_lru(page, mapping, index,
  						GFP_KERNEL & ~gfp_notmask);
  	if (unlikely(status)) {
  		page_cache_release(page);
  		if (status == -EEXIST)
  			goto repeat;
  		return NULL;
  	}
  found:
  	wait_for_stable_page(page);
  	return page;
  }
  EXPORT_SYMBOL(grab_cache_page_write_begin);
  
  static ssize_t generic_perform_write(struct file *file,
  				struct iov_iter *i, loff_t pos)
  {
  	struct address_space *mapping = file->f_mapping;
  	const struct address_space_operations *a_ops = mapping->a_ops;
  	long status = 0;
  	ssize_t written = 0;
  	unsigned int flags = 0;
  
  	/*
  	 * Copies from kernel address space cannot fail (NFSD is a big user).
  	 */
  	if (segment_eq(get_fs(), KERNEL_DS))
  		flags |= AOP_FLAG_UNINTERRUPTIBLE;
  
  	do {
  		struct page *page;
  		unsigned long offset;	/* Offset into pagecache page */
  		unsigned long bytes;	/* Bytes to write to page */
  		size_t copied;		/* Bytes copied from user */
  		void *fsdata;
  
  		offset = (pos & (PAGE_CACHE_SIZE - 1));
  		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
  						iov_iter_count(i));
  
  again:
  		/*
  		 * Bring in the user page that we will copy from _first_.
  		 * Otherwise there's a nasty deadlock on copying from the
  		 * same page as we're writing to, without it being marked
  		 * up-to-date.
  		 *
  		 * Not only is this an optimisation, but it is also required
  		 * to check that the address is actually valid, when atomic
  		 * usercopies are used, below.
  		 */
  		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
  			status = -EFAULT;
  			break;
  		}
  
  		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
  						&page, &fsdata);
  		if (unlikely(status))
  			break;
  
  		if (mapping_writably_mapped(mapping))
  			flush_dcache_page(page);
  
  		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
  		flush_dcache_page(page);
  
  		mark_page_accessed(page);
  		status = a_ops->write_end(file, mapping, pos, bytes, copied,
  						page, fsdata);
  		if (unlikely(status < 0))
  			break;
  		copied = status;
  
  		cond_resched();
  
  		iov_iter_advance(i, copied);
  		if (unlikely(copied == 0)) {
  			/*
  			 * If we were unable to copy any data at all, we must
  			 * fall back to a single segment length write.
  			 *
  			 * If we didn't fallback here, we could livelock
  			 * because not all segments in the iov can be copied at
  			 * once without a pagefault.
  			 */
  			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
  						iov_iter_single_seg_count(i));
  			goto again;
  		}
  		pos += copied;
  		written += copied;
  
  		balance_dirty_pages_ratelimited(mapping);
  		if (fatal_signal_pending(current)) {
  			status = -EINTR;
  			break;
  		}
  	} while (iov_iter_count(i));
  
  	return written ? written : status;
  }
  
  ssize_t
  generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
  		unsigned long nr_segs, loff_t pos, loff_t *ppos,
  		size_t count, ssize_t written)
  {
  	struct file *file = iocb->ki_filp;
  	ssize_t status;
  	struct iov_iter i;
  
  	iov_iter_init(&i, iov, nr_segs, count, written);
  	status = generic_perform_write(file, &i, pos);
  
  	if (likely(status >= 0)) {
  		written += status;
  		*ppos = pos + status;
    	}
  	
  	return written ? written : status;
  }
  EXPORT_SYMBOL(generic_file_buffered_write);
  
  /**
   * __generic_file_aio_write - write data to a file
   * @iocb:	IO state structure (file, offset, etc.)
   * @iov:	vector with data to write
   * @nr_segs:	number of segments in the vector
   * @ppos:	position where to write
   *
   * This function does all the work needed for actually writing data to a
   * file. It does all basic checks, removes SUID from the file, updates
   * modification times and calls proper subroutines depending on whether we
   * do direct IO or a standard buffered write.
   *
   * It expects i_mutex to be grabbed unless we work on a block device or similar
   * object which does not need locking at all.
   *
   * This function does *not* take care of syncing data in case of O_SYNC write.
   * A caller has to handle it. This is mainly due to the fact that we want to
   * avoid syncing under i_mutex.
   */
  ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
  				 unsigned long nr_segs, loff_t *ppos)
  {
  	struct file *file = iocb->ki_filp;
  	struct address_space * mapping = file->f_mapping;
  	size_t ocount;		/* original count */
  	size_t count;		/* after file limit checks */
  	struct inode 	*inode = mapping->host;
  	loff_t		pos;
  	ssize_t		written;
  	ssize_t		err;
  
  	ocount = 0;
  	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
  	if (err)
  		return err;
  
  	count = ocount;
  	pos = *ppos;
  
