Blame view

kernel/linux-imx6_3.14.28/drivers/spi/spi-dw-mid.c 6.04 KB
6b13f685e   김민수   BSP 최초 추가
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
  /*
   * Special handling for DW core on Intel MID platform
   *
   * Copyright (c) 2009, Intel Corporation.
   *
   * This program is free software; you can redistribute it and/or modify it
   * under the terms and conditions of the GNU General Public License,
   * version 2, as published by the Free Software Foundation.
   *
   * This program is distributed in the hope it will be useful, but WITHOUT
   * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
   * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
   * more details.
   *
   * You should have received a copy of the GNU General Public License along
   * with this program; if not, write to the Free Software Foundation,
   * Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
   */
  
  #include <linux/dma-mapping.h>
  #include <linux/dmaengine.h>
  #include <linux/interrupt.h>
  #include <linux/slab.h>
  #include <linux/spi/spi.h>
  #include <linux/types.h>
  
  #include "spi-dw.h"
  
  #ifdef CONFIG_SPI_DW_MID_DMA
  #include <linux/intel_mid_dma.h>
  #include <linux/pci.h>
  
  struct mid_dma {
  	struct intel_mid_dma_slave	dmas_tx;
  	struct intel_mid_dma_slave	dmas_rx;
  };
  
  static bool mid_spi_dma_chan_filter(struct dma_chan *chan, void *param)
  {
  	struct dw_spi *dws = param;
  
  	return dws->dmac && (&dws->dmac->dev == chan->device->dev);
  }
  
  static int mid_spi_dma_init(struct dw_spi *dws)
  {
  	struct mid_dma *dw_dma = dws->dma_priv;
  	struct intel_mid_dma_slave *rxs, *txs;
  	dma_cap_mask_t mask;
  
  	/*
  	 * Get pci device for DMA controller, currently it could only
  	 * be the DMA controller of either Moorestown or Medfield
  	 */
  	dws->dmac = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0813, NULL);
  	if (!dws->dmac)
  		dws->dmac = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
  
  	dma_cap_zero(mask);
  	dma_cap_set(DMA_SLAVE, mask);
  
  	/* 1. Init rx channel */
  	dws->rxchan = dma_request_channel(mask, mid_spi_dma_chan_filter, dws);
  	if (!dws->rxchan)
  		goto err_exit;
  	rxs = &dw_dma->dmas_rx;
  	rxs->hs_mode = LNW_DMA_HW_HS;
  	rxs->cfg_mode = LNW_DMA_PER_TO_MEM;
  	dws->rxchan->private = rxs;
  
  	/* 2. Init tx channel */
  	dws->txchan = dma_request_channel(mask, mid_spi_dma_chan_filter, dws);
  	if (!dws->txchan)
  		goto free_rxchan;
  	txs = &dw_dma->dmas_tx;
  	txs->hs_mode = LNW_DMA_HW_HS;
  	txs->cfg_mode = LNW_DMA_MEM_TO_PER;
  	dws->txchan->private = txs;
  
  	dws->dma_inited = 1;
  	return 0;
  
  free_rxchan:
  	dma_release_channel(dws->rxchan);
  err_exit:
  	return -1;
  
  }
  
  static void mid_spi_dma_exit(struct dw_spi *dws)
  {
  	if (!dws->dma_inited)
  		return;
  
  	dmaengine_terminate_all(dws->txchan);
  	dma_release_channel(dws->txchan);
  
  	dmaengine_terminate_all(dws->rxchan);
  	dma_release_channel(dws->rxchan);
  }
  
  /*
   * dws->dma_chan_done is cleared before the dma transfer starts,
   * callback for rx/tx channel will each increment it by 1.
   * Reaching 2 means the whole spi transaction is done.
   */
  static void dw_spi_dma_done(void *arg)
  {
  	struct dw_spi *dws = arg;
  
  	if (++dws->dma_chan_done != 2)
  		return;
  	dw_spi_xfer_done(dws);
  }
  
  static int mid_spi_dma_transfer(struct dw_spi *dws, int cs_change)
  {
  	struct dma_async_tx_descriptor *txdesc = NULL, *rxdesc = NULL;
  	struct dma_chan *txchan, *rxchan;
  	struct dma_slave_config txconf, rxconf;
  	u16 dma_ctrl = 0;
  
