Blame view

kernel/linux-imx6_3.14.28/arch/m68k/fpsp040/satanh.S 2.18 KB
6b13f685e   김민수   BSP 최초 추가
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
  |
  |	satanh.sa 3.3 12/19/90
  |
  |	The entry point satanh computes the inverse
  |	hyperbolic tangent of
  |	an input argument; satanhd does the same except for denormalized
  |	input.
  |
  |	Input: Double-extended number X in location pointed to
  |		by address register a0.
  |
  |	Output: The value arctanh(X) returned in floating-point register Fp0.
  |
  |	Accuracy and Monotonicity: The returned result is within 3 ulps in
  |		64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
  |		result is subsequently rounded to double precision. The
  |		result is provably monotonic in double precision.
  |
  |	Speed: The program satanh takes approximately 270 cycles.
  |
  |	Algorithm:
  |
  |	ATANH
  |	1. If |X| >= 1, go to 3.
  |
  |	2. (|X| < 1) Calculate atanh(X) by
  |		sgn := sign(X)
  |		y := |X|
  |		z := 2y/(1-y)
  |		atanh(X) := sgn * (1/2) * logp1(z)
  |		Exit.
  |
  |	3. If |X| > 1, go to 5.
  |
  |	4. (|X| = 1) Generate infinity with an appropriate sign and
  |		divide-by-zero by
  |		sgn := sign(X)
  |		atan(X) := sgn / (+0).
  |		Exit.
  |
  |	5. (|X| > 1) Generate an invalid operation by 0 * infinity.
  |		Exit.
  |
  
  |		Copyright (C) Motorola, Inc. 1990
  |			All Rights Reserved
  |
  |       For details on the license for this file, please see the
  |       file, README, in this same directory.
  
  |satanh	idnt	2,1 | Motorola 040 Floating Point Software Package
  
  	|section	8
  
  	|xref	t_dz
  	|xref	t_operr
  	|xref	t_frcinx
  	|xref	t_extdnrm
  	|xref	slognp1
  
  	.global	satanhd
  satanhd:
  |--ATANH(X) = X FOR DENORMALIZED X
  
  	bra		t_extdnrm
  
  	.global	satanh
  satanh:
  	movel		(%a0),%d0
  	movew		4(%a0),%d0
  	andil		#0x7FFFFFFF,%d0
  	cmpil		#0x3FFF8000,%d0
  	bges		ATANHBIG
  
  |--THIS IS THE USUAL CASE, |X| < 1
  |--Y = |X|, Z = 2Y/(1-Y), ATANH(X) = SIGN(X) * (1/2) * LOG1P(Z).
  
  	fabsx		(%a0),%fp0	| ...Y = |X|
  	fmovex		%fp0,%fp1
  	fnegx		%fp1		| ...-Y
  	faddx		%fp0,%fp0		| ...2Y
  	fadds		#0x3F800000,%fp1	| ...1-Y
  	fdivx		%fp1,%fp0		| ...2Y/(1-Y)
  	movel		(%a0),%d0
  	andil		#0x80000000,%d0
  	oril		#0x3F000000,%d0	| ...SIGN(X)*HALF
  	movel		%d0,-(%sp)
  
  	fmovemx	%fp0-%fp0,(%a0)	| ...overwrite input
  	movel		%d1,-(%sp)
  	clrl		%d1
  	bsr		slognp1		| ...LOG1P(Z)
  	fmovel		(%sp)+,%fpcr
  	fmuls		(%sp)+,%fp0
  	bra		t_frcinx
  
  ATANHBIG:
  	fabsx		(%a0),%fp0	| ...|X|
  	fcmps		#0x3F800000,%fp0
  	fbgt		t_operr
  	bra		t_dz
  
  	|end