Blame view

kernel/linux-imx6_3.14.28/Documentation/driver-model/driver.txt 7.41 KB
6b13f685e   김민수   BSP 최초 추가
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
  
  Device Drivers
  
  See the kerneldoc for the struct device_driver.
  
  
  Allocation
  ~~~~~~~~~~
  
  Device drivers are statically allocated structures. Though there may
  be multiple devices in a system that a driver supports, struct
  device_driver represents the driver as a whole (not a particular
  device instance).
  
  Initialization
  ~~~~~~~~~~~~~~
  
  The driver must initialize at least the name and bus fields. It should
  also initialize the devclass field (when it arrives), so it may obtain
  the proper linkage internally. It should also initialize as many of
  the callbacks as possible, though each is optional.
  
  Declaration
  ~~~~~~~~~~~
  
  As stated above, struct device_driver objects are statically
  allocated. Below is an example declaration of the eepro100
  driver. This declaration is hypothetical only; it relies on the driver
  being converted completely to the new model. 
  
  static struct device_driver eepro100_driver = {
         .name		= "eepro100",
         .bus		= &pci_bus_type,
         
         .probe		= eepro100_probe,
         .remove		= eepro100_remove,
         .suspend		= eepro100_suspend,
         .resume		= eepro100_resume,
  };
  
  Most drivers will not be able to be converted completely to the new
  model because the bus they belong to has a bus-specific structure with
  bus-specific fields that cannot be generalized. 
  
  The most common example of this are device ID structures. A driver
  typically defines an array of device IDs that it supports. The format
  of these structures and the semantics for comparing device IDs are
  completely bus-specific. Defining them as bus-specific entities would
  sacrifice type-safety, so we keep bus-specific structures around. 
  
  Bus-specific drivers should include a generic struct device_driver in
  the definition of the bus-specific driver. Like this:
  
  struct pci_driver {
         const struct pci_device_id *id_table;
         struct device_driver	  driver;
  };
  
  A definition that included bus-specific fields would look like
  (using the eepro100 driver again):
  
  static struct pci_driver eepro100_driver = {
         .id_table       = eepro100_pci_tbl,
         .driver	       = {
  		.name		= "eepro100",
  		.bus		= &pci_bus_type,
  		.probe		= eepro100_probe,
  		.remove		= eepro100_remove,
  		.suspend	= eepro100_suspend,
  		.resume		= eepro100_resume,
         },
  };
  
  Some may find the syntax of embedded struct initialization awkward or
  even a bit ugly. So far, it's the best way we've found to do what we want...
  
  Registration
  ~~~~~~~~~~~~
  
  int driver_register(struct device_driver * drv);
  
  The driver registers the structure on startup. For drivers that have
  no bus-specific fields (i.e. don't have a bus-specific driver
  structure), they would use driver_register and pass a pointer to their
  struct device_driver object. 
  
  Most drivers, however, will have a bus-specific structure and will
  need to register with the bus using something like pci_driver_register.
  
  It is important that drivers register their driver structure as early as
  possible. Registration with the core initializes several fields in the
  struct device_driver object, including the reference count and the
  lock. These fields are assumed to be valid at all times and may be
  used by the device model core or the bus driver.
  
  
  Transition Bus Drivers
  ~~~~~~~~~~~~~~~~~~~~~~
  
  By defining wrapper functions, the transition to the new model can be
  made easier. Drivers can ignore the generic structure altogether and
  let the bus wrapper fill in the fields. For the callbacks, the bus can
  define generic callbacks that forward the call to the bus-specific
  callbacks of the drivers. 
  
  This solution is intended to be only temporary. In order to get class
  information in the driver, the drivers must be modified anyway. Since
  converting drivers to the new model should reduce some infrastructural
  complexity and code size, it is recommended that they are converted as
  class information is added.
  
  Access
  ~~~~~~
  
  Once the object has been registered, it may access the common fields of
  the object, like the lock and the list of devices. 
  
  int driver_for_each_dev(struct device_driver * drv, void * data, 
  		        int (*callback)(struct device * dev, void * data));
  
  The devices field is a list of all the devices that have been bound to
  the driver. The LDM core provides a helper function to operate on all
  the devices a driver controls. This helper locks the driver on each
  node access, and does proper reference counting on each device as it
  accesses it. 
  
  
  sysfs
  ~~~~~
  
  When a driver is registered, a sysfs directory is created in its
  bus's directory. In this directory, the driver can export an interface
  to userspace to control operation of the driver on a global basis;
  e.g. toggling debugging output in the driver.
  
  A future feature of this directory will be a 'devices' directory. This
  directory will contain symlinks to the directories of devices it
  supports.
  
  
  
  Callbacks
  ~~~~~~~~~
  
  	int	(*probe)	(struct device * dev);
  
  The probe() entry is called in task context, with the bus's rwsem locked
  and the driver partially bound to the device.  Drivers commonly use
  container_of() to convert "dev" to a bus-specific type, both in probe()
  and other routines.  That type often provides device resource data, such
  as pci_dev.resource[] or platform_device.resources, which is used in
  addition to dev->platform_data to initialize the driver.
  
  This callback holds the driver-specific logic to bind the driver to a
  given device.  That includes verifying that the device is present, that
  it's a version the driver can handle, that driver data structures can
  be allocated and initialized, and that any hardware can be initialized.
  Drivers often store a pointer to their state with dev_set_drvdata().
  When the driver has successfully bound itself to that device, then probe()
  returns zero and the driver model code will finish its part of binding
  the driver to that device.
  
  A driver's probe() may return a negative errno value to indicate that
  the driver did not bind to this device, in which case it should have
  released all resources it allocated.
  
  	int 	(*remove)	(struct device * dev);
  
  remove is called to unbind a driver from a device. This may be
  called if a device is physically removed from the system, if the
  driver module is being unloaded, during a reboot sequence, or
  in other cases.
  
  It is up to the driver to determine if the device is present or
  not. It should free any resources allocated specifically for the
  device; i.e. anything in the device's driver_data field. 
  
  If the device is still present, it should quiesce the device and place
  it into a supported low-power state.
  
  	int	(*suspend)	(struct device * dev, pm_message_t state);
  
  suspend is called to put the device in a low power state.
  
  	int	(*resume)	(struct device * dev);
  
  Resume is used to bring a device back from a low power state.
  
  
  Attributes
  ~~~~~~~~~~
  struct driver_attribute {
          struct attribute        attr;
          ssize_t (*show)(struct device_driver *driver, char *buf);
          ssize_t (*store)(struct device_driver *, const char * buf, size_t count);
  };
  
  Device drivers can export attributes via their sysfs directories. 
  Drivers can declare attributes using a DRIVER_ATTR macro that works
  identically to the DEVICE_ATTR macro. 
  
  Example:
  
  DRIVER_ATTR(debug,0644,show_debug,store_debug);
  
  This is equivalent to declaring:
  
  struct driver_attribute driver_attr_debug;
  
  This can then be used to add and remove the attribute from the
  driver's directory using:
  
  int driver_create_file(struct device_driver *, const struct driver_attribute *);
  void driver_remove_file(struct device_driver *, const struct driver_attribute *);