Blame view

kernel/linux-imx6_3.14.28/drivers/md/dm-service-time.c 8.25 KB
6b13f685e   김민수   BSP 최초 추가
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
  /*
   * Copyright (C) 2007-2009 NEC Corporation.  All Rights Reserved.
   *
   * Module Author: Kiyoshi Ueda
   *
   * This file is released under the GPL.
   *
   * Throughput oriented path selector.
   */
  
  #include "dm.h"
  #include "dm-path-selector.h"
  
  #include <linux/slab.h>
  #include <linux/module.h>
  
  #define DM_MSG_PREFIX	"multipath service-time"
  #define ST_MIN_IO	1
  #define ST_MAX_RELATIVE_THROUGHPUT	100
  #define ST_MAX_RELATIVE_THROUGHPUT_SHIFT	7
  #define ST_MAX_INFLIGHT_SIZE	((size_t)-1 >> ST_MAX_RELATIVE_THROUGHPUT_SHIFT)
  #define ST_VERSION	"0.2.0"
  
  struct selector {
  	struct list_head valid_paths;
  	struct list_head failed_paths;
  };
  
  struct path_info {
  	struct list_head list;
  	struct dm_path *path;
  	unsigned repeat_count;
  	unsigned relative_throughput;
  	atomic_t in_flight_size;	/* Total size of in-flight I/Os */
  };
  
  static struct selector *alloc_selector(void)
  {
  	struct selector *s = kmalloc(sizeof(*s), GFP_KERNEL);
  
  	if (s) {
  		INIT_LIST_HEAD(&s->valid_paths);
  		INIT_LIST_HEAD(&s->failed_paths);
  	}
  
  	return s;
  }
  
  static int st_create(struct path_selector *ps, unsigned argc, char **argv)
  {
  	struct selector *s = alloc_selector();
  
  	if (!s)
  		return -ENOMEM;
  
  	ps->context = s;
  	return 0;
  }
  
  static void free_paths(struct list_head *paths)
  {
  	struct path_info *pi, *next;
  
  	list_for_each_entry_safe(pi, next, paths, list) {
  		list_del(&pi->list);
  		kfree(pi);
  	}
  }
  
  static void st_destroy(struct path_selector *ps)
  {
  	struct selector *s = ps->context;
  
  	free_paths(&s->valid_paths);
  	free_paths(&s->failed_paths);
  	kfree(s);
  	ps->context = NULL;
  }
  
  static int st_status(struct path_selector *ps, struct dm_path *path,
  		     status_type_t type, char *result, unsigned maxlen)
  {
  	unsigned sz = 0;
  	struct path_info *pi;
  
  	if (!path)
  		DMEMIT("0 ");
  	else {
  		pi = path->pscontext;
  
  		switch (type) {
  		case STATUSTYPE_INFO:
  			DMEMIT("%d %u ", atomic_read(&pi->in_flight_size),
  			       pi->relative_throughput);
  			break;
  		case STATUSTYPE_TABLE:
  			DMEMIT("%u %u ", pi->repeat_count,
  			       pi->relative_throughput);
  			break;
  		}
  	}
  
  	return sz;
  }
  
  static int st_add_path(struct path_selector *ps, struct dm_path *path,
  		       int argc, char **argv, char **error)
  {
  	struct selector *s = ps->context;
  	struct path_info *pi;
  	unsigned repeat_count = ST_MIN_IO;
  	unsigned relative_throughput = 1;
  	char dummy;
  
  	/*
  	 * Arguments: [<repeat_count> [<relative_throughput>]]
  	 * 	<repeat_count>: The number of I/Os before switching path.
  	 * 			If not given, default (ST_MIN_IO) is used.
  	 * 	<relative_throughput>: The relative throughput value of
  	 *			the path among all paths in the path-group.
  	 * 			The valid range: 0-<ST_MAX_RELATIVE_THROUGHPUT>
  	 *			If not given, minimum value '1' is used.
  	 *			If '0' is given, the path isn't selected while
  	 * 			other paths having a positive value are
  	 * 			available.
  	 */
  	if (argc > 2) {
  		*error = "service-time ps: incorrect number of arguments";
  		return -EINVAL;
  	}
  
  	if (argc && (sscanf(argv[0], "%u%c", &repeat_count, &dummy) != 1)) {
  		*error = "service-time ps: invalid repeat count";
  		return -EINVAL;
  	}
  
  	if ((argc == 2) &&
  	    (sscanf(argv[1], "%u%c", &relative_throughput, &dummy) != 1 ||
  	     relative_throughput > ST_MAX_RELATIVE_THROUGHPUT)) {
  		*error = "service-time ps: invalid relative_throughput value";
  		return -EINVAL;
  	}
  
  	/* allocate the path */
  	pi = kmalloc(sizeof(*pi), GFP_KERNEL);
  	if (!pi) {
  		*error = "service-time ps: Error allocating path context";
  		return -ENOMEM;
  	}
  
  	pi->path = path;
  	pi->repeat_count = repeat_count;
  	pi->relative_throughput = relative_throughput;
  	atomic_set(&pi->in_flight_size, 0);
  
  	path->pscontext = pi;
  
  	list_add_tail(&pi->list, &s->valid_paths);
  
  	return 0;
  }
  
  static void st_fail_path(struct path_selector *ps, struct dm_path *path)
  {
  	struct selector *s = ps->context;
  	struct path_info *pi = path->pscontext;
  
  	list_move(&pi->list, &s->failed_paths);
  }
  
  static int st_reinstate_path(struct path_selector *ps, struct dm_path *path)
  {
  	struct selector *s = ps->context;
  	struct path_info *pi = path->pscontext;
  
  	list_move_tail(&pi->list, &s->valid_paths);
  
  	return 0;
  }
  
  /*
   * Compare the estimated service time of 2 paths, pi1 and pi2,
   * for the incoming I/O.
   *
   * Returns:
   * < 0 : pi1 is better
   * 0   : no difference between pi1 and pi2
   * > 0 : pi2 is better
   *
   * Description:
   * Basically, the service time is estimated by:
   *     ('pi->in-flight-size' + 'incoming') / 'pi->relative_throughput'
   * To reduce the calculation, some optimizations are made.
   * (See comments inline)
   */
  static int st_compare_load(struct path_info *pi1, struct path_info *pi2,
  			   size_t incoming)
  {
  	size_t sz1, sz2, st1, st2;
  
  	sz1 = atomic_read(&pi1->in_flight_size);
  	sz2 = atomic_read(&pi2->in_flight_size);
  
