Blame view

kernel/linux-imx6_3.14.28/arch/mips/lib/iomap.c 4.52 KB
6b13f685e   김민수   BSP 최초 추가
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
  /*
   * Implement the default iomap interfaces
   *
   * (C) Copyright 2004 Linus Torvalds
   * (C) Copyright 2006 Ralf Baechle <ralf@linux-mips.org>
   * (C) Copyright 2007 MIPS Technologies, Inc.
   *     written by Ralf Baechle <ralf@linux-mips.org>
   */
  #include <linux/module.h>
  #include <asm/io.h>
  
  /*
   * Read/write from/to an (offsettable) iomem cookie. It might be a PIO
   * access or a MMIO access, these functions don't care. The info is
   * encoded in the hardware mapping set up by the mapping functions
   * (or the cookie itself, depending on implementation and hw).
   *
   * The generic routines don't assume any hardware mappings, and just
   * encode the PIO/MMIO as part of the cookie. They coldly assume that
   * the MMIO IO mappings are not in the low address range.
   *
   * Architectures for which this is not true can't use this generic
   * implementation and should do their own copy.
   */
  
  #define PIO_MASK	0x0ffffUL
  
  unsigned int ioread8(void __iomem *addr)
  {
  	return readb(addr);
  }
  
  EXPORT_SYMBOL(ioread8);
  
  unsigned int ioread16(void __iomem *addr)
  {
  	return readw(addr);
  }
  
  EXPORT_SYMBOL(ioread16);
  
  unsigned int ioread16be(void __iomem *addr)
  {
  	return be16_to_cpu(__raw_readw(addr));
  }
  
  EXPORT_SYMBOL(ioread16be);
  
  unsigned int ioread32(void __iomem *addr)
  {
  	return readl(addr);
  }
  
  EXPORT_SYMBOL(ioread32);
  
  unsigned int ioread32be(void __iomem *addr)
  {
  	return be32_to_cpu(__raw_readl(addr));
  }
  
  EXPORT_SYMBOL(ioread32be);
  
  void iowrite8(u8 val, void __iomem *addr)
  {
  	writeb(val, addr);
  }
  
  EXPORT_SYMBOL(iowrite8);
  
  void iowrite16(u16 val, void __iomem *addr)
  {
  	writew(val, addr);
  }
  
  EXPORT_SYMBOL(iowrite16);
  
  void iowrite16be(u16 val, void __iomem *addr)
  {
  	__raw_writew(cpu_to_be16(val), addr);
  }
  
  EXPORT_SYMBOL(iowrite16be);
  
  void iowrite32(u32 val, void __iomem *addr)
  {
  	writel(val, addr);
  }
  
  EXPORT_SYMBOL(iowrite32);
  
  void iowrite32be(u32 val, void __iomem *addr)
  {
  	__raw_writel(cpu_to_be32(val), addr);
  }
  
  EXPORT_SYMBOL(iowrite32be);
  
  /*
   * These are the "repeat MMIO read/write" functions.
   * Note the "__raw" accesses, since we don't want to
   * convert to CPU byte order. We write in "IO byte
   * order" (we also don't have IO barriers).
   */
  static inline void mmio_insb(void __iomem *addr, u8 *dst, int count)
  {
  	while (--count >= 0) {
  		u8 data = __raw_readb(addr);
  		*dst = data;
  		dst++;
  	}
  }
  
  static inline void mmio_insw(void __iomem *addr, u16 *dst, int count)
  {
  	while (--count >= 0) {
  		u16 data = __raw_readw(addr);
  		*dst = data;
  		dst++;
  	}
  }
  
  static inline void mmio_insl(void __iomem *addr, u32 *dst, int count)
  {
  	while (--count >= 0) {
  		u32 data = __raw_readl(addr);
  		*dst = data;
  		dst++;
  	}
  }
  
  static inline void mmio_outsb(void __iomem *addr, const u8 *src, int count)
  {
  	while (--count >= 0) {
  		__raw_writeb(*src, addr);
  		src++;
  	}
  }
  
  static inline void mmio_outsw(void __iomem *addr, const u16 *src, int count)
  {
  	while (--count >= 0) {
  		__raw_writew(*src, addr);
  		src++;
  	}
  }
  
  static inline void mmio_outsl(void __iomem *addr, const u32 *src, int count)
  {
  	while (--count >= 0) {
  		__raw_writel(*src, addr);
  		src++;
  	}
  }
  
  void ioread8_rep(void __iomem *addr, void *dst, unsigned long count)
  {
  	mmio_insb(addr, dst, count);
  }
  
  EXPORT_SYMBOL(ioread8_rep);
  
  void ioread16_rep(void __iomem *addr, void *dst, unsigned long count)
  {
  	mmio_insw(addr, dst, count);
  }
  
  EXPORT_SYMBOL(ioread16_rep);
  
  void ioread32_rep(void __iomem *addr, void *dst, unsigned long count)
  {
  	mmio_insl(addr, dst, count);
  }
  
  EXPORT_SYMBOL(ioread32_rep);
  
  void iowrite8_rep(void __iomem *addr, const void *src, unsigned long count)
  {
  	mmio_outsb(addr, src, count);
  }
  
  EXPORT_SYMBOL(iowrite8_rep);
  
  void iowrite16_rep(void __iomem *addr, const void *src, unsigned long count)
  {
  	mmio_outsw(addr, src, count);
  }
  
  EXPORT_SYMBOL(iowrite16_rep);
  
  void iowrite32_rep(void __iomem *addr, const void *src, unsigned long count)
  {
  	mmio_outsl(addr, src, count);
  }
  
  EXPORT_SYMBOL(iowrite32_rep);
  
  /*
   * Create a virtual mapping cookie for an IO port range
   *
   * This uses the same mapping are as the in/out family which has to be setup
   * by the platform initialization code.
   *
   * Just to make matters somewhat more interesting on MIPS systems with
   * multiple host bridge each will have it's own ioport address space.
   */
  static void __iomem *ioport_map_legacy(unsigned long port, unsigned int nr)
  {
  	return (void __iomem *) (mips_io_port_base + port);
  }
  
  void __iomem *ioport_map(unsigned long port, unsigned int nr)
  {
  	if (port > PIO_MASK)
  		return NULL;
  
  	return ioport_map_legacy(port, nr);
  }
  
  EXPORT_SYMBOL(ioport_map);
  
  void ioport_unmap(void __iomem *addr)
  {
  	/* Nothing to do */
  }
  
  EXPORT_SYMBOL(ioport_unmap);