Blame view

kernel/linux-imx6_3.14.28/lib/sha1.c 6.05 KB
6b13f685e   김민수   BSP 최초 추가
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
  /*
   * SHA1 routine optimized to do word accesses rather than byte accesses,
   * and to avoid unnecessary copies into the context array.
   *
   * This was based on the git SHA1 implementation.
   */
  
  #include <linux/kernel.h>
  #include <linux/export.h>
  #include <linux/bitops.h>
  #include <linux/cryptohash.h>
  #include <asm/unaligned.h>
  
  /*
   * If you have 32 registers or more, the compiler can (and should)
   * try to change the array[] accesses into registers. However, on
   * machines with less than ~25 registers, that won't really work,
   * and at least gcc will make an unholy mess of it.
   *
   * So to avoid that mess which just slows things down, we force
   * the stores to memory to actually happen (we might be better off
   * with a 'W(t)=(val);asm("":"+m" (W(t))' there instead, as
   * suggested by Artur Skawina - that will also make gcc unable to
   * try to do the silly "optimize away loads" part because it won't
   * see what the value will be).
   *
   * Ben Herrenschmidt reports that on PPC, the C version comes close
   * to the optimized asm with this (ie on PPC you don't want that
   * 'volatile', since there are lots of registers).
   *
   * On ARM we get the best code generation by forcing a full memory barrier
   * between each SHA_ROUND, otherwise gcc happily get wild with spilling and
   * the stack frame size simply explode and performance goes down the drain.
   */
  
  #ifdef CONFIG_X86
    #define setW(x, val) (*(volatile __u32 *)&W(x) = (val))
  #elif defined(CONFIG_ARM)
    #define setW(x, val) do { W(x) = (val); __asm__("":::"memory"); } while (0)
  #else
    #define setW(x, val) (W(x) = (val))
  #endif
  
  /* This "rolls" over the 512-bit array */
  #define W(x) (array[(x)&15])
  
  /*
   * Where do we get the source from? The first 16 iterations get it from
   * the input data, the next mix it from the 512-bit array.
   */
  #define SHA_SRC(t) get_unaligned_be32((__u32 *)data + t)
  #define SHA_MIX(t) rol32(W(t+13) ^ W(t+8) ^ W(t+2) ^ W(t), 1)
  
  #define SHA_ROUND(t, input, fn, constant, A, B, C, D, E) do { \
  	__u32 TEMP = input(t); setW(t, TEMP); \
  	E += TEMP + rol32(A,5) + (fn) + (constant); \
  	B = ror32(B, 2); } while (0)
  
  #define T_0_15(t, A, B, C, D, E)  SHA_ROUND(t, SHA_SRC, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
  #define T_16_19(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
  #define T_20_39(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0x6ed9eba1, A, B, C, D, E )
  #define T_40_59(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, ((B&C)+(D&(B^C))) , 0x8f1bbcdc, A, B, C, D, E )
  #define T_60_79(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) ,  0xca62c1d6, A, B, C, D, E )
  
  /**
   * sha_transform - single block SHA1 transform
   *
   * @digest: 160 bit digest to update
   * @data:   512 bits of data to hash
   * @array:  16 words of workspace (see note)
   *
   * This function generates a SHA1 digest for a single 512-bit block.
   * Be warned, it does not handle padding and message digest, do not
   * confuse it with the full FIPS 180-1 digest algorithm for variable
   * length messages.
   *
   * Note: If the hash is security sensitive, the caller should be sure
   * to clear the workspace. This is left to the caller to avoid
   * unnecessary clears between chained hashing operations.
   */
  void sha_transform(__u32 *digest, const char *data, __u32 *array)
  {
  	__u32 A, B, C, D, E;
  
  	A = digest[0];
  	B = digest[1];
  	C = digest[2];
  	D = digest[3];
  	E = digest[4];
  
  	/* Round 1 - iterations 0-16 take their input from 'data' */
  	T_0_15( 0, A, B, C, D, E);
  	T_0_15( 1, E, A, B, C, D);
  	T_0_15( 2, D, E, A, B, C);
  	T_0_15( 3, C, D, E, A, B);
  	T_0_15( 4, B, C, D, E, A);
  	T_0_15( 5, A, B, C, D, E);
  	T_0_15( 6, E, A, B, C, D);
  	T_0_15( 7, D, E, A, B, C);
  	T_0_15( 8, C, D, E, A, B);
  	T_0_15( 9, B, C, D, E, A);
  	T_0_15(10, A, B, C, D, E);
  	T_0_15(11, E, A, B, C, D);
  	T_0_15(12, D, E, A, B, C);
  	T_0_15(13, C, D, E, A, B);
  	T_0_15(14, B, C, D, E, A);
  	T_0_15(15, A, B, C, D, E);
  
