Blame view

kernel/linux-imx6_3.14.28/drivers/crypto/ccp/ccp-crypto-aes-cmac.c 9.24 KB
6b13f685e   김민수   BSP 최초 추가
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
  /*
   * AMD Cryptographic Coprocessor (CCP) AES CMAC crypto API support
   *
   * Copyright (C) 2013 Advanced Micro Devices, Inc.
   *
   * Author: Tom Lendacky <thomas.lendacky@amd.com>
   *
   * This program is free software; you can redistribute it and/or modify
   * it under the terms of the GNU General Public License version 2 as
   * published by the Free Software Foundation.
   */
  
  #include <linux/module.h>
  #include <linux/sched.h>
  #include <linux/delay.h>
  #include <linux/scatterlist.h>
  #include <linux/crypto.h>
  #include <crypto/algapi.h>
  #include <crypto/aes.h>
  #include <crypto/hash.h>
  #include <crypto/internal/hash.h>
  #include <crypto/scatterwalk.h>
  
  #include "ccp-crypto.h"
  
  
  static int ccp_aes_cmac_complete(struct crypto_async_request *async_req,
  				 int ret)
  {
  	struct ahash_request *req = ahash_request_cast(async_req);
  	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  	struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx(req);
  	unsigned int digest_size = crypto_ahash_digestsize(tfm);
  
  	if (ret)
  		goto e_free;
  
  	if (rctx->hash_rem) {
  		/* Save remaining data to buffer */
  		unsigned int offset = rctx->nbytes - rctx->hash_rem;
  		scatterwalk_map_and_copy(rctx->buf, rctx->src,
  					 offset, rctx->hash_rem, 0);
  		rctx->buf_count = rctx->hash_rem;
  	} else
  		rctx->buf_count = 0;
  
  	/* Update result area if supplied */
  	if (req->result)
  		memcpy(req->result, rctx->iv, digest_size);
  
  e_free:
  	sg_free_table(&rctx->data_sg);
  
  	return ret;
  }
  
  static int ccp_do_cmac_update(struct ahash_request *req, unsigned int nbytes,
  			      unsigned int final)
  {
  	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  	struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
  	struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx(req);
  	struct scatterlist *sg, *cmac_key_sg = NULL;
  	unsigned int block_size =
  		crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
  	unsigned int need_pad, sg_count;
  	gfp_t gfp;
  	u64 len;
  	int ret;
  
  	if (!ctx->u.aes.key_len)
  		return -EINVAL;
  
  	if (nbytes)
  		rctx->null_msg = 0;
  
  	len = (u64)rctx->buf_count + (u64)nbytes;
  
  	if (!final && (len <= block_size)) {
  		scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src,
  					 0, nbytes, 0);
  		rctx->buf_count += nbytes;
  
  		return 0;
  	}
  
  	rctx->src = req->src;
  	rctx->nbytes = nbytes;
  
  	rctx->final = final;
  	rctx->hash_rem = final ? 0 : len & (block_size - 1);
  	rctx->hash_cnt = len - rctx->hash_rem;
  	if (!final && !rctx->hash_rem) {
  		/* CCP can't do zero length final, so keep some data around */
  		rctx->hash_cnt -= block_size;
  		rctx->hash_rem = block_size;
  	}
  
  	if (final && (rctx->null_msg || (len & (block_size - 1))))
  		need_pad = 1;
  	else
  		need_pad = 0;
  
  	sg_init_one(&rctx->iv_sg, rctx->iv, sizeof(rctx->iv));
  
  	/* Build the data scatterlist table - allocate enough entries for all
  	 * possible data pieces (buffer, input data, padding)
  	 */
  	sg_count = (nbytes) ? sg_nents(req->src) + 2 : 2;
  	gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
  		GFP_KERNEL : GFP_ATOMIC;
  	ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp);
  	if (ret)
  		return ret;
  
  	sg = NULL;
  	if (rctx->buf_count) {
  		sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
  		sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg);
  	}
  
  	if (nbytes)
  		sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src);
  
  	if (need_pad) {
  		int pad_length = block_size - (len & (block_size - 1));
  
  		rctx->hash_cnt += pad_length;
  
  		memset(rctx->pad, 0, sizeof(rctx->pad));
  		rctx->pad[0] = 0x80;
  		sg_init_one(&rctx->pad_sg, rctx->pad, pad_length);
  		sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->pad_sg);
  	}
  	if (sg) {
  		sg_mark_end(sg);
  		sg = rctx->data_sg.sgl;
  	}
  
