Blame view

kernel/linux-imx6_3.14.28/arch/alpha/lib/ev6-stxncpy.S 11.2 KB
6b13f685e   김민수   BSP 최초 추가
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
  /*
   * arch/alpha/lib/ev6-stxncpy.S
   * 21264 version contributed by Rick Gorton <rick.gorton@api-networks.com>
   *
   * Copy no more than COUNT bytes of the null-terminated string from
   * SRC to DST.
   *
   * This is an internal routine used by strncpy, stpncpy, and strncat.
   * As such, it uses special linkage conventions to make implementation
   * of these public functions more efficient.
   *
   * On input:
   *	t9 = return address
   *	a0 = DST
   *	a1 = SRC
   *	a2 = COUNT
   *
   * Furthermore, COUNT may not be zero.
   *
   * On output:
   *	t0  = last word written
   *	t10 = bitmask (with one bit set) indicating the byte position of
   *	      the end of the range specified by COUNT
   *	t12 = bitmask (with one bit set) indicating the last byte written
   *	a0  = unaligned address of the last *word* written
   *	a2  = the number of full words left in COUNT
   *
   * Furthermore, v0, a3-a5, t11, and $at are untouched.
   *
   * Much of the information about 21264 scheduling/coding comes from:
   *	Compiler Writer's Guide for the Alpha 21264
   *	abbreviated as 'CWG' in other comments here
   *	ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
   * Scheduling notation:
   *	E	- either cluster
   *	U	- upper subcluster; U0 - subcluster U0; U1 - subcluster U1
   *	L	- lower subcluster; L0 - subcluster L0; L1 - subcluster L1
   * Try not to change the actual algorithm if possible for consistency.
   */
  
  #include <asm/regdef.h>
  
  	.set noat
  	.set noreorder
  
  	.text
  
  /* There is a problem with either gdb (as of 4.16) or gas (as of 2.7) that
     doesn't like putting the entry point for a procedure somewhere in the
     middle of the procedure descriptor.  Work around this by putting the
     aligned copy in its own procedure descriptor */
  
  
  	.ent stxncpy_aligned
  	.align 4
  stxncpy_aligned:
  	.frame sp, 0, t9, 0
  	.prologue 0
  
  	/* On entry to this basic block:
  	   t0 == the first destination word for masking back in
  	   t1 == the first source word.  */
  
  	/* Create the 1st output word and detect 0's in the 1st input word.  */
  	lda	t2, -1		# E : build a mask against false zero
  	mskqh	t2, a1, t2	# U :   detection in the src word (stall)
  	mskqh	t1, a1, t3	# U :
  	ornot	t1, t2, t2	# E : (stall)
  
  	mskql	t0, a1, t0	# U : assemble the first output word
  	cmpbge	zero, t2, t8	# E : bits set iff null found
  	or	t0, t3, t0	# E : (stall)
  	beq	a2, $a_eoc	# U :
  
  	bne	t8, $a_eos	# U :
  	nop
  	nop
  	nop
  
  	/* On entry to this basic block:
  	   t0 == a source word not containing a null.  */
  
  	/*
  	 * nops here to:
  	 *	separate store quads from load quads
  	 *	limit of 1 bcond/quad to permit training
  	 */
  $a_loop:
  	stq_u	t0, 0(a0)	# L :
  	addq	a0, 8, a0	# E :
  	subq	a2, 1, a2	# E :
  	nop
  
  	ldq_u	t0, 0(a1)	# L :
  	addq	a1, 8, a1	# E :
  	cmpbge	zero, t0, t8	# E :
  	beq	a2, $a_eoc      # U :
  
  	beq	t8, $a_loop	# U :
  	nop
  	nop
  	nop
  
  	/* Take care of the final (partial) word store.  At this point
  	   the end-of-count bit is set in t8 iff it applies.
  
