Blame view

bootloader/u-boot_2015_04/include/zfs/spa.h 10 KB
6b13f685e   김민수   BSP 최초 추가
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
  /*
   *  GRUB  --  GRand Unified Bootloader
   *  Copyright (C) 1999,2000,2001,2002,2003,2004  Free Software Foundation, Inc.
   *
   * SPDX-License-Identifier:	GPL-2.0+
   */
  /*
   * Copyright (c) 2008, 2011, Oracle and/or its affiliates. All rights reserved.
   */
  
  #ifndef ZFS_SPA_HEADER
  #define	ZFS_SPA_HEADER 1
  
  
  /*
   * General-purpose 32-bit and 64-bit bitfield encodings.
   */
  #define	BF32_DECODE(x, low, len)	P2PHASE((x) >> (low), 1U << (len))
  #define	BF64_DECODE(x, low, len)	P2PHASE((x) >> (low), 1ULL << (len))
  #define	BF32_ENCODE(x, low, len)	(P2PHASE((x), 1U << (len)) << (low))
  #define	BF64_ENCODE(x, low, len)	(P2PHASE((x), 1ULL << (len)) << (low))
  
  #define	BF32_GET(x, low, len)		BF32_DECODE(x, low, len)
  #define	BF64_GET(x, low, len)		BF64_DECODE(x, low, len)
  
  #define	BF32_SET(x, low, len, val)						\
  	((x) ^= BF32_ENCODE((x >> low) ^ (val), low, len))
  #define	BF64_SET(x, low, len, val)						\
  	((x) ^= BF64_ENCODE((x >> low) ^ (val), low, len))
  
  #define	BF32_GET_SB(x, low, len, shift, bias)		\
  	((BF32_GET(x, low, len) + (bias)) << (shift))
  #define	BF64_GET_SB(x, low, len, shift, bias)		\
  	((BF64_GET(x, low, len) + (bias)) << (shift))
  
  #define	BF32_SET_SB(x, low, len, shift, bias, val)		\
  	BF32_SET(x, low, len, ((val) >> (shift)) - (bias))
  #define	BF64_SET_SB(x, low, len, shift, bias, val)		\
  	BF64_SET(x, low, len, ((val) >> (shift)) - (bias))
  
  /*
   * We currently support nine block sizes, from 512 bytes to 128K.
   * We could go higher, but the benefits are near-zero and the cost
   * of COWing a giant block to modify one byte would become excessive.
   */
  #define	SPA_MINBLOCKSHIFT	9
  #define	SPA_MAXBLOCKSHIFT	17
  #define	SPA_MINBLOCKSIZE	(1ULL << SPA_MINBLOCKSHIFT)
  #define	SPA_MAXBLOCKSIZE	(1ULL << SPA_MAXBLOCKSHIFT)
  
  #define	SPA_BLOCKSIZES		(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1)
  
  /*
   * Size of block to hold the configuration data (a packed nvlist)
   */
  #define	SPA_CONFIG_BLOCKSIZE	(1 << 14)
  
  /*
   * The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB.
   * The ASIZE encoding should be at least 64 times larger (6 more bits)
   * to support up to 4-way RAID-Z mirror mode with worst-case gang block
   * overhead, three DVAs per bp, plus one more bit in case we do anything
   * else that expands the ASIZE.
   */
  #define	SPA_LSIZEBITS		16	/* LSIZE up to 32M (2^16 * 512)	*/
  #define	SPA_PSIZEBITS		16	/* PSIZE up to 32M (2^16 * 512)	*/
  #define	SPA_ASIZEBITS		24	/* ASIZE up to 64 times larger	*/
  
  /*
   * All SPA data is represented by 128-bit data virtual addresses (DVAs).
   * The members of the dva_t should be considered opaque outside the SPA.
   */
  typedef struct dva {
  	uint64_t	dva_word[2];
  } dva_t;
  