  	/* 1. setup DMA related registers */
  	if (cs_change) {
  		spi_enable_chip(dws, 0);
  		dw_writew(dws, DW_SPI_DMARDLR, 0xf);
  		dw_writew(dws, DW_SPI_DMATDLR, 0x10);
  		if (dws->tx_dma)
  			dma_ctrl |= 0x2;
  		if (dws->rx_dma)
  			dma_ctrl |= 0x1;
  		dw_writew(dws, DW_SPI_DMACR, dma_ctrl);
  		spi_enable_chip(dws, 1);
  	}
  
  	dws->dma_chan_done = 0;
  	txchan = dws->txchan;
  	rxchan = dws->rxchan;
  
  	/* 2. Prepare the TX dma transfer */
  	txconf.direction = DMA_MEM_TO_DEV;
  	txconf.dst_addr = dws->dma_addr;
  	txconf.dst_maxburst = LNW_DMA_MSIZE_16;
  	txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  	txconf.dst_addr_width = dws->dma_width;
  	txconf.device_fc = false;
  
  	txchan->device->device_control(txchan, DMA_SLAVE_CONFIG,
  				       (unsigned long) &txconf);
  
  	memset(&dws->tx_sgl, 0, sizeof(dws->tx_sgl));
  	dws->tx_sgl.dma_address = dws->tx_dma;
  	dws->tx_sgl.length = dws->len;
  
  	txdesc = dmaengine_prep_slave_sg(txchan,
  				&dws->tx_sgl,
  				1,
  				DMA_MEM_TO_DEV,
  				DMA_PREP_INTERRUPT);
  	txdesc->callback = dw_spi_dma_done;
  	txdesc->callback_param = dws;
  
  	/* 3. Prepare the RX dma transfer */
  	rxconf.direction = DMA_DEV_TO_MEM;
  	rxconf.src_addr = dws->dma_addr;
  	rxconf.src_maxburst = LNW_DMA_MSIZE_16;
  	rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  	rxconf.src_addr_width = dws->dma_width;
  	rxconf.device_fc = false;
  
  	rxchan->device->device_control(rxchan, DMA_SLAVE_CONFIG,
  				       (unsigned long) &rxconf);
  
  	memset(&dws->rx_sgl, 0, sizeof(dws->rx_sgl));
  	dws->rx_sgl.dma_address = dws->rx_dma;
  	dws->rx_sgl.length = dws->len;
  
  	rxdesc = dmaengine_prep_slave_sg(rxchan,
  				&dws->rx_sgl,
  				1,
  				DMA_DEV_TO_MEM,
  				DMA_PREP_INTERRUPT);
  	rxdesc->callback = dw_spi_dma_done;
  	rxdesc->callback_param = dws;
  
  	/* rx must be started before tx due to spi instinct */
  	rxdesc->tx_submit(rxdesc);
  	txdesc->tx_submit(txdesc);
  	return 0;
  }
  
  static struct dw_spi_dma_ops mid_dma_ops = {
  	.dma_init	= mid_spi_dma_init,
  	.dma_exit	= mid_spi_dma_exit,
  	.dma_transfer	= mid_spi_dma_transfer,
  };
  #endif
  
  /* Some specific info for SPI0 controller on Moorestown */
  
  /* HW info for MRST CLk Control Unit, one 32b reg */
  #define MRST_SPI_CLK_BASE	100000000	/* 100m */
  #define MRST_CLK_SPI0_REG	0xff11d86c
  #define CLK_SPI_BDIV_OFFSET	0
  #define CLK_SPI_BDIV_MASK	0x00000007
  #define CLK_SPI_CDIV_OFFSET	9
  #define CLK_SPI_CDIV_MASK	0x00000e00
  #define CLK_SPI_DISABLE_OFFSET	8
  
  int dw_spi_mid_init(struct dw_spi *dws)
  {
  	void __iomem *clk_reg;
  	u32 clk_cdiv;
  
  	clk_reg = ioremap_nocache(MRST_CLK_SPI0_REG, 16);
  	if (!clk_reg)
  		return -ENOMEM;
  
  	/* get SPI controller operating freq info */
  	clk_cdiv  = (readl(clk_reg) & CLK_SPI_CDIV_MASK) >> CLK_SPI_CDIV_OFFSET;
  	dws->max_freq = MRST_SPI_CLK_BASE / (clk_cdiv + 1);
  	iounmap(clk_reg);
  
  	dws->num_cs = 16;
  	dws->fifo_len = 40;	/* FIFO has 40 words buffer */
  
  #ifdef CONFIG_SPI_DW_MID_DMA
  	dws->dma_priv = kzalloc(sizeof(struct mid_dma), GFP_KERNEL);
  	if (!dws->dma_priv)
  		return -ENOMEM;
  	dws->dma_ops = &mid_dma_ops;
  #endif
  	return 0;
  }