  	   On entry to this basic block we have:
  	   t0 == the source word containing the null
  	   t8 == the cmpbge mask that found it.  */
  
  $a_eos:
  	negq	t8, t12		# E : find low bit set
  	and	t8, t12, t12	# E : (stall)
  	/* For the sake of the cache, don't read a destination word
  	   if we're not going to need it.  */
  	and	t12, 0x80, t6	# E : (stall)
  	bne	t6, 1f		# U : (stall)
  
  	/* We're doing a partial word store and so need to combine
  	   our source and original destination words.  */
  	ldq_u	t1, 0(a0)	# L :
  	subq	t12, 1, t6	# E :
  	or	t12, t6, t8	# E : (stall)
  	zapnot	t0, t8, t0	# U : clear src bytes > null (stall)
  
  	zap	t1, t8, t1	# .. e1 : clear dst bytes <= null
  	or	t0, t1, t0	# e1    : (stall)
  	nop
  	nop
  
  1:	stq_u	t0, 0(a0)	# L :
  	ret	(t9)		# L0 : Latency=3
  	nop
  	nop
  
  	/* Add the end-of-count bit to the eos detection bitmask.  */
  $a_eoc:
  	or	t10, t8, t8	# E :
  	br	$a_eos		# L0 : Latency=3
  	nop
  	nop
  
  	.end stxncpy_aligned
  
  	.align 4
  	.ent __stxncpy
  	.globl __stxncpy
  __stxncpy:
  	.frame sp, 0, t9, 0
  	.prologue 0
  
  	/* Are source and destination co-aligned?  */
  	xor	a0, a1, t1	# E :
  	and	a0, 7, t0	# E : find dest misalignment
  	and	t1, 7, t1	# E : (stall)
  	addq	a2, t0, a2	# E : bias count by dest misalignment (stall)
  
  	subq	a2, 1, a2	# E :
  	and	a2, 7, t2	# E : (stall)
  	srl	a2, 3, a2	# U : a2 = loop counter = (count - 1)/8 (stall)
  	addq	zero, 1, t10	# E :
  
  	sll	t10, t2, t10	# U : t10 = bitmask of last count byte
  	bne	t1, $unaligned	# U :
  	/* We are co-aligned; take care of a partial first word.  */
  	ldq_u	t1, 0(a1)	# L : load first src word
  	addq	a1, 8, a1	# E :
  
  	beq	t0, stxncpy_aligned     # U : avoid loading dest word if not needed
  	ldq_u	t0, 0(a0)	# L :
  	nop
  	nop
  
  	br	stxncpy_aligned	# .. e1 :
  	nop
  	nop
  	nop
  
  
  
  /* The source and destination are not co-aligned.  Align the destination
     and cope.  We have to be very careful about not reading too much and
     causing a SEGV.  */
  
  	.align 4
  $u_head:
  	/* We know just enough now to be able to assemble the first
  	   full source word.  We can still find a zero at the end of it
  	   that prevents us from outputting the whole thing.
  
  	   On entry to this basic block:
  	   t0 == the first dest word, unmasked
  	   t1 == the shifted low bits of the first source word
  	   t6 == bytemask that is -1 in dest word bytes */
  
  	ldq_u	t2, 8(a1)	# L : Latency=3 load second src word
  	addq	a1, 8, a1	# E :
  	mskql	t0, a0, t0	# U : mask trailing garbage in dst
  	extqh	t2, a1, t4	# U : (3 cycle stall on t2)
  
  	or	t1, t4, t1	# E : first aligned src word complete (stall)
  	mskqh	t1, a0, t1	# U : mask leading garbage in src (stall)
  	or	t0, t1, t0	# E : first output word complete (stall)
  	or	t0, t6, t6	# E : mask original data for zero test (stall)
  
  	cmpbge	zero, t6, t8	# E :
  	beq	a2, $u_eocfin	# U :
  	lda	t6, -1		# E :
  	nop
  
  	bne	t8, $u_final	# U :
  	mskql	t6, a1, t6	# U : mask out bits already seen
  	stq_u	t0, 0(a0)	# L : store first output word
  	or      t6, t2, t2	# E : (stall)
  
  	cmpbge	zero, t2, t8	# E : find nulls in second partial
  	addq	a0, 8, a0	# E :
  	subq	a2, 1, a2	# E :
  	bne	t8, $u_late_head_exit	# U :
  