  /*
   * Each block has a 256-bit checksum -- strong enough for cryptographic hashes.
   */
  typedef struct zio_cksum {
  	uint64_t	zc_word[4];
  } zio_cksum_t;
  
  /*
   * Each block is described by its DVAs, time of birth, checksum, etc.
   * The word-by-word, bit-by-bit layout of the blkptr is as follows:
   *
   *	64	56	48	40	32	24	16	8	0
   *	+-------+-------+-------+-------+-------+-------+-------+-------+
   * 0	|		vdev1		| GRID	|	  ASIZE		|
   *	+-------+-------+-------+-------+-------+-------+-------+-------+
   * 1	|G|			 offset1				|
   *	+-------+-------+-------+-------+-------+-------+-------+-------+
   * 2	|		vdev2		| GRID	|	  ASIZE		|
   *	+-------+-------+-------+-------+-------+-------+-------+-------+
   * 3	|G|			 offset2				|
   *	+-------+-------+-------+-------+-------+-------+-------+-------+
   * 4	|		vdev3		| GRID	|	  ASIZE		|
   *	+-------+-------+-------+-------+-------+-------+-------+-------+
   * 5	|G|			 offset3				|
   *	+-------+-------+-------+-------+-------+-------+-------+-------+
   * 6	|BDX|lvl| type	| cksum | comp	|	  PSIZE	|	  LSIZE	|
   *	+-------+-------+-------+-------+-------+-------+-------+-------+
   * 7	|			padding					|
   *	+-------+-------+-------+-------+-------+-------+-------+-------+
   * 8	|			padding					|
   *	+-------+-------+-------+-------+-------+-------+-------+-------+
   * 9	|			physical birth txg			|
   *	+-------+-------+-------+-------+-------+-------+-------+-------+
   * a	|			logical birth txg			|
   *	+-------+-------+-------+-------+-------+-------+-------+-------+
   * b	|			fill count				|
   *	+-------+-------+-------+-------+-------+-------+-------+-------+
   * c	|			checksum[0]				|
   *	+-------+-------+-------+-------+-------+-------+-------+-------+
   * d	|			checksum[1]				|
   *	+-------+-------+-------+-------+-------+-------+-------+-------+
   * e	|			checksum[2]				|
   *	+-------+-------+-------+-------+-------+-------+-------+-------+
   * f	|			checksum[3]				|
   *	+-------+-------+-------+-------+-------+-------+-------+-------+
   *
   * Legend:
   *
   * vdev		virtual device ID
   * offset	offset into virtual device
   * LSIZE	logical size
   * PSIZE	physical size (after compression)
   * ASIZE	allocated size (including RAID-Z parity and gang block headers)
   * GRID		RAID-Z layout information (reserved for future use)
   * cksum	checksum function
   * comp		compression function
   * G		gang block indicator
   * B		byteorder (endianness)
   * D		dedup
   * X		unused
   * lvl		level of indirection
   * type		DMU object type
   * phys birth	txg of block allocation; zero if same as logical birth txg
   * log. birth	transaction group in which the block was logically born
   * fill count	number of non-zero blocks under this bp
   * checksum[4]	256-bit checksum of the data this bp describes
   */
  #define	SPA_BLKPTRSHIFT	7		/* blkptr_t is 128 bytes	*/
  #define	SPA_DVAS_PER_BP	3		/* Number of DVAs in a bp	*/
  
  typedef struct blkptr {
  	dva_t		blk_dva[SPA_DVAS_PER_BP]; /* Data Virtual Addresses */
  	uint64_t	blk_prop;	/* size, compression, type, etc		*/
  	uint64_t	blk_pad[2];	/* Extra space for the future		*/
  	uint64_t	blk_phys_birth;	/* txg when block was allocated		*/
  	uint64_t	blk_birth;	/* transaction group at birth		*/
  	uint64_t	blk_fill;	/* fill count				*/
  	zio_cksum_t	blk_cksum;	/* 256-bit checksum			*/
  } blkptr_t;
  