  	/* Initialize the K1/K2 scatterlist */
  	if (final)
  		cmac_key_sg = (need_pad) ? &ctx->u.aes.k2_sg
  					 : &ctx->u.aes.k1_sg;
  
  	memset(&rctx->cmd, 0, sizeof(rctx->cmd));
  	INIT_LIST_HEAD(&rctx->cmd.entry);
  	rctx->cmd.engine = CCP_ENGINE_AES;
  	rctx->cmd.u.aes.type = ctx->u.aes.type;
  	rctx->cmd.u.aes.mode = ctx->u.aes.mode;
  	rctx->cmd.u.aes.action = CCP_AES_ACTION_ENCRYPT;
  	rctx->cmd.u.aes.key = &ctx->u.aes.key_sg;
  	rctx->cmd.u.aes.key_len = ctx->u.aes.key_len;
  	rctx->cmd.u.aes.iv = &rctx->iv_sg;
  	rctx->cmd.u.aes.iv_len = AES_BLOCK_SIZE;
  	rctx->cmd.u.aes.src = sg;
  	rctx->cmd.u.aes.src_len = rctx->hash_cnt;
  	rctx->cmd.u.aes.dst = NULL;
  	rctx->cmd.u.aes.cmac_key = cmac_key_sg;
  	rctx->cmd.u.aes.cmac_key_len = ctx->u.aes.kn_len;
  	rctx->cmd.u.aes.cmac_final = final;
  
  	ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
  
  	return ret;
  }
  
  static int ccp_aes_cmac_init(struct ahash_request *req)
  {
  	struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx(req);
  
  	memset(rctx, 0, sizeof(*rctx));
  
  	rctx->null_msg = 1;
  
  	return 0;
  }
  
  static int ccp_aes_cmac_update(struct ahash_request *req)
  {
  	return ccp_do_cmac_update(req, req->nbytes, 0);
  }
  
  static int ccp_aes_cmac_final(struct ahash_request *req)
  {
  	return ccp_do_cmac_update(req, 0, 1);
  }
  
  static int ccp_aes_cmac_finup(struct ahash_request *req)
  {
  	return ccp_do_cmac_update(req, req->nbytes, 1);
  }
  
  static int ccp_aes_cmac_digest(struct ahash_request *req)
  {
  	int ret;
  
  	ret = ccp_aes_cmac_init(req);
  	if (ret)
  		return ret;
  
  	return ccp_aes_cmac_finup(req);
  }
  
  static int ccp_aes_cmac_setkey(struct crypto_ahash *tfm, const u8 *key,
  			   unsigned int key_len)
  {
  	struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
  	struct ccp_crypto_ahash_alg *alg =
  		ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm));
  	u64 k0_hi, k0_lo, k1_hi, k1_lo, k2_hi, k2_lo;
  	u64 rb_hi = 0x00, rb_lo = 0x87;
  	__be64 *gk;
  	int ret;
  
  	switch (key_len) {
  	case AES_KEYSIZE_128:
  		ctx->u.aes.type = CCP_AES_TYPE_128;
  		break;
  	case AES_KEYSIZE_192:
  		ctx->u.aes.type = CCP_AES_TYPE_192;
  		break;
  	case AES_KEYSIZE_256:
  		ctx->u.aes.type = CCP_AES_TYPE_256;
  		break;
  	default:
  		crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  		return -EINVAL;
  	}
  	ctx->u.aes.mode = alg->mode;
  
  	/* Set to zero until complete */
  	ctx->u.aes.key_len = 0;
  
  	/* Set the key for the AES cipher used to generate the keys */
  	ret = crypto_cipher_setkey(ctx->u.aes.tfm_cipher, key, key_len);
  	if (ret)
  		return ret;
  
  	/* Encrypt a block of zeroes - use key area in context */
  	memset(ctx->u.aes.key, 0, sizeof(ctx->u.aes.key));
  	crypto_cipher_encrypt_one(ctx->u.aes.tfm_cipher, ctx->u.aes.key,
  				  ctx->u.aes.key);
  