  	/* Finally, we've got all the stupid leading edge cases taken care
  	   of and we can set up to enter the main loop.  */
  	extql	t2, a1, t1	# U : position hi-bits of lo word
  	beq	a2, $u_eoc	# U :
  	ldq_u	t2, 8(a1)	# L : read next high-order source word
  	addq	a1, 8, a1	# E :
  
  	extqh	t2, a1, t0	# U : position lo-bits of hi word (stall)
  	cmpbge	zero, t2, t8	# E :
  	nop
  	bne	t8, $u_eos	# U :
  
  	/* Unaligned copy main loop.  In order to avoid reading too much,
  	   the loop is structured to detect zeros in aligned source words.
  	   This has, unfortunately, effectively pulled half of a loop
  	   iteration out into the head and half into the tail, but it does
  	   prevent nastiness from accumulating in the very thing we want
  	   to run as fast as possible.
  
  	   On entry to this basic block:
  	   t0 == the shifted low-order bits from the current source word
  	   t1 == the shifted high-order bits from the previous source word
  	   t2 == the unshifted current source word
  
  	   We further know that t2 does not contain a null terminator.  */
  
  	.align 4
  $u_loop:
  	or	t0, t1, t0	# E : current dst word now complete
  	subq	a2, 1, a2	# E : decrement word count
  	extql	t2, a1, t1	# U : extract low bits for next time
  	addq	a0, 8, a0	# E :
  
  	stq_u	t0, -8(a0)	# U : save the current word
  	beq	a2, $u_eoc	# U :
  	ldq_u	t2, 8(a1)	# U : Latency=3 load high word for next time
  	addq	a1, 8, a1	# E :
  
  	extqh	t2, a1, t0	# U : extract low bits (2 cycle stall)
  	cmpbge	zero, t2, t8	# E : test new word for eos
  	nop
  	beq	t8, $u_loop	# U :
  
  	/* We've found a zero somewhere in the source word we just read.
  	   If it resides in the lower half, we have one (probably partial)
  	   word to write out, and if it resides in the upper half, we
  	   have one full and one partial word left to write out.
  
  	   On entry to this basic block:
  	   t0 == the shifted low-order bits from the current source word
  	   t1 == the shifted high-order bits from the previous source word
  	   t2 == the unshifted current source word.  */
  $u_eos:
  	or	t0, t1, t0	# E : first (partial) source word complete
  	nop
  	cmpbge	zero, t0, t8	# E : is the null in this first bit? (stall)
  	bne	t8, $u_final	# U : (stall)
  
  	stq_u	t0, 0(a0)	# L : the null was in the high-order bits
  	addq	a0, 8, a0	# E :
  	subq	a2, 1, a2	# E :
  	nop
  
  $u_late_head_exit:
  	extql	t2, a1, t0	# U :
  	cmpbge	zero, t0, t8	# E :
  	or	t8, t10, t6	# E : (stall)
  	cmoveq	a2, t6, t8	# E : Latency=2, extra map slot (stall)
  
  	/* Take care of a final (probably partial) result word.
  	   On entry to this basic block:
  	   t0 == assembled source word
  	   t8 == cmpbge mask that found the null.  */
  $u_final:
  	negq	t8, t6		# E : isolate low bit set
  	and	t6, t8, t12	# E : (stall)
  	and	t12, 0x80, t6	# E : avoid dest word load if we can (stall)
  	bne	t6, 1f		# U : (stall)
  
  	ldq_u	t1, 0(a0)	# L :
  	subq	t12, 1, t6	# E :
  	or	t6, t12, t8	# E : (stall)
  	zapnot	t0, t8, t0	# U : kill source bytes > null
  
  	zap	t1, t8, t1	# U : kill dest bytes <= null
  	or	t0, t1, t0	# E : (stall)
  	nop
  	nop
  