  /*
   * Macros to get and set fields in a bp or DVA.
   */
  #define	DVA_GET_ASIZE(dva)											\
  	BF64_GET_SB((dva)->dva_word[0], 0, 24, SPA_MINBLOCKSHIFT, 0)
  #define	DVA_SET_ASIZE(dva, x)										\
  	BF64_SET_SB((dva)->dva_word[0], 0, 24, SPA_MINBLOCKSHIFT, 0, x)
  
  #define	DVA_GET_GRID(dva)	BF64_GET((dva)->dva_word[0], 24, 8)
  #define	DVA_SET_GRID(dva, x)	BF64_SET((dva)->dva_word[0], 24, 8, x)
  
  #define	DVA_GET_VDEV(dva)	BF64_GET((dva)->dva_word[0], 32, 32)
  #define	DVA_SET_VDEV(dva, x)	BF64_SET((dva)->dva_word[0], 32, 32, x)
  
  #define	DVA_GET_GANG(dva)	BF64_GET((dva)->dva_word[1], 63, 1)
  #define	DVA_SET_GANG(dva, x)	BF64_SET((dva)->dva_word[1], 63, 1, x)
  
  #define	BP_GET_LSIZE(bp)										\
  	BF64_GET_SB((bp)->blk_prop, 0, 16, SPA_MINBLOCKSHIFT, 1)
  #define	BP_SET_LSIZE(bp, x)										\
  	BF64_SET_SB((bp)->blk_prop, 0, 16, SPA_MINBLOCKSHIFT, 1, x)
  
  #define	BP_GET_COMPRESS(bp)		BF64_GET((bp)->blk_prop, 32, 8)
  #define	BP_SET_COMPRESS(bp, x)		BF64_SET((bp)->blk_prop, 32, 8, x)
  
  #define	BP_GET_CHECKSUM(bp)		BF64_GET((bp)->blk_prop, 40, 8)
  #define	BP_SET_CHECKSUM(bp, x)		BF64_SET((bp)->blk_prop, 40, 8, x)
  
  #define	BP_GET_TYPE(bp)			BF64_GET((bp)->blk_prop, 48, 8)
  #define	BP_SET_TYPE(bp, x)		BF64_SET((bp)->blk_prop, 48, 8, x)
  
  #define	BP_GET_LEVEL(bp)		BF64_GET((bp)->blk_prop, 56, 5)
  #define	BP_SET_LEVEL(bp, x)		BF64_SET((bp)->blk_prop, 56, 5, x)
  
  #define	BP_GET_PROP_BIT_61(bp)		BF64_GET((bp)->blk_prop, 61, 1)
  #define	BP_SET_PROP_BIT_61(bp, x)	BF64_SET((bp)->blk_prop, 61, 1, x)
  
  #define	BP_GET_DEDUP(bp)		BF64_GET((bp)->blk_prop, 62, 1)
  #define	BP_SET_DEDUP(bp, x)		BF64_SET((bp)->blk_prop, 62, 1, x)
  
  #define	BP_GET_BYTEORDER(bp)		(0 - BF64_GET((bp)->blk_prop, 63, 1))
  #define	BP_SET_BYTEORDER(bp, x)		BF64_SET((bp)->blk_prop, 63, 1, x)
  
  #define	BP_PHYSICAL_BIRTH(bp)										\
  	((bp)->blk_phys_birth ? (bp)->blk_phys_birth : (bp)->blk_birth)
  
  #define	BP_SET_BIRTH(bp, logical, physical)								\
  	{																	\
  		(bp)->blk_birth = (logical);									\
  		(bp)->blk_phys_birth = ((logical) == (physical) ? 0 : (physical)); \
  	}
  
  #define	BP_GET_ASIZE(bp)												\
  	(DVA_GET_ASIZE(&(bp)->blk_dva[0]) + DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
  	 DVA_GET_ASIZE(&(bp)->blk_dva[2]))
  