  	/* Generate K1 and K2 */
  	k0_hi = be64_to_cpu(*((__be64 *)ctx->u.aes.key));
  	k0_lo = be64_to_cpu(*((__be64 *)ctx->u.aes.key + 1));
  
  	k1_hi = (k0_hi << 1) | (k0_lo >> 63);
  	k1_lo = k0_lo << 1;
  	if (ctx->u.aes.key[0] & 0x80) {
  		k1_hi ^= rb_hi;
  		k1_lo ^= rb_lo;
  	}
  	gk = (__be64 *)ctx->u.aes.k1;
  	*gk = cpu_to_be64(k1_hi);
  	gk++;
  	*gk = cpu_to_be64(k1_lo);
  
  	k2_hi = (k1_hi << 1) | (k1_lo >> 63);
  	k2_lo = k1_lo << 1;
  	if (ctx->u.aes.k1[0] & 0x80) {
  		k2_hi ^= rb_hi;
  		k2_lo ^= rb_lo;
  	}
  	gk = (__be64 *)ctx->u.aes.k2;
  	*gk = cpu_to_be64(k2_hi);
  	gk++;
  	*gk = cpu_to_be64(k2_lo);
  
  	ctx->u.aes.kn_len = sizeof(ctx->u.aes.k1);
  	sg_init_one(&ctx->u.aes.k1_sg, ctx->u.aes.k1, sizeof(ctx->u.aes.k1));
  	sg_init_one(&ctx->u.aes.k2_sg, ctx->u.aes.k2, sizeof(ctx->u.aes.k2));
  
  	/* Save the supplied key */
  	memset(ctx->u.aes.key, 0, sizeof(ctx->u.aes.key));
  	memcpy(ctx->u.aes.key, key, key_len);
  	ctx->u.aes.key_len = key_len;
  	sg_init_one(&ctx->u.aes.key_sg, ctx->u.aes.key, key_len);
  
  	return ret;
  }
  
  static int ccp_aes_cmac_cra_init(struct crypto_tfm *tfm)
  {
  	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
  	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
  	struct crypto_cipher *cipher_tfm;
  
  	ctx->complete = ccp_aes_cmac_complete;
  	ctx->u.aes.key_len = 0;
  
  	crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_aes_cmac_req_ctx));
  
  	cipher_tfm = crypto_alloc_cipher("aes", 0,
  			CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
  	if (IS_ERR(cipher_tfm)) {
  		pr_warn("could not load aes cipher driver
  ");
  		return PTR_ERR(cipher_tfm);
  	}
  	ctx->u.aes.tfm_cipher = cipher_tfm;
  
  	return 0;
  }
  
  static void ccp_aes_cmac_cra_exit(struct crypto_tfm *tfm)
  {
  	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
  
  	if (ctx->u.aes.tfm_cipher)
  		crypto_free_cipher(ctx->u.aes.tfm_cipher);
  	ctx->u.aes.tfm_cipher = NULL;
  }
  
  int ccp_register_aes_cmac_algs(struct list_head *head)
  {
  	struct ccp_crypto_ahash_alg *ccp_alg;
  	struct ahash_alg *alg;
  	struct hash_alg_common *halg;
  	struct crypto_alg *base;
  	int ret;
  
  	ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
  	if (!ccp_alg)
  		return -ENOMEM;
  
  	INIT_LIST_HEAD(&ccp_alg->entry);
  	ccp_alg->mode = CCP_AES_MODE_CMAC;
  
  	alg = &ccp_alg->alg;
  	alg->init = ccp_aes_cmac_init;
  	alg->update = ccp_aes_cmac_update;
  	alg->final = ccp_aes_cmac_final;
  	alg->finup = ccp_aes_cmac_finup;
  	alg->digest = ccp_aes_cmac_digest;
  	alg->setkey = ccp_aes_cmac_setkey;
  
  	halg = &alg->halg;
  	halg->digestsize = AES_BLOCK_SIZE;
  
  	base = &halg->base;
  	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "cmac(aes)");
  	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "cmac-aes-ccp");
  	base->cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC |
  			  CRYPTO_ALG_KERN_DRIVER_ONLY |
  			  CRYPTO_ALG_NEED_FALLBACK;
  	base->cra_blocksize = AES_BLOCK_SIZE;
  	base->cra_ctxsize = sizeof(struct ccp_ctx);
  	base->cra_priority = CCP_CRA_PRIORITY;
  	base->cra_type = &crypto_ahash_type;
  	base->cra_init = ccp_aes_cmac_cra_init;
  	base->cra_exit = ccp_aes_cmac_cra_exit;
  	base->cra_module = THIS_MODULE;
  
  	ret = crypto_register_ahash(alg);
  	if (ret) {
  		pr_err("%s ahash algorithm registration error (%d)
  ",
  			base->cra_name, ret);
  		kfree(ccp_alg);
  		return ret;
  	}
  
  	list_add(&ccp_alg->entry, head);
  
  	return 0;
  }