  1:	stq_u	t0, 0(a0)	# L :
  	ret	(t9)		# L0 : Latency=3
  
  	  /* Got to end-of-count before end of string.  
  	     On entry to this basic block:
  	     t1 == the shifted high-order bits from the previous source word  */
  $u_eoc:
  	and	a1, 7, t6	# E : avoid final load if possible
  	sll	t10, t6, t6	# U : (stall)
  	and	t6, 0xff, t6	# E : (stall)
  	bne	t6, 1f		# U : (stall)
  
  	ldq_u	t2, 8(a1)	# L : load final src word
  	nop
  	extqh	t2, a1, t0	# U : extract low bits for last word (stall)
  	or	t1, t0, t1	# E : (stall)
  
  1:	cmpbge	zero, t1, t8	# E :
  	mov	t1, t0		# E :
  
  $u_eocfin:			# end-of-count, final word
  	or	t10, t8, t8	# E :
  	br	$u_final	# L0 : Latency=3
  
  	/* Unaligned copy entry point.  */
  	.align 4
  $unaligned:
  
  	ldq_u	t1, 0(a1)	# L : load first source word
  	and	a0, 7, t4	# E : find dest misalignment
  	and	a1, 7, t5	# E : find src misalignment
  	/* Conditionally load the first destination word and a bytemask
  	   with 0xff indicating that the destination byte is sacrosanct.  */
  	mov	zero, t0	# E :
  
  	mov	zero, t6	# E :
  	beq	t4, 1f		# U :
  	ldq_u	t0, 0(a0)	# L :
  	lda	t6, -1		# E :
  
  	mskql	t6, a0, t6	# U :
  	nop
  	nop
  	subq	a1, t4, a1	# E : sub dest misalignment from src addr
  
  	/* If source misalignment is larger than dest misalignment, we need
  	   extra startup checks to avoid SEGV.  */
  
  1:	cmplt	t4, t5, t12	# E :
  	extql	t1, a1, t1	# U : shift src into place
  	lda	t2, -1		# E : for creating masks later
  	beq	t12, $u_head	# U : (stall)
  
  	extql	t2, a1, t2	# U :
  	cmpbge	zero, t1, t8	# E : is there a zero?
  	andnot	t2, t6, t2	# E : dest mask for a single word copy
  	or	t8, t10, t5	# E : test for end-of-count too
  
  	cmpbge	zero, t2, t3	# E :
  	cmoveq	a2, t5, t8	# E : Latency=2, extra map slot
  	nop			# E : keep with cmoveq
  	andnot	t8, t3, t8	# E : (stall)
  
  	beq	t8, $u_head	# U :
  	/* At this point we've found a zero in the first partial word of
  	   the source.  We need to isolate the valid source data and mask
  	   it into the original destination data.  (Incidentally, we know
  	   that we'll need at least one byte of that original dest word.) */
  	ldq_u	t0, 0(a0)	# L :
  	negq	t8, t6		# E : build bitmask of bytes <= zero
  	mskqh	t1, t4, t1	# U :
  
  	and	t6, t8, t12	# E :
  	subq	t12, 1, t6	# E : (stall)
  	or	t6, t12, t8	# E : (stall)
  	zapnot	t2, t8, t2	# U : prepare source word; mirror changes (stall)
  
  	zapnot	t1, t8, t1	# U : to source validity mask
  	andnot	t0, t2, t0	# E : zero place for source to reside
  	or	t0, t1, t0	# E : and put it there (stall both t0, t1)
  	stq_u	t0, 0(a0)	# L : (stall)
  
  	ret	(t9)		# L0 : Latency=3
  	nop
  	nop
  	nop
  
  	.end __stxncpy