  #define	BP_GET_UCSIZE(bp)												\
  	((BP_GET_LEVEL(bp) > 0 || dmu_ot[BP_GET_TYPE(bp)].ot_metadata) ?	\
  	 BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp));
  
  #define	BP_GET_NDVAS(bp)						\
  	(!!DVA_GET_ASIZE(&(bp)->blk_dva[0]) +		\
  	 !!DVA_GET_ASIZE(&(bp)->blk_dva[1]) +		\
  	 !!DVA_GET_ASIZE(&(bp)->blk_dva[2]))
  
  #define	BP_COUNT_GANG(bp)						\
  	(DVA_GET_GANG(&(bp)->blk_dva[0]) +			\
  	 DVA_GET_GANG(&(bp)->blk_dva[1]) +			\
  	 DVA_GET_GANG(&(bp)->blk_dva[2]))
  
  #define	DVA_EQUAL(dva1, dva2)						\
  	((dva1)->dva_word[1] == (dva2)->dva_word[1] &&	\
  	 (dva1)->dva_word[0] == (dva2)->dva_word[0])
  
  #define	BP_EQUAL(bp1, bp2)									\
  	(BP_PHYSICAL_BIRTH(bp1) == BP_PHYSICAL_BIRTH(bp2) &&	\
  	 DVA_EQUAL(&(bp1)->blk_dva[0], &(bp2)->blk_dva[0]) &&	\
  	 DVA_EQUAL(&(bp1)->blk_dva[1], &(bp2)->blk_dva[1]) &&	\
  	 DVA_EQUAL(&(bp1)->blk_dva[2], &(bp2)->blk_dva[2]))
  
  #define	ZIO_CHECKSUM_EQUAL(zc1, zc2)				\
  	(0 == (((zc1).zc_word[0] - (zc2).zc_word[0]) |	\
  		   ((zc1).zc_word[1] - (zc2).zc_word[1]) |	\
  		   ((zc1).zc_word[2] - (zc2).zc_word[2]) |	\
  		   ((zc1).zc_word[3] - (zc2).zc_word[3])))
  
  #define	DVA_IS_VALID(dva)	(DVA_GET_ASIZE(dva) != 0)
  
  #define	ZIO_SET_CHECKSUM(zcp, w0, w1, w2, w3)	\
  	{											\
  		(zcp)->zc_word[0] = w0;					\
  		(zcp)->zc_word[1] = w1;					\
  		(zcp)->zc_word[2] = w2;					\
  		(zcp)->zc_word[3] = w3;					\
  	}
  
  #define	BP_IDENTITY(bp)		(&(bp)->blk_dva[0])
  #define	BP_IS_GANG(bp)		DVA_GET_GANG(BP_IDENTITY(bp))
  #define	BP_IS_HOLE(bp)		((bp)->blk_birth == 0)
  
  /* BP_IS_RAIDZ(bp) assumes no block compression */
  #define	BP_IS_RAIDZ(bp)		(DVA_GET_ASIZE(&(bp)->blk_dva[0]) > \
  							 BP_GET_PSIZE(bp))
  
  #define	BP_ZERO(bp)										\
  	{													\
  		(bp)->blk_dva[0].dva_word[0] = 0;				\
  		(bp)->blk_dva[0].dva_word[1] = 0;				\
  		(bp)->blk_dva[1].dva_word[0] = 0;				\
  		(bp)->blk_dva[1].dva_word[1] = 0;				\
  		(bp)->blk_dva[2].dva_word[0] = 0;				\
  		(bp)->blk_dva[2].dva_word[1] = 0;				\
  		(bp)->blk_prop = 0;								\
  		(bp)->blk_pad[0] = 0;							\
  		(bp)->blk_pad[1] = 0;							\
  		(bp)->blk_phys_birth = 0;						\
  		(bp)->blk_birth = 0;							\
  		(bp)->blk_fill = 0;								\
  		ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0);	\
  	}
  
  #define	BP_SPRINTF_LEN	320
  
  #endif	/* ! ZFS_SPA_HEADER */