  	/*
  	 * Case 1: Both have same throughput value. Choose less loaded path.
  	 */
  	if (pi1->relative_throughput == pi2->relative_throughput)
  		return sz1 - sz2;
  
  	/*
  	 * Case 2a: Both have same load. Choose higher throughput path.
  	 * Case 2b: One path has no throughput value. Choose the other one.
  	 */
  	if (sz1 == sz2 ||
  	    !pi1->relative_throughput || !pi2->relative_throughput)
  		return pi2->relative_throughput - pi1->relative_throughput;
  
  	/*
  	 * Case 3: Calculate service time. Choose faster path.
  	 *         Service time using pi1:
  	 *             st1 = (sz1 + incoming) / pi1->relative_throughput
  	 *         Service time using pi2:
  	 *             st2 = (sz2 + incoming) / pi2->relative_throughput
  	 *
  	 *         To avoid the division, transform the expression to use
  	 *         multiplication.
  	 *         Because ->relative_throughput > 0 here, if st1 < st2,
  	 *         the expressions below are the same meaning:
  	 *             (sz1 + incoming) / pi1->relative_throughput <
  	 *                 (sz2 + incoming) / pi2->relative_throughput
  	 *             (sz1 + incoming) * pi2->relative_throughput <
  	 *                 (sz2 + incoming) * pi1->relative_throughput
  	 *         So use the later one.
  	 */
  	sz1 += incoming;
  	sz2 += incoming;
  	if (unlikely(sz1 >= ST_MAX_INFLIGHT_SIZE ||
  		     sz2 >= ST_MAX_INFLIGHT_SIZE)) {
  		/*
  		 * Size may be too big for multiplying pi->relative_throughput
  		 * and overflow.
  		 * To avoid the overflow and mis-selection, shift down both.
  		 */
  		sz1 >>= ST_MAX_RELATIVE_THROUGHPUT_SHIFT;
  		sz2 >>= ST_MAX_RELATIVE_THROUGHPUT_SHIFT;
  	}
  	st1 = sz1 * pi2->relative_throughput;
  	st2 = sz2 * pi1->relative_throughput;
  	if (st1 != st2)
  		return st1 - st2;
  
  	/*
  	 * Case 4: Service time is equal. Choose higher throughput path.
  	 */
  	return pi2->relative_throughput - pi1->relative_throughput;
  }
  
  static struct dm_path *st_select_path(struct path_selector *ps,
  				      unsigned *repeat_count, size_t nr_bytes)
  {
  	struct selector *s = ps->context;
  	struct path_info *pi = NULL, *best = NULL;
  
  	if (list_empty(&s->valid_paths))
  		return NULL;
  
  	/* Change preferred (first in list) path to evenly balance. */
  	list_move_tail(s->valid_paths.next, &s->valid_paths);
  
  	list_for_each_entry(pi, &s->valid_paths, list)
  		if (!best || (st_compare_load(pi, best, nr_bytes) < 0))
  			best = pi;
  
  	if (!best)
  		return NULL;
  
  	*repeat_count = best->repeat_count;
  
  	return best->path;
  }
  
  static int st_start_io(struct path_selector *ps, struct dm_path *path,
  		       size_t nr_bytes)
  {
  	struct path_info *pi = path->pscontext;
  
  	atomic_add(nr_bytes, &pi->in_flight_size);
  
  	return 0;
  }
  
  static int st_end_io(struct path_selector *ps, struct dm_path *path,
  		     size_t nr_bytes)
  {
  	struct path_info *pi = path->pscontext;
  
  	atomic_sub(nr_bytes, &pi->in_flight_size);
  
  	return 0;
  }
  
  static struct path_selector_type st_ps = {
  	.name		= "service-time",
  	.module		= THIS_MODULE,
  	.table_args	= 2,
  	.info_args	= 2,
  	.create		= st_create,
  	.destroy	= st_destroy,
  	.status		= st_status,
  	.add_path	= st_add_path,
  	.fail_path	= st_fail_path,
  	.reinstate_path	= st_reinstate_path,
  	.select_path	= st_select_path,
  	.start_io	= st_start_io,
  	.end_io		= st_end_io,
  };
  
  static int __init dm_st_init(void)
  {
  	int r = dm_register_path_selector(&st_ps);
  
  	if (r < 0)
  		DMERR("register failed %d", r);
  
  	DMINFO("version " ST_VERSION " loaded");
  
  	return r;
  }
  
  static void __exit dm_st_exit(void)
  {
  	int r = dm_unregister_path_selector(&st_ps);
  
  	if (r < 0)
  		DMERR("unregister failed %d", r);
  }
  
  module_init(dm_st_init);
  module_exit(dm_st_exit);
  
  MODULE_DESCRIPTION(DM_NAME " throughput oriented path selector");
  MODULE_AUTHOR("Kiyoshi Ueda <k-ueda@ct.jp.nec.com>");
  MODULE_LICENSE("GPL");