  	/* We can write back this queue in page reclaim */
  	current->backing_dev_info = mapping->backing_dev_info;
  	written = 0;
  
  	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
  	if (err)
  		goto out;
  
  	if (count == 0)
  		goto out;
  
  	err = file_remove_suid(file);
  	if (err)
  		goto out;
  
  	err = file_update_time(file);
  	if (err)
  		goto out;
  
  	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
  	if (unlikely(file->f_flags & O_DIRECT)) {
  		loff_t endbyte;
  		ssize_t written_buffered;
  
  		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
  							ppos, count, ocount);
  		if (written < 0 || written == count)
  			goto out;
  		/*
  		 * direct-io write to a hole: fall through to buffered I/O
  		 * for completing the rest of the request.
  		 */
  		pos += written;
  		count -= written;
  		written_buffered = generic_file_buffered_write(iocb, iov,
  						nr_segs, pos, ppos, count,
  						written);
  		/*
  		 * If generic_file_buffered_write() retuned a synchronous error
  		 * then we want to return the number of bytes which were
  		 * direct-written, or the error code if that was zero.  Note
  		 * that this differs from normal direct-io semantics, which
  		 * will return -EFOO even if some bytes were written.
  		 */
  		if (written_buffered < 0) {
  			err = written_buffered;
  			goto out;
  		}
  
  		/*
  		 * We need to ensure that the page cache pages are written to
  		 * disk and invalidated to preserve the expected O_DIRECT
  		 * semantics.
  		 */
  		endbyte = pos + written_buffered - written - 1;
  		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
  		if (err == 0) {
  			written = written_buffered;
  			invalidate_mapping_pages(mapping,
  						 pos >> PAGE_CACHE_SHIFT,
  						 endbyte >> PAGE_CACHE_SHIFT);
  		} else {
  			/*
  			 * We don't know how much we wrote, so just return
  			 * the number of bytes which were direct-written
  			 */
  		}
  	} else {
  		written = generic_file_buffered_write(iocb, iov, nr_segs,
  				pos, ppos, count, written);
  	}
  out:
  	current->backing_dev_info = NULL;
  	return written ? written : err;
  }
  EXPORT_SYMBOL(__generic_file_aio_write);
  
  /**
   * generic_file_aio_write - write data to a file
   * @iocb:	IO state structure
   * @iov:	vector with data to write
   * @nr_segs:	number of segments in the vector
   * @pos:	position in file where to write
   *
   * This is a wrapper around __generic_file_aio_write() to be used by most
   * filesystems. It takes care of syncing the file in case of O_SYNC file
   * and acquires i_mutex as needed.
   */
  ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
  		unsigned long nr_segs, loff_t pos)
  {
  	struct file *file = iocb->ki_filp;
  	struct inode *inode = file->f_mapping->host;
  	ssize_t ret;
  
  	BUG_ON(iocb->ki_pos != pos);
  
  	mutex_lock(&inode->i_mutex);
  	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
  	mutex_unlock(&inode->i_mutex);
  
  	if (ret > 0) {
  		ssize_t err;
  
  		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
  		if (err < 0)
  			ret = err;
  	}
  	return ret;
  }
  EXPORT_SYMBOL(generic_file_aio_write);
  
  /**
   * try_to_release_page() - release old fs-specific metadata on a page
   *
   * @page: the page which the kernel is trying to free
   * @gfp_mask: memory allocation flags (and I/O mode)
   *
   * The address_space is to try to release any data against the page
   * (presumably at page->private).  If the release was successful, return `1'.
   * Otherwise return zero.
   *
   * This may also be called if PG_fscache is set on a page, indicating that the
   * page is known to the local caching routines.
   *
   * The @gfp_mask argument specifies whether I/O may be performed to release
   * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
   *
   */
  int try_to_release_page(struct page *page, gfp_t gfp_mask)
  {
  	struct address_space * const mapping = page->mapping;
  
  	BUG_ON(!PageLocked(page));
  	if (PageWriteback(page))
  		return 0;
  
  	if (mapping && mapping->a_ops->releasepage)
  		return mapping->a_ops->releasepage(page, gfp_mask);
  	return try_to_free_buffers(page);
  }
  
  EXPORT_SYMBOL(try_to_release_page);