  	/* Round 1 - tail. Input from 512-bit mixing array */
  	T_16_19(16, E, A, B, C, D);
  	T_16_19(17, D, E, A, B, C);
  	T_16_19(18, C, D, E, A, B);
  	T_16_19(19, B, C, D, E, A);
  
  	/* Round 2 */
  	T_20_39(20, A, B, C, D, E);
  	T_20_39(21, E, A, B, C, D);
  	T_20_39(22, D, E, A, B, C);
  	T_20_39(23, C, D, E, A, B);
  	T_20_39(24, B, C, D, E, A);
  	T_20_39(25, A, B, C, D, E);
  	T_20_39(26, E, A, B, C, D);
  	T_20_39(27, D, E, A, B, C);
  	T_20_39(28, C, D, E, A, B);
  	T_20_39(29, B, C, D, E, A);
  	T_20_39(30, A, B, C, D, E);
  	T_20_39(31, E, A, B, C, D);
  	T_20_39(32, D, E, A, B, C);
  	T_20_39(33, C, D, E, A, B);
  	T_20_39(34, B, C, D, E, A);
  	T_20_39(35, A, B, C, D, E);
  	T_20_39(36, E, A, B, C, D);
  	T_20_39(37, D, E, A, B, C);
  	T_20_39(38, C, D, E, A, B);
  	T_20_39(39, B, C, D, E, A);
  
  	/* Round 3 */
  	T_40_59(40, A, B, C, D, E);
  	T_40_59(41, E, A, B, C, D);
  	T_40_59(42, D, E, A, B, C);
  	T_40_59(43, C, D, E, A, B);
  	T_40_59(44, B, C, D, E, A);
  	T_40_59(45, A, B, C, D, E);
  	T_40_59(46, E, A, B, C, D);
  	T_40_59(47, D, E, A, B, C);
  	T_40_59(48, C, D, E, A, B);
  	T_40_59(49, B, C, D, E, A);
  	T_40_59(50, A, B, C, D, E);
  	T_40_59(51, E, A, B, C, D);
  	T_40_59(52, D, E, A, B, C);
  	T_40_59(53, C, D, E, A, B);
  	T_40_59(54, B, C, D, E, A);
  	T_40_59(55, A, B, C, D, E);
  	T_40_59(56, E, A, B, C, D);
  	T_40_59(57, D, E, A, B, C);
  	T_40_59(58, C, D, E, A, B);
  	T_40_59(59, B, C, D, E, A);
  
  	/* Round 4 */
  	T_60_79(60, A, B, C, D, E);
  	T_60_79(61, E, A, B, C, D);
  	T_60_79(62, D, E, A, B, C);
  	T_60_79(63, C, D, E, A, B);
  	T_60_79(64, B, C, D, E, A);
  	T_60_79(65, A, B, C, D, E);
  	T_60_79(66, E, A, B, C, D);
  	T_60_79(67, D, E, A, B, C);
  	T_60_79(68, C, D, E, A, B);
  	T_60_79(69, B, C, D, E, A);
  	T_60_79(70, A, B, C, D, E);
  	T_60_79(71, E, A, B, C, D);
  	T_60_79(72, D, E, A, B, C);
  	T_60_79(73, C, D, E, A, B);
  	T_60_79(74, B, C, D, E, A);
  	T_60_79(75, A, B, C, D, E);
  	T_60_79(76, E, A, B, C, D);
  	T_60_79(77, D, E, A, B, C);
  	T_60_79(78, C, D, E, A, B);
  	T_60_79(79, B, C, D, E, A);
  
  	digest[0] += A;
  	digest[1] += B;
  	digest[2] += C;
  	digest[3] += D;
  	digest[4] += E;
  }
  EXPORT_SYMBOL(sha_transform);
  
  /**
   * sha_init - initialize the vectors for a SHA1 digest
   * @buf: vector to initialize
   */
  void sha_init(__u32 *buf)
  {
  	buf[0] = 0x67452301;
  	buf[1] = 0xefcdab89;
  	buf[2] = 0x98badcfe;
  	buf[3] = 0x10325476;
  	buf[4] = 0xc3d2e1f0;
  }